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Abstract— We consider the problem of defending neural
networks against adversarial inputs. In particular, we extend the
framework introduced in [1] to defend neural networks against
`2, `∞, and `0 norm attacks. We call this defense framework
Compressive Recovery Defense (CRD) as it utilizes recovery
algorithms from the theory of compressive sensing. For defending
against `2-norm and `0-norm attacks, we use Basis Pursuit (BP)
as the recovery algorithm and for the case of `∞-norm attacks,
we utilize the Dantzig Selector (DS) with a novel constraint.
For each recovery algorithm used, we provide rigorous recovery
guarantees that do not depend on the noise generating mechanism
and can therefore be utilized by CRD against any `2, `∞, or `0
norm attacks. Finally, we experimentally demonstrate that CRD
is effective in defending neural networks against state of the art
`2, `∞, and `0-norm attacks.

I. INTRODUCTION

Signal measurements are often corrupted by noise. The
theory of compressive sensing ([2]) allows us to retrieve the
original signal from a corrupted measurement, under some
structural assumptions on the measurement mechanism and
the signal. Let us consider the class of machine learning
problems where the inputs are compressible (i.e., approxi-
mately sparse) in some domain. For instance, images and
audio signals are known to be compressible in their frequency
domain and machine learning algorithms have been shown to
perform exceedingly well on classification tasks that take such
signals as input ([3], [4]). However, it was found in [5] that
neural networks can be easily forced into making incorrect
predictions by adding adversarial perturbations to their inputs;
see also [6]–[9]. Further, the adversarial perturbations that
led to incorrect predictions were shown to be imperceptible
to human beings. For this class of machine learning tasks,
we show how to approximately recover original inputs from
adversarial inputs and defend neural networks.

We explain the idea behind the CRD framework in the con-
text of an image classifier. Let x ∈ Cn be a (flattened) image
vector we wish to classify. However, suppose an adversary
perturbs x with a noise vector e ∈ Cn such that we observe
y = x+ e, where x and e are unknown to us. Let F ∈ Cn×n
be the Discrete Fourier Transform (DFT) matrix. The Fourier
coefficients of x are x̂ = Fx. We can therefore write the
observed input y as:

y = F−1x̂+ e (1)

It is well-known that natural images are approximately sparse
in the frequency domain, so we expect that x̂ is approximately

sparse (meaning roughly that most of the entries of x̂ are very
small). If ‖e‖p ≤ η with η small (as in a `p-attack), then
we can apply an appropriate sparse recovery algorithm, with
y and F−1 as input, to recover a good approximation x# to
x̂. Since F is unitary, F−1x# will be a good approximation
(i.e., reconstruction) of x = F−1x̂ as long as x# is a good
approximation to x̂. If x# is indeed a good approximation to
x̂, we can feed F−1x# into the classifier and expect to get
the same classification as we would have for x.

Note that the same framework can be applied with audio
signals or other types of data instead of images. Moreover,
the DFT can be replaced by any unitary transformation F
for which x̂ = Fx is approximately sparse. For example,
F may be the Cosine Transform, Sine Transform, Hadamard
Transform, or another wavelet transform.

Novel Contributions. The authors of [1] introduced this
defense framework for the case of `0-attacks with Iterative
Hard Thresholding (IHT) as the recovery algorithm. We make
the following novel extensions to this framework:
• We extend the framework to handle `2 and `∞ norm

attacks. introduce the Modified Dantzig Selector (MDS)
which uses a novel constraint to provide better recovery
for `∞ norm attacks.

• We extend the `0-norm defense introduced in [1] to
defend against a larger adversarial noise budget.

Structure. We cover related work in Section II and then
introduce notation, describe the recovery algorithms used, and
state formal recovery guarantees in Section III. In Section
IV, we experimentally demonstrate the performance of the
CRD framework on CIFAR-10, MNIST, and Fashion-MNIST
datasets against state of the art `2, `∞, and `0-norm attacks.
We conclude the paper in Section V and provide proofs for
the theorems in Section VI.

II. RELATED WORK

The authors of [1] introduced the CRD framework which
inspired this work. They utilized Iterative Hard Thresholding
(IHT) as a recovery algorithm and provided guarantees for `0
norm attacks. We extend this framework to handle `2 and `∞
attacks and a larger attack budget for `0 norm attacks. We
explain this in more detail in Section III-B.

Other works that provide guarantees against adversarial
inputs include ([10]) and ([11]) where the authors regularize
the Lipschitz constant of a network and lower bound the
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perturbation required to change the classifier decision. The
authors of [12] use robust optimization to train the network
on adversarial inputs. A similar approach to ([12]) is ([13]) in
which the authors use robust optimization to lower bound the
adversarial perturbations on the training data required to cause
misclassification. In [14], the authors use techniques from
Differential Privacy ([15]) and augment the training procedure
to improve robustness to adversarial inputs. The authors of [16]
add i.i.d. Gaussian noise to the input and provide guarantees
on classifier predictions for `2-norm bounded attack vectors.

Most defenses against adversarial inputs do not come with
theoretical guarantees. Instead, a large body of research has
focused on finding practical ways to improve robustness by
either augmenting the training data ([7]), using adversarial
inputs from various networks ([17]), or by transforming the
input ([18]). For instance, [19] introduces the Projected Gra-
dient Descent (PGD) defense that uses robust optimization
based adversarial training. However, the effectiveness of their
approach is determined by the amount and quality of training
data available and its similarity to the distribution of the
test data. A transformation based approach is ([20]). Here,
the authors use Generative Adversarial Networks (GANs)
to estimate the distribution of the training data and, during
inference, use a GAN to reconstruct the input while remov-
ing adversarial noise. Other input transformation approaches
include [21], where the authors randomly replace coordinates
of the input vector with neighboring coordinates. Similarly,
[22] use random resizing and padding to remove the effects
of adversarial noise.

The field of compressive sensing was essentially initiated
with the work of [23] and [24] in which the authors show
rigorously how to recover sparse signals using only a small
number of measurements with the choice of a random matrix.
Some of the earlier work in extending compressive sensing to
perform stable recovery with deterministic matrices was done
by [25] and [2], where a sufficient condition for recovery was
satisfaction of a restricted isometry hypothesis. [26] introduced
IHT as an algorithm to recover sparse signals which was
later modified in [27] to reduce the search space as long as
the sparsity was structured. The standard DS algorithm was
introduced in [28] in order to perform stable recovery in the
presence of `∞ noise.

III. COMPRESSIVE RECOVERY DEFENSE

Notation. The `0-quasinorm of x ∈ CN , denoted ‖x‖0, is
defined to be the number of non-zero entries of x, i.e. ‖x‖0 =
card(supp(x)). We say that x is k-sparse if ‖x‖0 ≤ k. We
use xh(k) to denote a k-sparse vector in CN consisting of
the k largest (in absolute value) entries of x with all other
entries zero. For example, if x = [4, 5,−9, 1]T then xh(2) =
[0, 5,−9, 0]T . Note that xh(k) may not be uniquely defined.
In contexts where a unique meaning for xh(k) is needed, we
can choose xh(k) out of all possible candidates according to
a predefined rule (such as the lexicographic order). We also
define xt(k) = x−xh(k). If x = [x1, x2]

T ∈ C2n with x1, x2 ∈
Cn, and if x1 is k-sparse and x2 is t-sparse, then x is called

(k, t)-sparse. We define xh(k,t) = [(x1)h(k), (x2)h(t)]
T , which

is a (k, t)-sparse vector in C2n.

A. Recovery Algorithms

Since the success of CRD depends on recovering a good
approximation to x̂ in (1), we select the recovery algorithm
that provides the best recovery guarantees based on the type
of noise used 1. For `2 or `0 noise, we use Basis Pursuit
(Algorithm 1) and for `∞ noise we use Dantzig Selector with
a novel constraint (Algorithm 2).

To motivate the following algorithms, note sparse recovery
(without noise) is the optimization argminz∈CN ‖z‖0 subject
to Az = y. This is non-convex and NP-hard, and it remains so
if ‖z‖0 is approximated by ‖z‖q for 0 < q < 1. Taking q > 1
gives a convex, P-time problem, but the solution need not be
sparse. However, if q = 1, the problem is convex, P-time, and
gives sparse solutions. (Details: [29, p.55-62],[30]–[32]).

Algorithm 1 Basis Pursuit: BP(y,A, η)

Input: y ∈ Cm, where y = Ax̂+ e, A ∈ Cm×N , and η such
that ||e||2 ≤ η
Output: x# ← argminz∈CN ||z||1 subject to||Az − y||2 ≤ η

For details, see p.55-62,77 in [29]). The problem becomes
convex and tractable for q = 1 and has been shown to provide
sparse solutions; see [30]–[32].

For `2-norm noise, BP is applied with A = F−1, a unitary
matrix. As unitary matrices are isometries in `2 norm, BP
provides good recovery guarantees for such matrices since
they satisfy the robust null space property (Definition 4). Also,
since the noise is bounded in `2 norm and since the solution
to BP minimizes the error in `2 norm, BP proves to be a very
good candidate for recovery.

For `0-norm noise, where e is t-sparse, the approach is only
slightly different. We set A = [F−1, I] and write

y = F−1x̂h(k) + e+ F−1x̂t(k) = A[x̂h(k), e]
T + F−1x̂t(k)

so that [x̂h(k), e]
T is a (k, t)-sparse vector that we can recover

using Algorithm 1. We utilize BP for `0 attacks because it
provides recovery guarantees for larger values of k and t than
IHT which is used in [1]. For instance, in the case of MNIST
and Fashion-MNIST, using IHT would allow us to set k = 4
and t = 3, whereas BP (Theorem 3) allows us to set k = 8
and t = 8.

Algorithm 2 Modified Dantzig Selector: MDS(y,A, η)

Input: y ∈ Cm, where y = Ax̂+ e, A ∈ Cm×N , and η such
that ||e||∞ ≤ η
Output: x# ← argminz∈CN ‖z‖1 subject to ‖A∗(Az −
y)‖∞ ≤

√
nη, ‖Az − y‖∞ ≤ η

1An interesting follow up problem is choosing a recovery algorithm when
the type of noise is not known a priori. In practice, inputs are normalized to
lie within some range [a, b] (for instance [0, 1]), thus the the attacker is still
bounded in `2 norm. Thus, Algorithm 1 is a viable candidate for recovery.
We leave a deeper analysis for future investigation.



We utilize MDS for `∞ norm attacks. The standard Dantzig
Selector algorithm does not have the additional constraint
‖Az − y‖∞ ≤ η. MDS includes this constraint for the
following reason. In our application, we set A = F−1 and
we want the reconstruction Ax# to be close to the original
image x, so that they are classified identically. Thus, we want
to the search space for x# to be restricted to those z ∈ CN
such that ‖Az − x‖∞ is small. Note, for any z ∈ CN ,
‖Az − x‖∞ ≤ ‖Az − y‖∞ + ‖x − y‖∞. In an `∞-attack,
‖x − y‖∞ = ‖e‖∞ is already small. Thus it suffices to
require ‖Az − y‖∞ is small. We experimentally illustrate the
improvement in reconstruction due to the additional constraint
in Section IV-B (Figure 2, Table II).

Remarks on Reverse-Engineered Attacks. In the case of
Algorithm 1 and Algorithm 2, the minimization problems can
be posed as semi-definite programming problems. If solved
with interior point methods, one can use random initializa-
tion of the central path parameter and add randomness to
the stopping criterion. Therefore, in addition to being non-
differentiable, recovery is also non-deterministic and we ex-
pect that it would be non-trivial to create a successful reverse-
engineered attack. However, we are aware that there are power-
ful reverse-engineered attacks designed for black-box settings
([33]) and for defenses relying on non-differentiability and
randomness ([34]). We do not investigate reverse-engineered
attacks against CRD in this work, but intend to do so in future
work.

B. Recovery Guarantees

We now state the formal recovery guarantees based on the
type of noise used by an attacker, i.e. `2, `∞, and `0 norm
bounded noise.

Theorem 1 (`2-norm noise). If ‖e‖2 ≤ η, then for x# =
BP(y, F−1, η), we have the error bounds

‖x# − x̂‖1 ≤ 2
(
‖x̂t(k)‖1 + 2

√
kη
)

(2)

‖x# − x̂‖2 ≤
2√
k
‖x̂t(k)‖1 + 6η (3)

Theorem 2 (`∞-norm noise). If ‖e‖∞ ≤ η, then for x# =
MDS(y, F−1, η), we have the error bounds

‖x# − x̂‖1 ≤ 2
(
‖x̂t(k)‖1 + 2k

√
nη
)

(4)

‖x# − x̂‖2 ≤
2√
k
‖x̂t(k)‖1 + 6

√
knη (5)

To interpret these results, first note that since F is an
isometry, ‖x# − x̂‖2 = ‖Fx# − Fx̂‖2. Thus the results of
Theorem 1 and Theorem 2 also bound the norm difference
of the original image x = Fx̂ and the reconstructed image
Fx#, where x# has no sparsity guarantees. Therefore, the
inequalities indicate how confident we should be that the CRD
scheme will be able to recover the correct class of the original
image, and thus defend the classifier from the adversarial
attack.

Note that the recovery guarantees decay with the sparsity
of the vector x̂. Theorem 1 allows us to recover sparse vectors

with error that depends on the magnitude of its smallest
coefficients x̂t(k). Thus for approximately sparse vectors, CRD
provides good recovery guarantees which consequently lead
to better classifier performance on the recovered images.
Theorem 2 provides similar guarantees when the noise is
bounded in `∞-norm. Observe also that the results of Theorem
2 incur a factor of

√
n in the error bounds due to the constraint

‖A∗(Az − y)‖∞ ≤
√
nη in Algorithm 2 which is required

to prove the robust null space property (refer to Section VI
for details). This weaker guarantee can also be expected as
bounding the `∞ norm of the noise vector is a very weak
constraint.

Finally, we provide a novel result that extends the work of
[1] for the case of `0 norm attacks by providing guarantees
for a larger attack budget (i.e. larger values of k and t) than
the main theorem of [1].

Theorem 3 (`0-norm noise). Assume |Fij |2 ≤ c
n . Define

δk,t =
√

ckt
n , β =

√
max{k,t}c

n , θ =
√
k+t

(1−δk,t)
β, τ =

√
1+δk,t

1−δk,t
.

If 0 < δk,t < 1 and 0 < θ < 1, then for x# =
BP(y, [F−1, I], ‖x̂t(k)‖2), we have the error bound

‖x̂# − x̂h(k)‖2 ≤
(
2τ
√
k + t

1− θ

(
1 +

β

1− δk,t

)
+ 2τ

)
‖x̂t(k)‖2

(6)

where we write x# = [x̂#, e#]T ∈ C2n with x̂#, e# ∈ Cn.

IV. EXPERIMENTS

All of our experiments are conducted on CIFAR-10 ([35]),
MNIST ([36]), and Fashion-MNIST ([37]) datasets with pixel
values of each image normalized to lie in [0, 1]. Each experi-
ment is conducted on a set of 1000 points sampled uniformly
at random from the test set of the respective dataset.

For every experiment, we use the Discrete Cosine Transform
(DCT) and the Inverse Discrete Cosine Transform (IDCT)
denoted by the matrices F ∈ Rn×n and FT ∈ Rn×n
respectively. That is, for an adversarial image y ∈ R

√
n×
√
n,

such that, y = x + e, we let x̂ = Fx, and x = FT x̂,
where x, x̂ ∈ Rn and e ∈ Rn is the noise vector. For an
adversarial image y ∈ R

√
n×
√
n×c, that contains c channels,

we perform recovery on each channel independently by con-
sidering ym = xm + em, where x̂m = Fxm, xm = FT x̂m
for m = 1, . . . , c. The value k denotes the number of largest
(in absolute value) DCT coefficients used for reconstruction
of each channel. We set k = 40 for MNIST and F-MNIST
and k = 500 for CIFAR-10. We implement Algorithm 1 and
Algorithm 2 using the open source library CVXPY ([38]).

For CIFAR-10, we use the network architecture of [39]
while the network architecture for MNIST and Fashion-
MNIST datasets is provided in Table IV of the Appendix. We
train our networks using the Adam optimizer for CIFAR-10
and the AdaDelta optimizer for MNIST and Fashion-MNIST.
In both cases, we use a cross-entropy loss function.

We now describe the training and testing procedure for
CRD. For each training image x, we compute x̂h(k) =
(Fx)h(k), and then compute the compressed the image x′ =



Original CW-`2 BP-Rec DF BP-Rec

Fig. 1. Reconstruction quality of images against `2 attacks using Algorithm
1. The first column shows the original images, while the adversarial images
are shown in the second and fourth column. The reconstructions are shown
in columns three and five.

F−1x̂h(k). We then add both x and x′ to the training set
and train the network in the usual way. Given a (potentially
adversarial) test image y, we first use a sparse recovery
algorithm to compute an approximation x# to x̂, then we
compute the reconstructed image y′ = F−1x# and feed
it into the network for classification. The code to repro-
duce our experiments is available here: https://github.com/
ijcnnanonymous2020/compressive recovery defense.

A. Defense against `2-norm attacks

We use the CW `2-norm attack ([9]) and the Deepfool attack
([40]) as they are widely considered state of the art. We note
that Theorem 1 does not impose any restrictions on k and
therefore the guarantees of equations (2) and (3) are applicable
for recovery in all experiments of this section.

We test the performance of CRD in two ways: a) recon-
struction quality, and b) network performance on reconstructed
images. To analyze reconstruction quality of Algorithm 1,
for each test image, we first create an adversarial image and
then use Algorithm 1 to recover its largest k coefficients. We
then perform the IDCT on these recovered co-efficients to
generate reconstructed images. We illustrate reconstruction on
a randomly selected image from the test set in Figure 1.

In order to check whether this high quality reconstruction
also leads to improved performance in network accuracy, we
test each network on reconstructed images using Algorithm
1. We report the results in Table I and note that Algorithm 1
provides a substantial improvement in network accuracy for
each dataset and each attack method used.

For comparison, we implement the PGD defense framework
of [19] for MNIST and Fashion-MNIST and see that CRD
outperforms PGD. Due to time and resource constraints we do
not report PGD results for CIFAR-10 as we were unable to
get the network to converge to an accuracy over 70% for non-
adversarial test samples. Since PGD is computationally very
expensive [41], [42] and minimizes network loss on adversarial
samples, training a network that performs well on adversarial
and non-adversarial samples is highly non-trivial. We note
that CRD does not suffer from either of these drawbacks as
network training is decoupled from the CRD defense.

Original With Constraint No Constraint

Fig. 2. Comparison of images reconstructed using Algorithm 2 (With Con-
straint) with images reconstructed using DS without the additional constraint
(No Constraint).

B. Defense against `∞-norm attacks

For `∞-norm bounded attacks, we use the BIM attack ([43])
as it is state of the art and allows us to control the `∞-
norm of the attack vector explicitly 2. Therefore, we limit our
experimental analysis to the BIM attack. Note that for any
attack vector e, ‖e‖2 ≤

√
n‖e‖∞ hence allowing `∞-norm

attacks to create attack vectors with large `2-norm. Therefore,
we could expect reconstruction quality and network accuracy
to be lower when compared to `2-norm attacks.

In Figure 2, we compare the reconstruction quality of
images reconstructed with Algorithm 2 to those reconstructed
using DS without the additional constraint. It can bee seen
that images reconstructed using DS without the additional
constraint may not produce meaningful images. This is also
reflected in Table II, which shows that the accuracy of the net-
work is roughly random on images reconstructed without the
additional constraint. We show examples of original images,
adversarial images, and their reconstructions using Algorithm
2 in Figure 3. Finally, we report the network performance on
reconstructed inputs using Algorithm 2 in Table II and also
compare this to the performance on inputs reconstructed using
DS without the additional constraint. We also report the results
of the PGD defense of [19] and note that PGD outperforms
CRD against the BIM attack. This can be expected as PGD
training uses a very similar method to BIM in construction
adversarial examples used for training.

C. Defense against `0-norm attacks

We test CRD against the CW `0-norm attack and JSMA.
We find that even when t is much larger than the hypotheses
of Theorem 3, we find that Algorithm 1 is still able to defend
the network. We hypothesize that this may be related to the
behavior of the RIP of a matrix for “most” vectors as opposed
to the RIP for all vectors, and leave a more rigorous analysis
for a follow up work.

Fig 4 shows the reconstruction quality of the images and
the improvement in network performance on reconstructed

2We note that while the CW `∞-norm attack ([9]) has the ability to create
attack vectors with `∞-norm less than or equal to BIM, it is computationally
expensive and also does not allow one to pre-specify a value for the `∞-norm
of an attack vector.

https://github.com/ijcnnanonymous2020/compressive_recovery_defense
https://github.com/ijcnnanonymous2020/compressive_recovery_defense


Dataset Orig. C&W `2 Deepfool
Acc. `2avg Acc. BP Acc. PGD Acc. `2avg Acc. BP Acc. PGD Acc.

CIFAR-10 84.9% 0.12 8.7% 72.3% - 0.11 7.7% 71.6% -
MNIST 99.17% 1.35 0.9% 92.4% 83.7% 1.72 1.1 90.7% 6.4%

Fashion-MNIST 90.3% 0.61 5.4% 78.3% 75.9% 0.63 5.5 % 76.4% 25.6%

TABLE I
THE `2AVG COLUMN LISTS THE AVERAGE `2-NORM OF THE ATTACK VECTOR. THE ORIG. ACC COLUMN LISTS THE ACCURACY OF THE NETWORK ON

ORIGINAL TEST INPUTS, WHILE THE ACC. COLUMNS UNDER C&W `2 AND DF COLUMNS REPORT NETWORK ACCURACY ON ADVERSARIAL INPUTS. BP
ACC. COLUMNS LISTS THE ACCURACY OF THE NETWORK ON INPUTS RECONSTRUCTED USING ALGORITHM 1.PGD ACC. SHOWS ACCURACY OF THE

DEFENSE IN [19].

Dataset Orig. BIM
Acc. `∞avg Acc. MDS Acc. DS Acc. PGD Acc.

CIFAR-10 84.9% 0.015 7.4% 49.4% 17.6% -
MNIST 99.17% 0.15 4.9% 74.7% 10% 95.8%

Fashion-MNIST 90.3% 0.15 5.3% 57.5% 11.1% 77.3%

TABLE II
THE `∞AVG COLUMN LISTS THE `∞-NORM OF EACH ATTACK VECTOR, ORIG. ACC. AND BIM ACC. COLUMNS LIST THE ACCURACY OF THE NETWORK ON

THE ORIGINAL AND ADVERSARIAL INPUTS RESPECTIVELY, AND THE MDS ACC. COLUMN LISTS THE ACCURACY OF THE NETWORK ON INPUTS
RECONSTRUCTED USING ALGORITHM 2. WE ALSO SHOW ACCURACY OF THE NETWORK ON IMAGES RECONSTRUCTED WITH DS (WITHOUT THE

ADDITIONAL CONSTRAINT) IN THE DS ACC. COLUMN. PGD ACC. SHOWS ACCURACY OF THE DEFENSE IN [19].

Original BIM DS-Rec

Fig. 3. Reconstruction quality of images using Algorithm 2. The first column
shows the original images, while the second columns shows adversarial images
and the third columns shows reconstructions using Algorithm 2 respectively.

adversarial images using CRD is reported in Table III. It can
also be seen that CRD outperforms PGD for both `0 attacks.

V. CONCLUSION

We provided recovery guarantees for corrupted signals in
the case of `2, `∞ and `0-norm bounded noise. We were able
to utilize these results in CRD and improve the performance
of neural networks substantially in the case of `2, `∞ and `0
norm bounded noise. In particular, we utilized the guarantees
of Theorem 1 and Theorem 2 to extend the defense framework
of [1] to defend neural networks against `2, `∞ and `0 norm
attacks.

VI. APPENDIX

Notation. Let x be a vector in CN . Let S ⊆ {1, . . . , N} and
S = {1, . . . , N}\S. The cardinality of S is |S|. If A ∈ Cm×N
is a matrix, then AS ∈ Cm×|S| is the column submatrix of A
consisting of the columns indexed by S. We denote by xS
either the sub-vector in CS consisting of the entries indexed
by S or the vector in CN that is formed by starting with x
and setting the entries indexed by S to zero. For example, if

x = [4, 5,−9, 1]T and S = {1, 3}, then xS is either [4,−9]T
or [4, 0,−9, 0]T . It will always be clear from context which
meaning is intended. Note that, under the second meaning,
xS = x − xS . The support of x, denoted by supp(x), is the
set of indices of the non-zero entries of x, i.e., supp(x) =
{i ∈ {1, . . . , N} : xi 6= 0}.

Definition 4. The matrix A ∈ Cm×N satisfies the `q robust
null space property of order s with constants 0 < ρ < 1, τ > 0
and norm ‖ · ‖ if for every set S ⊆ [N ] with card(S) ≤ s and
for every v ∈ CN we have

‖vS‖q ≤
1

s1−1/q
ρ‖vS‖1 + τ‖Av‖

Note that if q = 1 then this is simply the robust null space
property.

We now focus on proving Theorem 1. In order to do so, we
will need some lemmas that will be used in the main proof.

Lemma 5. If a matrix A ∈ Cm×N satisfies the `2 robust
null space property for S ⊂ [N |, with card(S) = s, then it
satisfies the `1 robust null space property for S with constants
0 < ρ < 1, τ ′ := τ

√
s > 0.

Proof. For any v ∈ CN , ‖vS‖2 ≤ ρ√
s
‖vS̄‖1 + τ‖Av‖. Then,

using the fact that ‖vS‖1 ≤
√
s‖vS‖2, we get:‖vS‖1 ≤

ρ‖vS̄‖1 + τ
√
s‖Av‖.

Lemma 6 (Theorem 4.20 in [29]). If a matrix A ∈ Cm×N
satisfies the `1 robust null space property (with respect to ‖.‖)
and for 0 < ρ < 1 and τ > 0 for S ⊂ [N |, then:

‖z − x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2‖xS̄‖1) +

2τ

1− ρ
‖A(z − x)‖

for all z, x ∈ CN .



Original CW-`0 BP-Rec JSMA BP-Rec

Fig. 4. Reconstruction quality of images using Algorithm 1 against `0 attacks. The first column shows randomly selected original images from the test set,
while the second and fourth column show the adversarial images. Reconstructions using BP are labeled BP-Rec. We show reconstructions in columns three,
and five.

Dataset Orig. C&W `0 JSMA
Acc. tavg Acc. BP Acc. PGD Acc. tavg Acc. BP Acc. PGD Acc.

CIFAR-10 84.9% 18 8.7% 67.0% - 34 2.7% 67.3% -
MNIST 98.8% 15 0.9% 55.9% 14.1% 17 56.5 % 67.4% 93.5%

Fashion-MNIST 91.8% 16 5.27% 71.4% 75.1% 17 62.6 % 72.0% 76.6%

TABLE III
THE tAVG COLUMN LISTS THE AVERAGE ADVERSARIAL NOISE BUDGET FOR EACH ATTACK. THE ORIG. ACC COLUMN LISTS THE ACCURACY OF THE

NETWORK ON ORIGINAL TEST INPUTS, THE ACC. COLUMNS UNDER C&W `0 AND JSMA LIST NETWORK ACCURACY ON ADVERSARIAL INPUTS. THE BP
ACC. COLUMN LISTS THE ACCURACY OF THE NETWORK ON INPUTS THAT HAVE BEEN CORRECTED USING BP.PGD ACC. SHOWS ACCURACY OF THE

DEFENSE IN [19].

Lemma 7 (Proposition 2.3 in [29]). For any p > q > 0 and
x ∈ Cn,

inf
z∈Mk

‖x− z‖p ≤
1

(k)
1
q−

1
p

‖x‖q

Proof of Theorem 1. Let 0 < ρ < 1 be arbitrary. Since F is
a unitary matrix, for any S ⊆ [n] and v ∈ Cn, we have

‖vS‖2 ≤
ρ√
k
‖vS‖1 + τ‖v‖2 =

ρ√
k
‖vS‖1 + τ‖Fv‖2 (7)

where τ = 1. Now let S ⊆ [n] such that card(S) ≤ k. Then,
F satisfies the `2 robust null space property for S. Next, using
Lemma 5 we get ‖vS‖1 ≤ ρ‖vS̄‖1 + τ

√
k‖Fv‖2 for all v ∈

Cn. Now let x# = BP(y, F, η). Then we know ‖x#‖1 ≤
‖x̂‖1. So, by fixing S ⊆ [n] to be the support of x̂h(k) and
using Lemma 6 and the fact that ‖F (x#−x̂)‖2 ≤ 2‖e‖2 ≤ 2η,
we get:

‖x# − x̂‖1 ≤
1 + ρ

1− ρ
(‖x#‖1 − ‖x̂‖1 + 2‖x̂t(k)‖1)

+
2τ
√
k

1− ρ
‖F (x# − x̂)‖2

≤ 1 + ρ

1− ρ
(
2‖x̂t(k)‖1

)
+

4τ
√
k

1− ρ
η

Letting ρ → 0 and recalling that τ = 1 gives (2). Now let
S be the support of (x# − x̂)h(k). Note ‖(x# − x̂)S‖2 =

infz∈Mk
‖(x# − x̂)− z‖2. Then, using Lemma 7 and (7), we

see that

‖x# − x̂‖2 ≤ ‖(x# − x̂)S‖2 + ‖(x
# − x̂)S‖2

≤ 1√
k
‖(x# − x̂)‖1 +

ρ√
k
‖(x# − x̂)S‖1

+ τ‖F (x# − x)‖2

≤ 1 + ρ√
k
‖(x# − x̂)‖1 + 2τη

≤ (1 + ρ)2√
k(1− ρ)

(
2‖x̂t(k)‖1

)
+

4τ(1 + ρ)

(1− ρ)
η + 2τη

Recalling τ = 1 and letting ρ→ 0 gives the desired result.

Proof of Theorem 2. The proof follows the same structure as
the proof of Theorem 1. Therefore we provide a sketch and
leave out the complete derivation. Let 0 < ρ < 1 be arbitrary.
Since F is a unitary matrix, for any S ⊆ [n] and v ∈ Cn, we
have

‖vS‖2 ≤
ρ√
k
‖vS‖1 + ‖vS‖2 ≤

ρ√
k
‖vS‖1 +

√
k‖v‖∞

The rest of the argument is the same as in the proof of Theorem
1.

We first establish the restricted isometry property for certain
structured matrices. First, we give some definitions.

Definition 8. Let A be a matrix in Cm×N , let M ⊆ CN , and
let δ ≥ 0. We say that A satisfies the M -restricted isometry
property (or M-RIP) with constant δ if

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22



Layer Type Properties
1 Convolution 32 channels, 3× 3 Kernel, No padding
2 Convolution 64 channels, 3× 3 Kernel, No padding, Dropout with p = 0.5
3 Max-pooling 2× 2, Dropout with p = 0.5
4 Fully Connected 128 neurons, Dropout with p = 0.5
5 Fully Connected 10 neurons

TABLE IV
NETWORK ARCHITECTURE USED FOR MNIST AND FASHION-MNIST

DATASETS IN SECTION IV-A AND SECTION IV-B. THE FIRST FOUR
LAYERS USE RELU ACTIVATIONS WHILE THE LAST LAYER USES A

SOFTMAX ACTIVATION.

for all x ∈M .

Definition 9. We define Mk to be the set of all k-sparse vectors
in CN and similarly define Mk,t to be the set of (k, t)-sparse
vectors in C2n. In other words,

Mk,t = {x = [x1 x2]
T ∈ C2n :

x1 ∈ Cn, x2 ∈ Cn, ‖x1‖0 ≤ k, ‖x2‖0 ≤ t}.

We define Sk,t to be the following collection of subsets of
{1, . . . , 2n}:

Sk,t = {S1 ∪ S2 : S1 ⊆ {1, . . . , n} , S2 ⊆ {n+ 1, . . . , 2n} ,
card(S1) ≤ k, card(S2) ≤ t}

Note that Sk,t is the collection of supports of vectors in Mk,t.

Theorem 10. Let A = [F I] ∈ Cn×2n, where F ∈ Cn×n is
a unitary matrix with |Fij |2 ≤ c

n and I ∈ Cn×n is the identity
matrix. Then(

1−
√
ckt

n

)
‖x‖22 ≤ ‖Ax‖22 ≤

(
1 +

√
ckt

n

)
‖x‖22 (8)

for all x ∈ Mk,t. In other words, A satisfies the Mk,t-RIP

property with constant

√
ckt

n
.

Proof. In this proof, if B denotes an matrix in Cn×n, then
λ1(B), . . . , λn(B) denote the eigenvalues of B ordered so that
|λ1(B)| ≤ · · · ≤ |λn(B)|. It suffices to fix an S = S1 ∪ S2 ∈
Sk,t and prove (8) for all non-zero x ∈ CS .

Since A∗SAS is normal, there is an orthonormal basis of
eigenvectors u1, . . . , uk+t for A∗SAS , where ui corresponds
to the eigenvalue λi(A∗SAS). For any non-zero x ∈ CS , we
have x =

∑k+t
i=1 ciui for some ci ∈ C, so

‖Ax‖22
‖x‖22

=
〈A∗SASx, x〉
〈x, x〉

=

∑k+t
i=1 λi(A

∗
SAS)c

2
i∑k+t

i=1 c
2
i

. (9)

Thus it will suffice to prove that |λi(A∗SAS)− 1| ≤
√

ckt
n

for all i. Moreover,

|λi(A∗SAS)− 1| = |λi(A∗SAS − I)|

=
√
λi ((A∗SAS − I)∗(A∗SAS − I)) (10)

where the last equality holds because A∗SAS − I is normal.
By combining (9) and (10), we see that (8) will hold upon
showing that the eigenvalues of (A∗SAS − I)∗(A∗SAS − I) are
bounded by ckt/n.

So far we have not used the structure of A, but now we must.
Observe that (A∗SAS − I)∗(A∗SAS − I) is a block diagonal
matrix with two diagonal blocks of the form X∗X and XX∗.
Therefore the three matrices (A∗SAS−I)∗(A∗SAS−I), X∗X ,
and XX∗ have the same non-zero eigenvalues. Moreover,
X is simply the matrix FS1

with those rows not indexed
by S2 deleted. The hypotheses on F imply that the entries
of X∗X satisfy |(X∗X)ij | ≤ ct

n . So the Gershgorin disc
theorem implies that each eigenvalue λ of X∗X and (hence)
of (A∗SAS − I)∗(A∗SAS − I) satisfies |λ| ≤ ckt

n .

Lemma 11. Let A ∈ Cn×2n, if ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all
x ∈Mk,t, then, ‖A∗SAS − I‖2→2 ≤ δ, for any S ∈ Sk,t.

Proof. Let S ∈ Sk,t be given. Then for any x ∈ CS , we have

‖ASx‖22 − ‖x‖22 ≤ δ‖x‖22
We can re-write this as : ‖ASx‖22 − ‖x‖22 = 〈ASx,ASx〉 −
〈x, x〉 = 〈(A∗SAS − I)x, x〉. Noting that A∗SAS − I is
Hermitian, we have:

‖A∗SAS − I‖2→2 = max
x∈CS\{0}

〈(A∗SAS − I)x, x〉
‖x‖22

≤ δ

Proof of Theorem 3. We will derive (6) by showing that the
matrix A satisfies all the hypotheses in Theorem 4.33 in [29]
for every vector in Mk,t.

First note that by Theorem 10, A satisfies the Mk,t-RIP

property with constant δk,t :=
√

ckt
n . Therefore, by Lemma

11, for any S ∈ Sk,t, we have ‖A∗SAS − I‖2→2 ≤ δk,t.
Since A∗SAS is a positive semi-definite matrix, it has only non-
negative eigenvalues that lie in the range [1 − δk,t, 1 + δk,t].
Since δk,t < 1 by assumption, A∗SAS is injective. Thus, we
can set: h = AS(A

∗
SAS)

−1sgn(xS) and get:

‖h‖2 = ‖AS(A∗SAS)−1sgn(xS)‖2
≤ ‖AS‖2→2‖(A∗SAS)−1‖2→2‖sgn(xS)‖2 ≤ τ

√
k + t

where τ =

√
1+δk,t

1−δk,t
and we have used the following

facts: since ‖A∗SAS − I‖2→2 ≤ δk,t < 1, we get that
‖(A∗SAS)−1‖2→2 ≤ 1

1−δk,t
and that the largest singular value

of AS is less than
√

1 + δk,t. Now let u = A∗h, then
‖uS − sgn(xS)‖2 = 0. Now we need to bound the value
‖uS‖∞. Denoting row j of A∗

S
AS by the vector vj , we see that

it has at most max{k, t} non-zero entries and that |(vj)l|2 ≤ c
n

for l = 1, . . . , (k + t). Therefore, for any element (uS)j , we
have:

|(uS)j | = |〈(A
∗
SAS)

−1sgn(xS), (vj)∗〉|
≤ ‖(A∗SAS)−1‖2→2‖sgn(xS)‖2‖vj‖2

≤
√
k + t

1− δk,t

√
max{k, t}c

n

Defining β :=
√

max{k,t}c
n and θ :=

√
k+t

1−δk,t
β, we get

‖uS‖∞ ≤ θ < 1 and also observe that maxl∈S ‖A∗Sal‖2 ≤ β.



Therefore, all the hypotheses of Theorem 4.33 in [29] have
been satisfied. Note that y = Fx̂+e = A[x̂h(k) e]

T +Fx̂t(k),
Therefore, setting x# = BP(y,A, ‖x̂t(k)‖2), we use the fact
‖Fx̂t(k)‖2 = ‖x̂t(k)‖2 combined with the bound in Theorem
4.33 in [29] to get (6):

‖x̂# − x̂h(k)‖2 ≤
(
2τ
√
k + t

1− θ

(
1 +

β

1− δk,t

)
+ 2τ

)
‖x̂t(k)‖2

where we write x# = [x̂#, e#]T with x̂#, e# ∈ Cn.
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