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Abstract—In this paper the problem of high computational
complexity of deep convolutional nets in image recognition is
considered. An existing framework of adaptive neural networks
is extended by appending the separate classifier to intermediate
layers. The hierarchical representations of the input image
are sequentially analyzed. If the first classifier returns rather
high confidence score, the inference process will be terminated.
Otherwise, the inference to the next intermediate layer with
attached classifier is continued until the reliable solution is
obtained or the penultimate layer is reached. The thresholds
for classifier scores at each layer are automatically chosen based
on the Benjamini-Hochberg multiple comparisons for a specified
confidence level. Experimental study for both pre-trained and
fine-tuned deep convolutional neural networks demonstrates that
the proposed approach reduces the running time by up to 1.7
times without significant accuracy degradation. Moreover, the
larger is the training sample, the more noticeable is the gain in
performance.

Index Terms—adaptive convolutional neural network, dynamic
neural network, sequential analysis, multiple comparisons

I. INTRODUCTION

The task of the closed-set multi-category image recognition
is to assign an observed image X represented by a tensor
of RGB values to one of C > 1 classes (categories). The
classes are specified by the training set of N ≥ C reference
images Xn. I focus on the supervised learning case, when
the class label c(n) ∈ {1, ..., C} of the n-th image is known.
In particular, I deal with a few-shot learning problem [1], in
which the training sample is rather small to train a complex
classifier, e.g. a deep convolutional neural networks (CNN) [2],
[3], from scratch. In such a case, two possible techniques
can be applied for the deep CNN, which was preliminarily
trained on an external very large dataset, e.g. ImageNet. The
first one uses this CNN as a feature extractor: input image
and all training images from the limited sample of instances
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are fed to the pre-trained CNN in order to extract off-the-
shelf features (embeddings) [4] at the output of one of the
last layers. Such deep learning-based feature extractors allow
training of a general classifier, e.g., SVM (support vector
machine), RF (random forest), gradient boosting or simple k-
NN (nearest neighbor) rule, that performs nearly as well as if
a large dataset of images from these C classes is available [5].
However, the most popular is the second variant, namely, fine-
tuning of the CNN on the given training set with replacement
of several last layers by new fully connected layer, i.e. LR
(logistic regression) classifier.

In both techniques the recognition process includes feeding
an observed image X to the the CNN with large depth and
performing an inference (forward pass) in this network. Vari-
ous recent studies have shown that the increase in the number
of layers (depth) lead to much more accurate solutions [2],
[6]. The increase of the number of layers leads to increase
of the the running time of inference in contemporary deep
models. As a result, this time may be too high for real-
time processing [7]. In this paper I address the challenging
problem of increasing the speed of image recognition without
significant degradation in accuracy by using sequential anal-
ysis [8], which was proved to improve performance in many
classification tasks [9]. In particular, the framework of adaptive
neural networks [10] is explored to terminate the inference
if the reliable solution of image recognition can be obtained
during an analysis of the outputs of intermediate layers.

The main contribution of this paper includes the novel
approach for speeding-up CNNs by adaptively adjusting the
running time depending upon the difficulty of the input image.
In contrast to known techniques [11], [12], the proposed
algorithm does not require to learn the weights of the CNN
from scratch using large training datasets and can be applied
with existing neural models. In particular, separate classifiers
are learned for the hierarchical representations of the input
image obtained as the outputs of small number of intermediate
layers. The decisions made by these classifiers are sequentially
analyzed. It is proposed to automatically choose the thresholds
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for classifier scores at each layer by using the multiple
comparisons (multiple hypothesis testing) [13] if a confidence
level is specified for the whole decision-making process. It
is demonstrated that the most accurate and fast results are
achieved for linear classifiers trained in one-versus-all fashion
in order to maximize the squared hinge loss.

The rest of the paper is organized as follows. Section II
reviews existing works devoted to adaptive CNNs in image
recognition. In Section III, the proposed algorithm is pre-
sented. In Section IV, its potential to decrease the running
time is shown in experiments with several datasets and CNN
architectures. Concluding comments are given in Section V.

II. LITERATURE SURVEY

The need for improving the speed of CNNs [7] has become
evident when it was shown that the deeper is the model, the
more accurate are its results. The CNN compression with
structural pruning [14] removes entire convolutional channels
in order to reduce the model size speed-up the inference.
Matrix decomposition represents weight matrices (or tensors)
in each layer as a sequence of operations with lower order
matrices and vectors [15]. However, all of these techniques
deal mainly with CNN compression and are not supposed to
obtain the highest accuracy of very deep models.

In this paper I consider another approach based on dynamic
computational graph that exploits the observation that features
learned at an early layer of a network may often be sufficient
for the classification of many data points [12]. Conditional
Deep Learning (CDL) network [11] introduces linear classi-
fiers, e.g., logistic regression (LR), to each convolutional layer
and monitors their outputs to decide whether an inference
can be exited early. Only results for MNIST dataset and
simple CNNs have been provided due to the difficulty of the
training methodology. The BranchyNet [12] introduced early
exits (branches) along the CNN architecture. It is trained in
end-to-end fashion and usually requires large training datasets
of images with low resolution, so that its authors provide
the results for MNIST and CIFAR10 datasets. The adaptive
computational time model was extended for application in
image classification and object detection [16]. Here sigmoidal
halting units were added to the residual blocks, so that this
approach is applicable only for the ResNet architectures.

Adaptive neural networks for efficient inference have been
proposed in [17] with automatic selection of proper pre-trained
deep model based on the outputs of AlexNet. Adaptive infer-
ence graphs decreased the number of floating-point operations
by using gated inference in the ResNet models [18]. The
results of end-to-end learning of this network for CIFAR-
10 and ImageNet datasets proved its faster speed when com-
pared to baseline ResNet-50/101 models. Cascading of differ-
ent ResNet-based modules [19] caused a noticeable speedup
of decision-making for end-to-end learning on CIFAR-10,
CIFAR-100 and SVHN datasets. The HydraNets transform the
state-of-the-art architectures into adaptive architectures which
exploit conditional gating mechanism in order to reduce the

inference cost by dynamically choosing components of the
network to evaluate at runtime [10].

Thus, one can conclude that though there exist several pa-
pers devoted to dynamic (adaptive) CNNs, which can decrease
the running time of image recognition when the large training
set is available, the few-shot learning case is completely
ignored in these studies. All such papers contain experimental
results for learning from scratch on such large datasets as
MNIST, CIFAR and ImageNet, and their techniques cannot be
used in transfer learning and domain adaptation frameworks.
As a matter of fact, most of these papers contain only the
estimates of the number of operations (e.g., FLOPs or MACs)
rather than the measurements of inference time. However, it
was experimentally noticed that the absolute time of condition
checks on CPU and, especially, GPU, is much higher when
compared to the time for matrix multiplication. Hence, the real
inference speed-up of existing methods can be less significant.
Finally, the parameters of termination conditions, e.g., thresh-
olds for entropy [12] or maximal posterior probability [11], are
arbitrarily chosen without any attempt to specify the overall
confidence level of decision-making procedure. In this paper
the possibility to overcome the above-mentioned drawbacks
of the known adaptive CNNs is studied by using sequential
analysis and the theory of multiple comparisons [13].

III. PROPOSED APPROACH

Inspired by sequential statistical analysis [8], M > 1
intermediate layers (exit branches [12]) are arbitrarily chosen.
Let me assume that the architecture of a CNN allows to split
the whole computational graph into M sequentially connected
parts so that the inference process is recursive:

zm = fexitm(zm−1;θ),m ∈ {1, ...,M}, (1)

where z0 is initialized by the RGB matrix of an input image
X , θ is a vector of all weights of the CNN, and fexitm is the
output of the m-th part (exit branch). These outputs are used
to identify the variability in the difficulty of input images and
conditionally activate the deeper layers of the CNN.

The output of typical convolutional layers is a multi-
dimensional tensor. Hence, it is necessary to add conven-
tional global average pooling, reshape and (optionally) L2

normalization layers to every exit branch in order to transform
activations zm into a convolutional layer feature vector xm. As
such transformation has no parameters, it can be added even
to existing pre-trained CNN. However, the best efficiency for
rather large training sample is achieved by fine-tuning of the
CNN, i.e. adding fully connected layer (LR classifier) to every
exit branch and training the whole network using a weighted
sum of losses from all exits [12].

In any case, the input image is represented as a hierarchy
of feature vectors x1,x2, ...,xM . To speed-up the image
recognition, I will use the sequential decision-making [9],
which assign three decision regions at each representation
level and examine the next levels with more detailed infor-
mation only when there is a need for doing so. The known



implementations of adaptive neural networks use the multi-
class LR classifier either simultaneously trained during fine-
tuning [12] or separately trained on a given training set [11].
In order to measure of how confident the classifier at an exit
point is about an observed image, these networks compute
some statistics, e.g., the entropy [12], based on a set of the
class posterior probabilities at the output of the LR layer.
If this statistics (confidence) for the n-th layer is a greater
than a fixed threshold, the decision at this layer is returned.
Otherwise, inference in the CNN is continued and the outputs
at the (n+ 1) exit are analyzed.

In this paper there is no restriction to use the LR clas-
sifiers. During the training procedure, all instances Xr are
fed into the input of the CNN in order to be represented by
feature vectors xn;1,xn;2, ...,xn;M . As a result, it is possible
to train M appropriate classifiers so that the parameters
of the m-th classifier are learned using a set of examples
{(xn;m, c(n))}, n ∈ {1, ..., N}. Without a lack of generality,
let us assume that each classifier represents a decision function
sm(xm) = [s

(1)
m (xm), ..., s

(C)
m (xm)], where s(c)m (xm) ≥ 0 is a

confidence score of the classifier. For example, the confidence
score in the one-versus-all SVM for an observation is the
signed distance of that observation to the hyperplane, which
separates the c-th class with all other classes. The decision is
made in favor of the class with the maximal confidence

c∗m(xm) = argmax
c∈{1,...,C}

s(c)m (xm). (2)

Hence, the termination condition (acceptance decision in
the three-way decisions) at the n-th branch can be written by
simple matching of the maximal score with a certain threshold:

max
c∈{1,...,C}

s(c)m (xm) > sm. (3)

In this paper I propose to choose the threshold sm by
fixing the false acceptance rate (FAR) αm for decisions at
the m-th level. This procedure is theoretically well-studied
for several specific cases, e.g., the 1-NN classifier with the
Kullback-Leibler (KL) divergence between (positive) feature
vectors xm and xn;m. If the input image corresponds to class
c, then the KL distance between this image and each other
class i 6= c has asymptotic non-central chi-squared distribution
with the non-centrality parameter proportional to the distance
between classes c and i. As a result, if the confidence score
is an inverse of the KL distance, then the threshold sm is
defined as an inverse αm-quantile of the non-central chi-
squared distribution [9], [20].

However, thresholds in (3) should be estimated empirically
for arbitrary classifiers. Let us extract 0 < K < N training
examples with indices {n1, ..., nK} in a stratified fashion
from the whole set {(xn;m, c(n))}, n ∈ {1, ..., N} and use
it to initially fit the m-th classifier. Next, the outputs of this
classifier for the rest (N − K) examples are computed, and

threshold sm is estimated from the following equation:∑
n/∈{n1,...,nK}

H

[
max
c6=c(n)

s(c)m (xn;m)− sm
]
=

= bαm(N −K)c , (4)

where H[s] is the Heaviside step function. This equation is
solved by evaluating a αm-quantile of the maximal scores

of other classes
{

max
c 6=c(n)

s
(c)
m (xn;m)

∣∣∣∣n /∈ {n1, ..., nK}
}

. Next,

the m-th classifier is retrained using complete training set
{(xn;m, c(n))}, n ∈ {1, ..., N}.

As the number of steps in decision process adaptively
depend on the input image, it is not obvious how to choose
concrete values α1, ..., αM if a confidence level α for the
whole image recognition procedure is specified only. Here the
parameters αm do not stand for the FAR in the described
sequential analysis because making a decision at the m-th
layer depends on decisions from the previous levels. As a
matter of fact, it is a multiple-testing problem, so appro-
priate correction should be used. One can simply choose
the Bonferroni correction and assign αm = α/M , but such
correction is too strict [13]. If one would like to control the
false discovery rate, the Benjamini-Hochberg test [21] can
be applied. Unfortunately, this test involves the sorting of
p-values of all hypothesis, so it cannot be directly applied
in the proposed sequential procedure, when the results for
(m+1), ...,M layers are not available at the m-th step. Hence,
in this paper I assume that the reliability of decision-making
increases with an increase of the branch index m. In such
case, the Benjamini-Hochberg correction is straightforwardly
implemented: αm = α ·m/M .

At this point complete Algorithm (Fig. 1 and Fig. 2) can
be introduced. Their parameters include M exit layers, the
specified confidence level α and the train/validation split ratio
δ ∈ (0; 1). Location of intermediate layers is studied in [11],
where the classifiers are added to all layers and the exits are
chosen from layers, that provide better trade-off between speed
and validation accuracy. This procedure is too expensive for
deep networks, so several “bottleneck” layers are randomly
chosen. They split a CNN into sequential blocks (i.e., layers
in the middle of residual or inception blocks are inappropriate),
and repeat the layer selection procedure from [11].

Here the decision-making speed is increased by cascad-
ing classifiers of outputs for several intermediate layers and
monitoring the output of the classifier (3) to decide whether
classification can be terminated at the current branch or not.
If the linear SVM mentioned in Fig. 1 is applied, then the
confidence score is computed as a signed distance of an
observed image to the hyperplane. If condition (3) holds,
then the classifier output c∗m(xm) (2) is accepted as the
final decision. Otherwise, the next step of inference (1) is
executed to examine the input image at a finer representation
level m + 1 with more detailed information [9], [20]. The
multiple comparison theory is used to define thresholds given
a confidence level α of the whole sequential procedure. If the



1: (Optional) Add fully-connected LR classifiers to all M
branches and fine-tune the CNN on the given training set

2: for each intermediate layer m ∈ {1, ...,M} do
3: for each training instance n ∈ {1, ..., N} do
4: Feed the n-th image into a CNN and compute the

outputs xn;m at the m-th layer
5: end for
6: Split N instances in a stratified fashion using train/test

split ratio δ to get indices {n1, ..., nK},K = dN · δe
7: Train the m-th classifier, e.g., the linear one-versus-all

SVM in order to maximize the squared hinge loss, using
feature vectors {(xnk;m, c(n))}, k ∈ {1, ...,K}

8: Initialize a list of maximal intra-class scores S = []
9: for each validation instance n /∈ {n1, ..., nK} do

10: Append the maximal inter-class confidence score
max
c6=c(n)

s
(c)
m (xn;m) to the list S

11: end for
12: Assign the bα ·m(N −K)/Mc-th largest element

from S to the threshold sm (4) using the Benjamini-
Hochberg correction

13: Retrain the m-th classifier using all feature vectors
{(xn;m, c(n))}, n ∈ {1, ..., N}

14: end for
15: return M classifiers and their thresholds {sm}

Fig. 1. Proposed training procedure

Require: observed image
Ensure: class label

1: Initialize z0 by the RGB matrix of an input image X
2: for each intermediate layer m ∈ {1, ...,M} do
3: Compute the output of the m-th layer zm =

fexitm(zm−1;θ) (1)
4: Transform activations zm into feature vector xm

5: Predict the confidence scores sm(xm) using the m-th
classifier

6: if m =M OR condition (3) holds then
7: return class label c∗m(xm) (2)
8: end if
9: end for

Fig. 2. Proposed prediction procedure

last, M -th, layer is reached, but the maximal confidence score
is not higher than sM , the output of the last classifier will be
returned or such unreliable input image will be rejected.

Let us analyze the run-time complexity of the Algorithm
(Fig. 2). Let tm and εm be the inference time and validation
error rate for the m-th layer. I assume that the time for
additional computations in each early exit is identical and
equal to texit. If the procedure is terminated at the first exit
layer, its best-case running time is equal to t1 + texit. The
worst-case running time tM + (M − 1)texit is slightly higher
than the inference time tM in conventional CNN. The average

inference time is estimated as follows:
M∑

m=1
pm(tm +mtexit),

where the conditional probability to exit at the m-th layer if it
is reached is equal to pm = (1−

∑m−1
i=1 pi)(1−εm ·α ·m/M).

Here εM is explicitly assigned to 0. Hence, the m-th layer
should be considered as an early exit only if texit < tm−tm−1.

The proposed approach is implemented in a special
Python script (https://github.com/HSE-asavchenko/
fast-image-recognition) based on the deep learning
framework Keras with the TensorFlow backend. The
sequence of functions (“keras.backend.function”) was used
to implement the sequential processing during the inference.
The preprocessed input (RGB) image is fed into the input
of the first function in this sequence. Each function returns
a tuple of: 1) the outputs of an intermediate convolutional
layer zm (1); and 2) transformation xm of the first output
in an average global pooling layer. The first output is fed to
the input of the next function in a sequence (1). The second
output is classified by an appropriate method. In addition,
my script transfers the learned parameters of the linear SVM
into the Keras Dense layer in order to perform the inference
on the resulted network on GPU.

IV. EXPERIMENTAL RESULTS

In the experimental study I have not chosen traditional
for adaptive nets MNIST and CIFAR datasets, in which the
images have small resolutions (28x28, 32x32), because my
most important result, performance improvements on deep
pre-trained CNNs, cannot be demonstrated on these datasets.
Hence, the following datasets are used:

1) Caltech-101 Object Category dataset, which contains
8677 images of C = 102 classes including distractor
background category.

2) Caltech-256 dataset with 29780 images of C = 257
classes including the clutter category.

3) Stanford dogs dataset that contains 20580 images and
C = 120 classes.

As all the datasets are imbalanced, I estimate the accuracy
of classifying images from each category individually and
computed the mean (macro) accuracy. The testing protocol
for these datasets implements the following variant of the
random subsampling cross-validation. Every dataset is ran-
domly divided 3 times into the training and testing sets. I
split each class independently in a stratified fashion to provide
approximately identical ratio of the number of images in the
training and testing set. The size R of the training set was
chosen as follows: from 2 to 30 images per class for Caltech-
101, 60 images per class for Caltech-256 and 110 images per
class for Stanford Dogs. The train/validation split ratio δ in
the Algorithm (Fig. 1) is equal to 0.5.

I used InceptionResNet v2 [6] and ResNet-152 [2] from
Keras framework, that were preliminarily trained on ImageNet
dataset. Classification results of globally averaged outputs of
several different layers were tested in order to choose the
following best layers: “block17 17 ac” and “block8 5 ac”
for InceptionResNet v2, and “conv4 block36 out” for ResNet-
152. In addition, I included penultimate layer traditionally used
for extraction of the off-the-shelf visual features [4].
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Fig. 3. Accuracy (%) depending on the number of training instances per
class, Caltech-101 dataset, pre-trained InceptionResNet v2.

In addition to the pre-trained CNN, it was fine-tuned as
follows. Multiple heads with LR classifier were added: one for
each output of fully connected layer with softmax activations
for every intermediate layer (branch). Such network is trained
by using the different weights for the loss function: the
closer is the layer to the input, the higher is the weight. The
weights of all the layers except the new LR layers are frozen
during the first 5 epochs. Next, the tuning of all weights is
performed by SGD with learning rate 0.001 over 10 epochs.
Here I additionally used earlier exit layers “mixed 5b” and
“conv4 block1 out” for InceptionResNet v2 and ResNet-152,
respectively. Though the accuracy for these layers from the
pre-trained models are approximately equal to the random
guess, the error rate for the outputs of these layers of fine-
tuned network should be significantly lower.

One may suppose that the more layers they select, the
more sufficiently is the effectiveness of adaptive CNN. As a
matter of fact, more layers do not lead to inference speedup in
my experiments if only small training sample is available for
transfer learning. Indeed, if a classifier is attached to the lower
layers of very deep CNN, the accuracy will be very small.
As each new exit branch needs additional computations [11],
existing adaptive nets [12], [17], [19] have only 1-3 exits, so
I decided to use the same number of layers.

The globally averaged output of particular convolutional
layers is classified using one of the following methods: a)
one-versus-all linear SVM trained to maximize the squared
hinge loss; b) SVM with radial basis function (RBF) kernel;
and c) RF with 100 trees. All classifiers were implemented
using Scikit-learn library.

In the first experiment I analyzed performance of the pre-
trained CNNs depending on the number of training instances
per class. Macro accuracy and the average time to classify one
image (in ms) of the proposed approach compared to different
classifiers are shown in Fig. 3 and Fig. 4, respectively. The
running time is measured on the MSI laptop with CPU Intel
Core i7 8750H (2.2 GHz). The thresholds for the decision
function in my Algorithm (Fig. 1) were chosen to misclassify
only α = 1% of the validation subset.

Here the best classifier is a linear SVM from
sklearn.svm.LinearSVC implementation based on
LIBLINEAR library. In all my experiments its error
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Fig. 4. The running time on CPU (ms) depending on the number of training
instances per class, Caltech-101 dataset, pre-trained InceptionResNet v2.

rate is 2-5% lower than the error rate of conventional SVM
(sklearn.svm.SVC) with linear kernel trained to optimize the
hinge loss. The results of the latter classifier are approximately
identical to the reported results (Fig. 3) of the SVM with
RBF kernel. As the performance of the k-NN and SVM RBF
is worth when compared to other classifiers, I do not present
these methods in the further experiments.

The accuracy of the proposed sequential analysis is as high
as the accuracy of the linear SVM for the features from one
of the last layers (“block8 5 ac”). Such classification of the
off-the-shelf features from very deep CNN is characterized
by accuracy 94.8%, which outperformed the known state-of-
the-art accuracy (93.4%) [3] for traditional protocol with 30
training samples per category. However, the proposed approach
is 12-25% faster. Moreover, if the number of training images
per class is increased, the overall running time of my algorithm
is decreased. In fact, the accuracy for features from the low
layer becomes higher in this case, causing an increase of the
number of reliable solutions (3) obtained on this layer.

In the next experiments the inference of all CNNs was
placed on a GPU (NVidia GeForce GTX1060). The proposed
algorithm is compared with conventional classification of
features from one layer and known implementation [19] of
BranchyNet [12] and CDL [11] with new branches added to
the same layers as for my approach. Original versions of both
networks require the fine-tuned CNN with LR classifiers, so
I do not present their results for the off-the-shelf features
from pre-trained CNNs. The thresholds for entropy in the
BranchyNet and maximal posterior probability estimated by
the LR in the CDL was chosen in order to achieve appropriate
accuracy. In addition, I modified the CDL to be more similar
to the proposed approach (hereinafter “Ours, fixed threshold”)
in such a way that: 1) concatenation of all features fed into the
classifier at each branch is replaced to global average pooling;
2) the LR classifier was replaced to linear SVM trained with
the squared hinge loss; and 3) the decision function (outputs
of the LR classifier) is replaced to the signed distance of an
observed image to the hyperplane. The classifier score in this
modification is matched with a fixed threshold 0.06, which
provides an appropriate trade-off between accuracy and speed.
The results for the Caltech-101 dataset with InceptionResNet



TABLE I
PERFORMANCE ANALYSIS FOR INCEPTIONRESNET V2, CALTECH-101 (30 INSTANCES PER CLASS)

block17 17 ac+block8 5 ac+penultimate mixed 5b+block8 5 ac+penultimate
pre-trained fine-tuned (all heads) fine-tuned (all heads)

Classifier Layers accuracy, % time, ms accuracy, % time, ms accuracy, % time, ms

LR first 3.87 26.12 10.75 25.71 9.58 4.17
LR second 44.23 34.98 88.47 34.39 62.97 34.81
LR last 39.45 39.56 84.41 41.20 91.35 39.90
RF first 84.04 30.14 87.92 29.55 39.47 7.89
RF second 89.02 38.85 91.42 38.14 90.87 38.38
RF last 73.86 40.11 90.91 40.11 89.42 43.48

Linear SVM first 91.35 26.46 92.82 25.82 58.66 4.28
Linear SVM second 94.80 35.14 95.04 34.51 94.59 34.93
Linear SVM last 90.75 39.72 91.04 41.44 89.15 40.02

Cascaded inference [19] all - - 87.48 32.22 80.31 34.83
CDL [11] all - - 87.12 31.79 81.31 35.18

Ours, fixed threshold all 95.16 31.04 95.32 29.18 93.21 26.18
Ours, adaptive threshold all 94.54 27.79 95.19 27.25 94.22 23.57

TABLE II
PERFORMANCE ANALYSIS FOR RESNET-152, CALTECH-101 (30 INSTANCES PER CLASS)

conv4 block36 out+penultimate conv4 block1 out+penultimate
pre-trained fine-tuned (all heads) fine-tuned (all heads)

Classifier Layers accuracy, % time, ms accuracy, % time, ms accuracy, % time, ms

LR first 29.86 32.81 34.58 32.95 18.86 9.28
LR second 55.16 38.35 91.05 38.42 92.19 29.65
RF first 70.10 36.60 75.14 36.71 44.11 12.51
RF second 87.43 42.04 90.74 42.09 91.76 42.00

Linear SVM first 84.05 32.97 87.25 33.10 55.49 8.91
Linear SVM second 91.19 38.46 92.47 38.57 93.09 38.44

Cascaded inference [19] all - - 90.45 37.60 79.10 33.67
CDL [11] all - - 90.95 38.37 78.32 32.31

Ours, fixed threshold all 91.09 34.09 89.24 34.15 89.65 21.37
Ours, adaptive threshold all 91.63 34.85 92.69 34.83 92.67 30.10

v2 and ResNet-152 are shown in Table I and Table II.

Here “LR” stands for classification by fine-tuned CNN
with replacement of the last LR layer of the pre-trained
network. It classifier in conventional fine-tuning is typically
less accurate when compared to complex classifiers, especially
when features from intermediate layers are processed. As a re-
sult, the known adaptive networks (CDL, Cascaded inference)
are 10-50% less accurate when compared to the proposed
approach. However, the modification of the CDL inspired by
my approach gives performance, which is comparable to the
best methods. However, in this case it is impossible to enable
the reasonable trade-off between accuracy and running time
in all experiments due to the difficult choice of a threshold.
Thirdly, though classification of the outputs of the penultimate
layer in the fine-tuned ResNet-152 leads to more accurate
decisions when compared to the InceptionResNet, the features
from the latter CNN are very rich, so that they provide much
lower error rate even when compared to the classification
of the output of penultimate layer of InceptionResNet. The

most important conclusion is that the proposed approach leads
to the fastest decision-making if significant degradation in
accuracy is not allowed. My algorithm is 1.1-1.6 and 1.4-1.7
times faster than the linear classifier of “block8 5 ac” and
traditional layers, respectively.

The results for much more complex Caltech-256 dataset
and more accurate CNN (InceptionResNet v2) are presented in
Table III. They are approximately identical to the results of the
previous experiment. The off-the-shelf features from the pre-
trained CNNs are rather reliable, but sequential analysis in the
fine-tuned network is slightly faster, especially if bottom layer
(“mixed 5b”) is used. The proposed approach is up to 1.06-
1.35 times faster when compared to the inference in complete
CNN. Moreover, it is much more accurate when compared to
similarly engineered adaptive networks (BranchyNet, CDL).
Finally, automatic choice of threshold makes it possible to
provide an excellent accuracy even in few-shot learning tasks.

In the last experiment pre-trained EfficientNet v7 (Rand-
aug) [22] is studied. The results of the proposed approach and



TABLE III
PERFORMANCE ANALYSIS FOR INCEPTIONRESNET V2, CALTECH-256 (60 INSTANCES PER CLASS)

block17 17 ac+block8 5 ac+penultimate mixed 5b+block8 5 ac+penultimate
pre-trained fine-tuned (all heads) fine-tuned (all heads)

Classifier Layers accuracy, % time, ms accuracy, % time, ms accuracy, % time, ms

LR first 0.91 26.29 1.85 26.34 7.82 4.61
LR second 67.59 34.80 80.20 35.05 56.23 34.97
LR last 62.88 42.94 77.81 40.78 78.86 40.51
RF first 65.00 30.13 66.71 30.24 22.70 8.65
RF second 76.40 38.51 78.43 39.00 79.32 45.14
RF last 61.05 43.47 79.22 44.86 80.36 50.96

Linear SVM first 81.10 26.40 80.75 26.52 41.25 5.01
Linear SVM second 87.23 34.91 86.35 35.34 86.77 35.93
Linear SVM penultimate 83.97 43.09 82.87 40.92 83.30 41.31

Cascaded inference [19] all - - 77.73 37.75 71.06 34.47
CDL [11] all - - 77.79 37.96 72.67 35.14

Ours, fixed threshold all 84.07 29.36 86.14 33.57 86.14 32.40
Ours, adaptive threshold all 86.95 30.09 86.10 30.21 86.20 30.31

TABLE IV
PERFORMANCE ANALYSIS FOR EFFICIENTNET V7: CALTECH-101 (30 INSTANCES PER CLASS), CALTECH-256 (60 INSTANCES PER CLASS) AND

STANFORD DOGS (110 INSTANCES PER CLASS)

Caltech-101 Caltech-256 Stanford Dogs
block6b add+block6f add+penultimate block6f add+block7b add+penultimate block7b add+penultimate

Classifier Layers accuracy, % time, ms accuracy, % time, ms accuracy, % time, ms

RF first 60.10 176.47 46.52 185.48 86.75 205.87
RF last 91.40 215.18 82.90 215.41 92.80 215.06

Linear SVM first 82.12 172.72 71.18 181.76 86.82 198.03
Linear SVM last 95.24 211.63 92.16 211.66 93.41 207.40

Ours, fixed threshold all 92.07 178.71 83.42 191.46 90.53 200.27
Ours, adaptive threshold all 94.49 181.91 91.13 197.82 92.99 202.18

TABLE V
EXAMPLE RESULTS OF IMAGE RECOGNITION WITH THE PROPOSED APPROACH, EFFICIENTNET V7, CALTECH-101 (30 INSTANCES PER CLASS)

Prediction at Confidence 1.14 0.81 0.97 0.34 1.64
“block 6b add” (s1 = 1.83) Class scorpion cannon beaver wrench elephant

Prediction at Confidence 1.64 1.66 2.03 18.38 1.52
“block 6f add” (s2 = 1.36) Class crab anchor dolphin mayfly kangaroo

the best classifiers for all datasets are summarized in Table IV.
This CNN leads to the best known accuracy for all three
datasets. For example, its accuracy is higher than 92.2% of
the Weakly Supervised Data Augmentation Network [23] for
the Stanford Dogs datasets, though the decision-making time
of the latter approach is higher due to the need for object
localization and refinement. In any case proposed sequential
analysis leads to faster decision-making when compared to
inference in complete CNN. Moreover, the difference in ac-
curacy is specified by the confidence level 1%.

Let me demonstrate the qualitative results of the proposed
approach for EfficientNet v7 and Caltech-101 (Table V), where
the inference is terminated after the second exit, and correct
class is predicted. Though the class predicted at the first exit is
incorrect, the proposed algorithm makes it possible to proceed
the inference, because the maximal confidence score in this
case does not exceed threshold s1 = 1.83. One can notice
that the confidence 1.64 in the last column (kangaroo) for the
first exit is higher than the confidence 1.52 for the second
exit. However, correct class is returned, because confidences



are matched with different thresholds and s1 > s2. Indeed, it
is more difficult to make a reliable decision taking features at
the earlier layers of CNN.

V. CONCLUSION

In this paper the novel image recognition Algorithm (Fig. 2)
has been proposed, which makes an inference in deep CNN
faster based on sequential analysis of the outputs of intermedi-
ate layers. The thresholds for confidence scores are estimated
automatically in my approach based on the given training set
and the confidence level of the whole recognition process by
using my implementation of the Benjamini-Hochberg test [21].
The proposed approach is less limited than existing adaptive
CNNs [11], [19]: the inference speed of any pre-trained
and fine-tuned CNN is increased even in few-shot learning
(Fig. 4) with domain adaptation. In contrast to many existing
methods [16], [18], [19] that were developed for ResNets,
my algorithm can be applied with any CNN architecture
(Table IV). The network is similar to BranchyNet [11], [12],
though I introduced additional global average pooling and L2-
norm layers in each branch. The most important difference is
the training procedure (Fig. 1): CNN is not trained in end-to-
end fashion and any shallow classifier is appropriate instead of
Logistic Regression in BranchyNet. My method provides 1.06-
1.7-times speed up over existing techniques on both CPU and
GPU. One its limitations is the impossibility to exit from one
of the parallel convolutional layers, e.g, one of the intermediate
layer in the Inception block before merge point.

This study clearly highlights the main restriction of the
practical application of all adaptive neural networks [17],
[19] for few-shot learning [1], namely, very low recognition
accuracy for the features extracted from early layers. The
gain in accuracy is significant even if the feature-extraction
layer becomes slightly deeper. For example, rather deep layer
“conv4 block36 out” in ResNet-152 is close to the last layer,
so that the inference time is only 6 ms less when compared
to the inference time in all CNN (Table II). However, the
accuracy for the features from early layer of the pre-trained
network is 7-26% lower. In order to obtain accuracy com-
parable with a whole network, one should not terminate the
inference even on such deep layers. Moreover, conventional
fine-tuning with multiple heads cannot solve the issue as
the difference in accuracy remains no less than 5% in this
particular case (column 5 in Table II). The same is true for
EfficientNet and Stanford dogs dataset (Tables IV). Such low
accuracy for deep intermediate layers significantly restricts the
potential of dynamic and adaptive inference not only in my
algorithm but in any similarly engineered approach. That is the
main reason why almost all methods from the literature survey
(Section II) are tested only on very-large datasets (ImageNet,
MNIST, CIFAR) with CNN trained from scratch. Hence, in
future it is necessary to study the best ways to fine-tune CNN
so that features at early layers will be reach enough.
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