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Abstract— The article presents an innovative method of 
scanning slices in computed tomography. The presented technique 
allows for automatically generation of three-dimensional 
projection, determined by X-Y-Z surfaces. Projections allow to 
calculate Kidney-Region-Of-Interest - a minimal envelope of 
kidney contours for all CT scans. The presented technique 
increases the accuracy of automatic identification and 
segmentation of kidneys and can be a good starting point for other 
techniques for identifying kidney areas on individual CT scans. 
This method significantly limits the area of kidney searching, 
thereby accelerates the operation of identification for any 
algorithm. The presented method is based on the technique of pixel 
intensity values averaging, area region-growing algorithms and 
morphological transformations. The presented technique has also 
been tested in implementation of the U-Net neural network system. 
Our presented solution of X-Y-Z projection is characterized by a 
high efficiency of visualization, comparable to the results obtained 
by a human expert. 

Keywords—kidney, projection, region-growth, U-Net, detection 

I. INTRODUCTION 

The development of computer-aided techniques for 
supporting medical diagnostics allows obtaining better 
treatment effects, increasing the accuracy of a disease diagnosis 
as well as increasing the survival rate of ill people. The 
development of image processing techniques in imaging 
diagnostics, such as computed tomography, x-ray or ultrasound, 
is especially important. This work presents the technique of 
computerized tomography (CT) image processing technique, 
which allows obtaining precise areas limiting the occurrence of 
the kidney in three dimensions X-Y-Z. Medical-imaging of 
kidneys is used as the basic stage in the diagnosis and treatment 
of cancer. Kidney cancer occurrence is on the sixth place among 
men and eighth among women [1, 2]. The development of new 
methods for visualization of medical data, as well as automatic 
image processing methods for kidney detection is a very 
valuable tool for pathologist, oncologist, and other medical 
specialists [3]. 

Currently, many automatic kidney detection techniques in 
CT images have been published. A lot of presented techniques 
are based on area segmentation methods, such as K-means, 

watershed and region-growing algorithms [4, 5, 6, 14]. These 
types of techniques are characterized of kidney-boundary 
recognition at level of 86%, which is close to a human expert. 
The second group of techniques widely described in the 
literature and used in practice worldwide are methods based on 
machine learning. Algorithms based on neural networks such as 
U-Net are very often used. These systems have the efficiency in 
recognizing kidney contours at level of 90% [7, 8]. The 
disadvantages of this type of solutions are slow data analysis 
time, high hardware requirements and a long learning time 
process. Other solutions basing on hybrid methods are often 
used, combining learning techniques and morphological 
techniques for image processing [9]. 

Regardless of the method of data analysis, the presented 
systems have a common feature - they analyze each CT slice 
separately. The number of scans to be analyzed for one patient 
is from several to several hundred - depending on the density of 
the tomographic scanner properties. This means that the 
algorithm that performs image segmentation must process the 
entire field of view several hundred, even up to 300 times - for 
CT images with a size of 512x512 pixels = 262144 pixels. The 
technique we developed allows for significant limitation of the 
kidney search area to a certain subset area that covers the 
minimum possible area in which all kidney contours are 
included. This area usually does not exceed 10,000 pixels, which 
is 3.81% of the potential search area. In addition, the innovative 
projection technique presented in this article allows the 
visualization of scans in three X-Y-Z dimensions, which further 
increases the possibilities of analyzing data from a completely 
new perspective. 

II. PROBLEM STATEMENT 

Single computed tomography examination allows to obtain 
 scans in the form of digital gray-scale images. Expectations 

towards computer systems supporting medical diagnostics in 
computed tomography are focused mainly on the possibility of 
an automatic identification of the borders of selected organs, e.g. 
kidneys. In this article, we do not present a complete method to 
identify the exact border of the kidney in each separate slice. The 
technique we propose allows for universal finding of a minimal 
subset of data that certainly contains the entire kidney border - 
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Kidney-Region-Of-Interest (KROI) and visualization of this set 
in three X-Y-Z dimensions. This limited subset can be further 
analyzed by any other segmentation algorithm. 

The following designations have been introduced: projection 
X, projection Y and projection Z, divided into Z1 and Z2. Each 
projection visualizes data in a different dimension. All three 
projections are presented in Fig. 1. 

 
Fig 1. Visualization of the X projection, Y projection and Z1 and Z2 projections. 
The blue area represents the position of the kidneys. 

Projection X is the most used projection in the CT images 
analysis. It represents the body's projection from the head down. 
This projection is also most used in image processing algorithms 
for automatically kidneys detection. Works: [4-9] use the X 
projection as the main visualization mode. An example of CT 
image in the X projection is shown in Fig. 2. 

 
Fig 2. An example of CT image showing the abdominal segment, with visible 
kidneys.  

Projection X is most often used in image segmentation 
algorithms because it is easy to determine the first and the last 
slice containing the kidney. Other organs such as liver, spleen 
and spinal cord are also visible in this projection. The projection 
Y presents the body from the abdomen to the back, which is 
much more demanding in analysis. It is much more difficult to 
determine the first and last slice, containing the kidney, because 
the location of the kidney can vary significantly in many 
patients. In addition, each patient has a different fat thickness, 
which also affects the location of the kidney. Similar problems 
occur in the Z projection. In this case, there is another problem 
related to the fact that in this projection two kidneys overlap. To 
circumvent this problem, the Z projection was divided into Z1 
and Z2 projection, generating visualization for the left and right 
kidneys, respectively. The challenge in Y, Z1 and Z2 projection 
is to find the first and the end slice so that other organs do not 
cover the kidney. In fig. 3 the lines limiting the projection Y and 
the projection Z2 for the enlarged kidney from fig 2 are shown. 

 
Fig 3. Kidney boundaries in projection Y and Z2. 

The following chapters present the projection technique of 
Y, Z1 and Z2, together with the algorithm of finding the KROI 
area in this projection. 

III. METHODS OF CT SCANS PROJECTION 

This chapter describes how to create X-Y-Z projections for all 
scans of a given patient. In the first step, we prepare a set of 
scans . . . in the basic projection X. The first scan -  and 
the end scan  are the first and the last scans containing the 
kidney. In the next step, projection X -  is created. We 
generate a new image where each pixel is the average of all 
pixels of all slices with the same coordinates according to 
formula (1): 
 , = , ⋯ ,

 
(1) 

 
The result of the performed operation is presented in Fig. 4. 
 

 
Fig 4. Projection X, which is an average of all slices from 1…  and the KROI 
area indicated. 

 
The new image shows KROI areas, forming the field of kidney 
search for each of the slices 1. . . 
Projections Y, Z1 and Z2 are generated in a similar way. In this 
case, we sum pixels in the Y or Z axis, but only in the area 
bounded by the green lines (fig. 3). The result of the projection 
Y, Z1 and Z2 is shown in figure 5. 
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Fig 5. Result of the projection Y, Z1 and Z2.  

 
Projection Y contains two KROI areas. Projections Z1 and Z2 
contain only one KROI area. It is mandatory to precisely define 
the first and last slice ( . . . ) for generation process of Y, Z1 
and Z2 projections. This is possible after using the KROI 
detection algorithm for projection X. Slices . . .  for 
projection Y are determined by the points … ,  and … , . Slices . . .  for the projection Z are determined 
by the points , …  and , ... ,  separately for the 
left and right kidneys. In the following sections, techniques for 
KROI calculation for each projection are presented. 
 

A.  Fully automated KROI detection system 

This chapter introduces two techniques for automatic KROI 
detection: region-growth based technique and U-Net assisted 
segmentation. These techniques can be used independently or 
combined. 

B. Region-growth segmentation 

The region-growth segmentation technique is based on the 
region-growing algorithm. The algorithm is performed on each 
image separately. We analyze images representing results of 
projection X, Y, Z1, Z2. First step in this algorithm is to set 
initial points for region-growth.  
We have calculated two square areas: A and B according to 
following rules: 
 

• Area A: {X1: 125, Y1:250}, {X2: 225, Y2:350},   
• Area B: {X1: 287, Y1:250}, {X2: 387, Y2:350},   

 
Figure 6 shows the marked areas. 
 

 
Fig 6. Red squares represent the area A and the area B. 

  
Region-growth is performed at every point inside the area A 
and the area B, with a step of x and y = 25px. In total 25 region-
growths are made. The growth-stop criterion is the growth-area 
cannot exceed the value of 50000px. For each generated area 
we calculate geometric coefficient of circularity -  and we 
finally select the area with the largest value of .  
 = 4	 	 	

 (2) 

 
According to above formula  is a surface area and  is a 
circuit of binary result of region-growth. Finally, a 
morphological dilate operation, with 4px size structural 
element, is performed. This operation is performed to ensure 
that the found KROI area will cover all potential kidney 
boundaries for each CT slice. 

C. U-Net assisted segmentation 

In this section we present another segmentation technique, 
based on machine learning using the U-Net. U-Net is a multi-
layer neural network. The input layer of the network are the 
dimensions of the data [12,13]. In network learning process, the 
following parameters have been set to following:  
 

• no of epoch: 20,  
• learning algorithm: sgdm,  
• minimum batch size: 256,  
• gradient threshold: 0.05,  
• the initial learning rate: 0.05, 
• the L2 regularization: 0.0002,  
• the momentum:  0.95. 

 
Image data for network learning process are CT scans for 96 
cases. In total, 4534 CT slices were analyzed. The network was 
then tested on another set of 1303 CT slices as testing data. The 
predicted network result is a set of gray-scale images. Each 
pixel intensity value corresponds to the number of votes cast by 
the network that this point is a part of the kidney area. Then, 
projections X-Y-Z were made for each case, according to the 
technique presented in the previous chapter. Both the region-
growth technique and the technique based on the neural 
network allow for each case to obtain a precise area -KROI, in 
which all kidney borders for each CT slice are included. Fig 7 
shows the result of the projection X, as well as the result of 
region-growth algorithm (the red outline) and the U-Net result 
(the area found is visible in the form of gray-scale). The results 
obtained for two cases: A and B were also compared to the sum 
of human expert masks calculated for each CT slice in the X 
projection.  



 
 

Case A 

 

Case B 

Fig 7. Column 1: the result of projection X, column 2: the result of the region-
growth algorithm, column 3: the result of the U-Net algorithm for X projection, 
column 4: a reference to the mask of a human expert. 

 
Similar results can be obtained for other projections: Y, Z1 and 
Z2. The image results are shown in Fig. 8.  
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Fig 8. Image result: automatically detected KROI areas for case A for projections 
Y, Z1 and Z2. 

 

The same experiment was performed for case B. The results of 
the KROI detection are visible on Fig. 9. For each projection, 
top image represents region-growth algorithm effect, middle 
image represents U-Net result and bottom image represents 
expert mask. 
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Fig 9. Image result: automatically detected KROI areas for case B for projections 
Y, Z1 and Z2. 

 
The graphic presentation of the results allows to notice a high 
compatibility of the automatically detected KROI areas with the 
area marked by the expert in each of the X-Y-Z projections, 
both for the region-growth algorithm and the algorithm based 
on the U-Net network. In order to compare the obtained results, 
numerical tests were performed, presented in the next section. 
A full diagram showing the main steps of the complete KROI 



detection system, using a region-growth technique is shown in 
Figure 10. 
 

 

 
Fig 10. A full diagram showing the main steps of the complete KROI detection 
system, using a region-growth technique.  

 
Figure 11 presents another diagram showing the main steps of 
the KROI detection system using a method based on the U-Net 
network model. 
 

 
Fig 11. A full diagram showing the main steps of the complete KROI detection 
system, based on the U-Net network model. 

 

IV. TESTS AND RESULTS 

Numerical tests have been developed to assess the possibilities 
of the presented algorithms. We tested 26 cases. Each case is 
made up of average 50 CT slices. In total, 1303 CT slices were 
analyzed. The tested images come from the archives of the 
Military Institute of Medicine in Warsaw, Poland. The images 
in raw format were analyzed using the MATLAB environment 
[11] by an algorithm based on region-growth and the technique 

using the U-Net. The result of the region-growth algorithm is in 
the form of a binary mask. The U-Net result is a gray-scale 
image. In order to compare both solutions, for U-Net result 
images we applied threshold of value = 	32 , to obtain a 
binary image. In order to select the optimal value of , we 
applied a ROC cure (receiver operating characteristic curve) 
analysis. The ROC analysis allows to determine the dependence 
of sensitivity and specificity. Figure 12 shows the ROC chart. 
On the horizontal axis, the threshold values K was determined. 
The analysis of many cases allowed the selection of the optimal 
threshold value ( ).  
 

 
Fig 12. ROC cure analysis allows the selection of the optimal  value in order 
to binarize the U-Net image result.  

Both binary images (result of region-growth and U-Net) were 
compared to the masks of an expert from the Military Institute 
of Medicine, who manually marked all scans. The numerical 
results represent the Sørensen-Dice measure [10], commonly 
used to evaluate the effectiveness of KROI detection 
algorithms. Each projection X-Y-Z was tested independently. 
Table I presents numerical results of KROI detection accuracy 
for X-Y-Z projections for region-growth algorithm. 
 

TABLE I.  NUMERICAL RESULTS OF THE KROI DETECTION ACCURACY 
FOR X-Y-Z PROJECTION FOR REGION-GROWTH ALGORITHM. 

Group 
Total 
CT 
slices in 
group

KROI accuracy in projection

X Y Z1 Z2 

1 104 66.74 74.93 90.06 82.64 
2 97 84.22 93.67 78.11 91.88 
3 90 80.58 91.07 73.82 96.96 
4 103 97.71 79.31 86.39 79.45 
5 91 79.41 72.97 74.47 96.26 
6 86 88.17 97.26 78.02 74.07 
7 107 74.77 72.66 75.25 83.58 
8 143 75.88 72.34 87.54 91.33 
9 87 85.58 87.63 81.79 84.13 
10 47 90.76 82.96 97.23 92.97 
11 95 82.97 83.29 89.23 95.62 
12 138 65.03 83.19 80.39 85.66 
13 115 79.81 89.72 93.12 91.19 

     

Avg: 80.89 83.15 83.49 88.13 

 
The same tests were performed for the segmentation technique 
based on U-Net.  
Table II presents numerical results of KROI detection accuracy 
for X-Y-Z projections U-Net algorithm. 



TABLE II.  NUMERICAL RESULTS OF THE KROI DETECTION ACCURACY 
FOR X-Y-Z PROJECTION FOR U-NET TECHNIQUE. 

Group 
Total 
CT 
slices in 
group 

KROI accuracy in projection  

X Y Z1 Z2 

1 104 75.34 93.34 98.86 76.13 
2 97 88.32 78.56 81.41 98.77 
3 90 88.08 86.34 77.02 94.57 
4 103 98.96 93.13 94.19 79.31 
5 91 86.17 87.46 84.97 74.97 
6 86 80.43 93.24 86.12 90.76 
7 107 84.91 91.58 84.75 80.78 
8 143 81.58 98.33 90.24 94.01 
9 87 81.58 94.73 89.29 86.25 
10 47 99.14 99.37 81.02 97.86 
11 95 78.71 92.78 96.23 72.25 
12 138 90.97 91.16 87.09 91.87 
13 115 95.27 99.49 84.13 91.22 

      

 Avg: 86.88 92.27 87.33 86.83 

 
Analysis of Tables I and II shows that for projections X, Y and 
Z1, the recognition of KROI is more accurate for U-Net 
technique. In projection Z2 the KROI region is better 
recognized, for the technique of region-growth. In tables I and 
II, the unique cases are divided into 14 groups. For each group 
the total number of CT slices and average KROI detection 
accuracy was given. Each group contains images of two 
randomly selected patients. The total number of patients whose 
cases we analyzed is 26.  

The developed numerical results show that the average 
accuracy of KROI recognition for region-growth is 80%-88%, 
while for the algorithm based on the U-Net network it is 86%-
92%. 
 

V. CONCLUSION  

The article presents an innovative CT slices projection method 
in projection X-Y-Z. Our visualization allows for defining the 
KROI area - kidney region of interest, which includes all the 
borders of the kidneys. Two different approaches have been 
tested for KROI detection: technique based on region-growth 
processing, and machine learning approach - U-Net. Both 
solutions were compared to human expert binary masks. The 
main features of the presented solutions are the following: 

• Region-growth: fast operation time, no requirement of 
a large data learning set, no high hardware 
requirements. 

• U-Net: the need to analyze large data sets, high 
hardware requirements, the need for post-processing 
to get the final binary mask. 

 
The benefits of using the developed techniques are:  

• Shortening the calculation time for any kidney 
identification algorithm (since the search area is 
significantly limited), 

• Increasing the accuracy of any kidney identification 
algorithm (by omitting areas incorrectly detected - 
false-positive error) 

• The ability to visualize the projection in different 
projections: X-Y-Z (which allows the use of new, 
alternative data segmentation methods) 

 
We performed numerical tests that confirmed the high 
efficiency of KROI identification of both presented methods. 
The evaluated techniques can be used alternatively and are 
good starting point for any algorithm for kidney localization in 
individual CT slice. 

The development of new methods of analysis and 
processing of image data is necessary in order to increase the 
possibilities of medical diagnostics. It is necessary to further 
develop the methods and new algorithms, including 
hybridization of different solutions. 
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