
Event Recognition with Automatic Album Detection
based on Sequential Grouping of Confidence Scores

and Neural Attention
Andrey Savchenko∗†

∗Samsung-PDMI Joint AI Center
St. Petersburg Department of Steklov Institute of Mathematics

†Laboratory of Algorithms and Technologies for Network Analysis
National Research University Higher School of Economics

Nizhny Novgorod, Russia
Email: avsavchenko@hse.ru

Abstract—In this paper a new formulation of event recognition
task is examined: it is required to predict event categories
given a gallery of images, for which albums (groups of photos
corresponding to a single event) are unknown. The novel two-
stage approach is proposed. At first, features are extracted in
each photo using the pre-trained convolutional neural network
(CNN). These features are classified individually. The normalized
scores of the classifier are used to group sequential photos into
several clusters. Finally, the features of photos in each group
are aggregated into a single descriptor using neural attention
mechanism. This algorithm is implemented in Android mobile
application. Experimental study with features extracted by con-
temporary convolutional neural networks including EfficientNets
for Photo Event Collection and Multi-Label Curation of Flickr
Events Dataset demonstrates that the proposed approach is 9-
23% more accurate than conventional event recognition on single
photos. Moreover, proposed method has 13-16% lower error rate
when compared to classification of groups of photos obtained with
hierarchical clustering of CNN-based embeddings.

Index Terms—image recognition, convolutional neural net-
work, event recognition, attention network

I. INTRODUCTION

People are taking more photos than ever before in recent
years [1] due to the rapid growth of social networks, cloud
services and mobile technologies. To organize a personal
collection, the photos are usually assigned to albums according
to some events. The photo organizing systems (Apple and
Google Photos, etc.) allow the user to rapidly search for
required photo, and also to increase the efficiency of work
with a gallery [2]. Nowadays, these systems usually include
content-based image analysis and automatic association of
each photo with different tags (scene description, persons,
objects, locations, etc.). Such analysis can be used not only to
selectively retrieve photos for particular tag in order to keep
nice memories of some episodes of user’s live [3], but to
make personalized recommendations that assist customers in
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finding relevant items within large collections. A large gallery
of photos on a mobile device can be used for analysis of the
user’s demography [4] and understanding of such interests as
sport, gadgets, fitness, cloth, cars, food, traveling, etc. [5], [6].

In this paper I focus on one of the most challenging
parts of photo organizing engine, namely, image-based event
recognition [7], in order to extract such events as holidays,
sport events, weddings, various activities, etc. An event can
be defined as a category that captures the “complex behavior
of a group of people, interacting with multiple objects, and
taking place in a specific environment” [3]. There exist two
different tasks of event recognition. The first one is focused
on processing of single photos, i.e. event is considered as a
complex scene with large variations in visual appearance and
structure [3]. The second task aims at predicting the event
categories of a group of photos (album) [8]. In the latter case it
is assumed that all photos in an album are weakly labeled [9],
though importance of each image may differ [10]. However,
in practice only a gallery of photos is available so that the
latter approach requires a user to manually choose the albums.
Another option includes location-based album creation if the
GPS tags are switched on. In both cases the usage of album-
based event recognition is limited or even impossible.

Let me summarize the main contribution of this paper:
1) I consider the new task of event recognition, in which

a gallery of photos is given and it is known that it
contains ordered albums with unknown borders. This
problem is much more practically-oriented than conven-
tional album-based recognition [8]. A testing protocol is
provided for this task which can be used with existing
datasets suitable for album-based recognition [10], [11].
It is experimentally demonstrated that most obvious
approach, namely, hierarchical or sequential clustering
of CNN-based embeddings, does not lead to much
more accurate decision when compared to recognition
of single photos.

2) It is proposed to automatically assign these borders
based on the visual content of consecutive photos in a
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gallery. I highlight the need to match the normalized
confidence scores of classifiers for individual photos
instead of conventional embeddings extracted by con-
volutional neural network (CNN). Consecutive photos
are grouped and a final decision is made for a single
descriptor of each group computed with an attention
mechanism [12]. The developed engine is made as
simple as possible in order to be considered as a suitable
baseline for future studies of the new task from the
previous item.

The rest of the paper is organized as follows. Existing
deep learning-based event recognition techniques are briefly
reviewed in Section II. The proposed approach is discussed
in Section III. Experimental results for the Photo Event
Collection (PEC) [11] and the Multi-Label Curation of Flickr
Events Dataset (ML-CUFED) [10] are presented in Section IV.
Finally, concluding comments are discussed in Section V.

II. LITERATURE SURVEY

Annotating personal photo albums is an emerging trend in
photo organizing services. A method for hierarchical photo
organization into topics and topic-related categories on a
smartphone is proposed in [13] based on integration of CNN
and topic modeling for image classification. Organizing photo
albums for user preference prediction is considered in [14].

Speaking about event recognition, there are two tasks
studied in literature [7]. The first one predicts event type
of a single photo [3] by using existing methods of image
and scene recognition [6]. The second task includes event
recognition in the whole album (a sequence of photos). There
exist many techniques to solve the latter task. For example,
the Stopwatch Hidden Markov Models (HMM) were applied
in [11] by treating the photos in an album as sequential data.
The paper [9] tackles the presence of irrelevant images in an
album with active learning. An iterative updating procedure
for event type and image importance score prediction in a
siamese network is presented in [10]. The authors of this paper
used a CNN that recognizes the event type, and a Long Short-
Term Memory (LSTM)-based sequence level event recognizer
in a whole album. Moreover, they successfully applied the
method for learning representative deep features for image set
analysis [15]. The latter approach focuses on capturing the co-
occurrences and frequencies of features so that the temporal
coherence of photos in an album is not required. A model to
recognize events from coarse to fine hierarchical level using
multi-granular features is proposed in [1] based on an attention
network that learns the representations of photo albums. The
efficiency of re-finding expected photos in mobile phones was
improved by a method to classify personal photos based on
relationship of shooting time/location to specific events [16].

The album information is not always available so that a
gallery contains unstructured list of photos ordered by their
creation time. In such case it is possible to use existing
methods of event recognition on single photos [7]. Similar
to other computer vision domains, it is typical to apply CNN-
based architectures [17]. For example, four different layers of

fine-tuned CNN were used for feature extraction to obtain the
top entry in the ChaLearn LAP 2015 cultural event recognition
challenge [18]. The bounding boxes of detected objects are
projected onto multi-scale spatial maps for increasing the ac-
curacy of event recognition [19]. The novel iterative selection
method is introduced in [3] to identify a subset of classes that
are most relevant for transferring deep representations learned
from object (ImageNet) and scene (Places2) datasets.

Unfortunately, the accuracy of event classification on still
photos [3] is in general much lower than the accuracy of
album-based recognition [10]. Thus, an important task studied
in this paper is automatic extraction of albums from a personal
gallery based on a visual content of photos.

III. MATERIALS AND METHODS

A. Event recognition in a gallery of photos

The main task can be formulated as follows. It is required to
assign each photo Xt, t ∈ {1, ..., T} from a gallery of an input
user to one of C > 1 event categories (classes). Here T ≥ 1
is the total number of photos in a gallery. I assume that the
training set of N ≥ 1 albums is available for learning of event
classifier. The n-th reference album is defined by Ln images
{Xn(1), ..., Xn(Ln)}. The set of class labels cn ⊂ {1, ..., C}
of each n-th album is supposed to be given, i.e., an album
may be associated with several event types [10].

Conventional event recognition on single photos [3] is the
special case of above-formulated problem if T = 1. The main
difference is the following assumption. The gallery {Xt} is
not a random collection of photos but can be represented as a
sequence of disjoint albums. Each image in an album is associ-
ated with the same event. In contrast to the album-based event
recognition, the borders of each album are unknown. This
task possesses several characteristics that makes it extremely
challenging compared to previously studied problems. One of
these characteristics is the presence of irrelevant images or
unimportant photos that can be in principle associated to any
event [7]. These images are easily detected in attention-based
models [1], [12], but may have a significant impact on a quality
of automatic album selection.

The baseline approach here is to classify all T photos
independently. The training albums may be unfolded into a set
X = {X1(1), ..., X1(L1), X2(1), ..., X2(L2), ..., XN (LN )} of
L = L1 + ...+LN photos so that the collection-level label cn
of the n-th album is assigned to labels of each l-th photo
(l ∈ {1, ..., Ln}). Next, it is possible to train an arbitrary
event classifier. If L is rather small to train a deep CNN
from scratch, the transfer learning or domain adaptation can
be applied [17]. In these methods a large external dataset, e.g.
ImageNet-1000 or Places2, is used to pre-train a deep CNN.
As a special attention is paid to offline recognition on mobile
devices, it is reasonable to use such CNNs as MobileNet v1/v2.
The final step in transfer learning is fine-tuning of this neural
network on X. This step includes replacement of the last layer
of the pre-trained CNN to the new layer with sigmoid (for
multiple labels) or Softmax (for exactly one event label per
album) activations and C outputs. During the classification
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Fig. 1. Proposed gallery-based event recognition pipeline

process, each input image Xt is fed to the fine-tuned CNN
to compute the scores (predictions at the last layer) pt =
[p1;t, ..., pC;t]. This procedure can be modified by replacing C
logistic regressions in the last layer to more complex classifier,
e.g., random forest (RF), support vector machine (SVM) or
gradient boosting. In this case the features (embeddings) [20]
are extracted using the outputs of one of the last layers of
pre-trained CNN. Namely, the images Xt and Xn(l) are fed
to the CNN, and the outputs of one of the last layers are
used as the D-dimensional feature vectors xt = [x1;t, ..., xD;t]
and xn(l) = [xn;1(l), ..., xn;D(l)], respectively. Such deep
learning-based feature extractors allow training of a general
classifier C. The t-th photo is fed into this classifier to obtain
C-dimensional confidence scores pt. Finally, the confidences
pt computed by any of above-mentioned ways are used to
make a decision:

c∗(t) = {c| c ∈ {1, ..., C}, pc;t > p0} , (1)

where p0 is a fixed threshold for a minimal confidence score.
This threshold should be estimated in such a way that the result
set (1) will be empty if a photo describe some unseen (out-of-
class) events, one can expect that all the confidence scores are
rather low. If it is required to return exactly one event label,
the class with the maximal confidence is returned:

c∗(t) = argmax
c∈{1,...,C}

pc;t. (2)

In addition to this baseline approach, hierarchical agglom-
erative clustering of embeddings xt extracted by pre-trained
CNN and confidence scores pt with appropriate dissimilarity
measure may be used for entire gallery. Next, the embeddings
or confidence scores in each cluster are averaged in a single
descriptor. The latter is classified to predict event classes for
the whole cluster. Finally, these classes are assigned to each
photo in a cluster. However, sequential nature of photos in a
gallery is not used in this approach, so that potential accuracy
increase for such a clustering is not high.
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Fig. 2. Attention-based neural network. The shape of outputs is shown in
brackets after each layer.

B. Proposed approach

The proposed pipeline is presented in Fig. 1. Here, firstly,
the “Feature extractor” unit computes embeddings xt of every
t-th individual photo as described in previous Subsection III-A.
The classifier confidences pt are estimated in the “Classi-
fier” unit. Next, sequential analysis is used from the Basic
Sequential Algorithmic Scheme (BSAS) clustering [21] in the
“Sequential cluster analysis” unit for a sequence of confidences
{pt} in order to obtain the borders of albums. Namely, the
distances between neighbor photos ρ(pt,pt−1) are computed.
The confidences of some classifiers C, e.g., SVM returned by
decision function, i.e., distances to the separating hyper-plane,
may be L2-normalized before computation of this distance.
If a distance does not exceed a certain threshold ρ0 then it
is assumed that both photos are included in the same album.
Otherwise, the border between two albums is established at the
t-th position. As a result, the borders 1 ≤ t1 < ... < tK = T
of K ∈ {1, ..., T} albums are obtained, so that the k-th album
contains photos X(t), t ∈ {tk−1 + 1, ..., tk}, where t0 = 0.

At the second stage, the final descriptor of the k-th album
is produced as a weighted sum of individual features xt:

x(k) =

tk∑
t=tk−1+1

w(xt)xt, (3)

where the weights w may depend on the features xt. It is
typical to use here average pooling (AvgPool) with equal
weights, so that the mean feature vector is computed. How-



Require: input gallery X(t), t ∈ {1, ..., T}
Ensure: sets of events c∗(t) ⊂ {1, ..., C} for every image

1: Assign K := 0, initialize list of borders B := []
2: for each input image t ∈ {1, ..., T} do
3: Feed the t-th image into a CNN and extract features xt

4: Use classifier C to compute confidences pt and normal-
ize them

5: if t = 1 or ρ(xt,xt−1) > ρ0{sequential cluster
analysis} then

6: Assign K := K + 1, append t− 1 to the list B
7: end if
8: end for
9: Append T to the list B

10: for each extracted album k ∈ {1, ...,K} do
11: Feed input images {XB[k−1]+1, XB[k−1]+2, ..., XB[k]}

into neural attention network (3)-(4) to obtain labels c∗

12: Assign c∗(t) := c∗ for all t ∈ {B[k − 1] + 1, ..., B[k]}
13: end for
14: return set of event labels c∗(t), t ∈ {1, ..., T}

Fig. 3. Proposed gallery-based event recognition

1: for each album n ∈ {1, ..., N} do
2: for each image l ∈ {1, ..., Ln} do
3: Feed image Xn(l) into a CNN and compute embed-

dings xn(l)
4: end for
5: end for
6: Train classifier C using unfolded training set X of embed-

dings
7: Train attention network (3)-(4) using subsets with fixed

size S of all training sets of features {xn(l)}
8: for each album n ∈ {1, ..., N} do
9: for each image l ∈ {1, ..., Ln} do

10: Feed embeddings xn(l) into classifier C to predict
confidence scores pn(l) and normalize them

11: end for
12: end for
13: Randomly permute all indices {1, ..., N} to obtain se-

quence (n1, ..., nN )
14: Unfold training embeddings using this permutation: X̃ =
{Xn1

(1), ..., X1(Ln1
), ..., XnN

(1), ..., XnN
(LnN

)}
15: Assign ρ := 0, α∗ := 0
16: for each potential threshold ρ do
17: Call Algorithm (Fig. 3) with parameters X̃, C and

threshold ρ
18: Compute accuracy α using predictions for all training

images
19: if α∗ < α then
20: Assign α∗ := α, ρ0 := ρ
21: end if
22: end for
23: return classifier C, attention network, threshold ρ0

Fig. 4. Learning procedure in the proposed approach

ever, I propose to learn the weights w(xt) with an attention
mechanism in this paper:

w(xt) =
exp(qTxt)

tk∑
j=tk−1+1

exp(qTxj)

. (4)

Here q is the learnable D-dimensional vector of weights.
The dense (fully connected) layer is attached to the resulted
descriptor x(k), and the whole neural network (Fig. 2) is
trained in end-to-end manner using given training set of N ≥ 1
albums. Here ∆t is the number of images in the input set
(tk−tk−1+1) and D1 is an arbitrary width of the hidden layer
(D1 = 128 will be used further). The event class predicted by
this network in the “Neural attention model” unit (Fig. 1) is
assigned to all photos X(t), t ∈ {tk−1 + 1, ..., tk}.

Complete algorithm for our pipeline (Fig. 1) is presented
in Fig. 3. The learning procedure is shown in Fig. 4. It
permutes the training set (steps 13,14) in order to create a
gallery, in which the sequence of albums and their positions
are random, though photos from the same album are located
close to each other. Moreover, it calls the event prediction at
step 17 for simplicity. However, to speed-up computations it
is recommended to pre-compute the pair-wise distance matrix
between confidence scores of all training images so that feature
extraction (steps 3-4 in Algorithm (Fig. 3)) and distance
calculation are not needed during the learning stage. New
photos are processed very efficiently as there is no need to
repeat the processing of the whole gallery. If a new photo is
entered into the gallery it may be grouped with the last K-th
cluster if the contents of the last photo and the new one are
similar or be treated as a new cluster.

I implemented the whole pipeline (Fig. 1) in the publicly-
available demo application for Android (https://drive.google.
com/open?id=1rThhcKReOb5A9LBIH6jkP8tTiYjoVNWH)
(Fig. 5), that was previously developed to extract user
preferences by processing all photos from the gallery [14].
The similar events found in photos made in one day were
united into High-level logs for the most important events.
Only those scenes/events are displayed for which there
exist at least 2 photos and the average score of scene/event
predictions for all photos of the day exceeds a certain
threshold. The sample screenshot of the main user interface
is shown in Fig. 5a. It is possible to tap any bar in this
histogram to show a new form with detailed categories
(Fig. 5b). If a concrete category is tapped, a “display” form
appears, which contains a list of all photos from the gallery
with this category (Fig. 5c). Here events are grouped by date
and provide a possibility to choose concrete day.

IV. EXPERIMENTAL RESULTS

Two main datasets in event recognition in personal photo-
collections [7] are examined, namely:

1) PEC [11] with 61,364 images from 807 collections of
14 social event classes (birthday, wedding, graduation,
etc.). I used its split provided by authors: the training set
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Fig. 5. Mobile demo GUI

with 667 albums (50,279 images) and testing set with
140 albums (11,085 images).

2) ML-CUFED [10] contains 23 common event types. Each
album is associated with several events, i.e., it is a
multi-label classification task. Conventional split into the
training set (75,377 photos, 1507 albums) and test set
(376 albums with 19,420 photos) was used.

The features were extracted at the outputs of penultimate
(global average pooling) layers of scene recognition models
(Inception v3, ResNet-101 and MobileNet v2 with α = 1 and
α = 1.4) pre-trained on the Places2 dataset. In addition, I
took the standard versions of EfficientNet v5 (Rand-aug) and
v7 (Rand-aug) [22] pre-trained on the ImageNet dataset.

I used two techniques discussed in Subsection III-B to
obtain a final descriptor of a set of images, namely, AvgPool
and the neural attention mechanism (3)-(4) for L2-normed
features. In the former case the average descriptors are clas-
sified with the feed-forward neural network identical to last
two layers from Fig. 2 in order to use the same classifiers as
in the attention-based model. In the latter case its weights are
learned using the sets with S = 10 randomly chosen images
from all albums in order to make identical shape of input
tensors. As a result, 667 training subsets and 1507 subsets
with S = 10 images were obtained for PEC and ML-CUFED,
respectively. As the ML-CUFED contains multiple labels per
each album, sigmoid activations and binary cross-entropy loss
were used. Conventional Softmax activations and categorical
cross-entropy are applied for the PEC. The model was learned
using ADAM optimizer (learning rate 0.001) for 10 epochs
with early stop in Keras 2.3 framework with TensorFlow 1.15
backend. The linear SVM classifier from scikit-learn library
was used as C to combine sequential photos in Step 4 (Fig. 3),

TABLE I
ACCURACY (%) OF EVENT RECOGNITION IN A SET OF IMAGES (ALBUM).

CNN Aggregation PEC ML-CUFED

MobileNet2, AvgPool 86.42 81.38
α = 1.0 Attention 89.29 84.04

MobileNet2, AvgPool 87.14 81.91
α = 1.4 Attention 87.86 84.31

Inception AvgPool 86.43 82.45
v3 Attention 87.86 84.84

EfficientNet AvgPool 88.57 86.70
v5 Attention 89.29 88.56

EfficientNet AvgPool 89.29 88.83
v7 Attention 90.0 90.42

AvgPool 86.43 82.18
Attention 88.57 85.37

ResNet-101 CNN-LSTM-Iterative [10] 84.5 71.7
Feature learning [15] 89.1 83.4

AlexNet CNN-LSTM-Iterative [10] 84.5 79.3
Feature learning [15] 87.9 84.5

- Stopwatch HMM [11] 55.71 -
A-net Feature-learning [15] 73.43 -
GoogLeNet R-OS-PGM [8] 74.28 -
VGGNet Active learning [9] 85.0 -
Ensemble of
3 VGGNets

Hierarchical attention [1] 87.86 -

because it has higher accuracy than RF, k-NN and RBF SVM.

A. Album-based event recognition

The recognition accuracies of the pre-trained CNN for
album-based event recognition in conventional testing proto-



cols of these datasets together with the best-known results
from literature [10], [15] are presented in Table I. The multi-
label accuracy is computed for ML-CUFED so that prediction
is assumed to be correct if it corresponds to any label associ-
ated with an album.

Here the modern EfficientNets provide 4-6% higher ac-
curacy for the ML-CUFED dataset when compared to the
state-of-the-art method [10]. However, their improvements
over existing CNNs for the PEC are not so huge. Anyway,
they outperform the known best accuracy for this dataset
on 0.9%. The most remarkable fact here is that one of the
best results for the PEC are achieved for the most simple
model (MobileNet v2, α = 1.0), which can be explained by
the lack of training data for this particular dataset. Finally,
the attention-based aggregation is 1-3% more accurate when
compared to classification of average features in all cases.
As one can notice, the proposed implementation of attention
mechanism achieves the known state-of-the-art results, though
I used much faster CNNs (MobileNet and Inception rather
than AlexNet and ResNet-101) and do not consider sequential
nature of photos in an album in the attention-based network
(Fig. 2). Anyway, slight improvement of the best results for
album-based event recognition is auxiliary part of this study.
It just demonstrates that the quality of attention model is
comparable with other techniques.

B. Event recognition in single images

The task considered in this paper (Subsection III-A) is
new so that there are no results for it in existing literature.
It is a generalization of event recognition in still images,
because in practice there is no information about albums in
a gallery. Moreover, class labels are assigned to each photo
from the gallery individually (Step 12 in my Fig. 3). Thus, it
is necessary to compare proposed approach with existing state-
of-the-art for recognition in still images. In the next experiment
the collection-level first label is directly assigned to each
image contained in both datasets and simply use the image
itself for event recognition, without any meta information. In
addition to baseline approach (Subsection III-A), the average
linkage clustering was used, which achieved the best accuracy
when compared to other hierarchical agglomerative clustering
techniques fro scikit-learn. Euclidean (L2) distance between
embeddings and confidence scores is implemented in all cases.
In addition, I used chi-squared (χ2) distance to match non-
negative embeddings from several CNNs. It is impossible
to use chi-squared (χ2) distance for the confidence scores
returned by decision function for LinearSVC, because they
are not always non-negative. The results are shown in Table II.

Here, firstly, the accuracy of event recognition in single
images is 25-30% lower than the accuracy of the album-based
classification (Table I). Secondly, the best known accuracy
(62.2%) [3] of image-level event recognition for the PEC is
2.6% lower when compared to the usage of the best Efficient-
Net [22]. Thirdly, clustering of the confidence scores at the
output of the best classifier does not significantly influence
the overall accuracy. Fourthly, hierarchical clustering with the

TABLE II
ACCURACY (%) OF EVENT RECOGNITION IN A SINGLE IMAGE.

Average linkage clustering
Dataset CNN Baseline Embeddings Scores

L2 χ2 L2

MobileNet2, α = 1.0 58.32 60.42 60.69 58.44
MobileNet2, α = 1.4 60.34 61.25 61.92 60.58
Inception v3 61.82 64.19 64.22 61.97
ResNet-101 61.56 64.19 63.67 61.78
EfficientNet v5 63.25 65.15 - 63.37

PEC EfficientNet v7 64.81 66.00 - 64.91
OS2E-CNN (two
BN-Inceptions) [3]

60.6 - - -

OS2E-CNN (four
data+knowledge
BN-Inceptions) [3]

62.2 - - -

MobileNet2, α = 1.0 54.41 57.03 57.45 54.56
MobileNet2, α = 1.4 53.54 54.97 55.98 54.03

ML- Inception v3 57.26 59.19 60.12 57.87
CUFED ResNet-101 55.56 58.09 58.59 65.72

EfficientNet v5 59.78 62.13 - 59.93
EfficientNet v7 61.58 64.36 - 61.67

χ2 distance leads to slightly more accurate results than con-
ventional Euclidean metric. Finally, preliminarily clustering
decreases the error rate of the baseline in only 1.2-2% even if
the distance threshold in clustering is carefully chosen.

C. Event recognition in a gallery of photos

Let me demonstrate how the assumption about sequentially
ordered photos in an album can increase the accuracy of event
recognition. I propose the following protocol for existing event
datasets with known album labels to make the task more
complex. The sequence of albums is randomly shuffled. The
photos in each album are also shuffled. This transformation
of the order of testing photos was performed 10 times, and
average accuracy and its standard deviation are evaluated.

In addition to pre-trained CNNs, I fine-tuned several CNNs
using the unfolded training set X as follows. At first, the
weights in the base part of the CNN were frozen and the
new head (fully connected layer with C outputs and Softmax
activation) was learned during 10 epochs. Next, the weights in
the whole CNN were learned during 3 epochs with 10-times
lower learning rate. The scores of fine-tuned CNN are L1-
normalized, so that additional normalization is not required.

The results (mean accuracy ± its standard deviation) of the
proposed Algorithms 3, 4 for the PEC and the ML-CUFED
using my testing protocol are presented in Table III and
Table IV, respectively. Here the attention mechanism provides
up to 8% lower error rates in most cases. This increase is much
higher when compared to 1-3% gain of attention mechanism
in traditional album-based event recognition (Table I). It is
remarkable that the matching of distances between L2-normed
confidences significantly improves the overall accuracy of at-
tention model for the PEC (Table III), though my experiments
did not show any improvements in conventional clustering



TABLE III
ACCURACY (%) OF THE PROPOSED APPROACH, PEC.

CNN Aggregation Baseline Embeddings Scores Scores (normalized)
L2 χ2 L2 L2 χ2

MobileNet2, α = 1.0 AvgPool 58.32 66.85± 0.59 68.52± 0.89 71.08± 0.59 72.68± 0.56 -
(pre-trained), embeddings Attention 54.43 68.51± 0.41 70.65± 1.20 74.49± 0.70 80.48± 1.01 -

MobileNet2, α = 1.4 AvgPool 60.34 68.85± 0.59 69.57± 0.57 72.59± 1.49 73.49± 0.86 -
(pre-trained), embeddings Attention 55.36 70.53± 0.79 71.16± 0.72 78.20± 1.47 81.27± 0.81 -

MobileNet2, α = 1.4 AvgPool 61.89 - - 75.66± 0.55 76.96± 0.97

(fine-tuned), scores Attention 61.55 - - 78.77± 0.49 81.33± 0.69

Inception v3 AvgPool 61.82 72.29± 1.28 72.32± 1.54 74.54± 1.04 76.48± 0.47 -
(pre-trained), embeddings Attention 56.94 72.38± 1.13 71.96± 0.67 76.76± 0.70 80.17± 1.14 -

Inception v3 AvgPool 63.56 - - 78.87± 0.67 79.92± 0.65

(fine-tuned), scores Attention 62.91 - - 81.03± 0.77 81.95± 1.11

ResNet-101 AvgPool 61.56 72.45± 0.75 72.29± 1.09 76.35± 0.94 76.10± 0.47 -
(pre-trained), embeddings Attention 58.26 73.14± 0.97 72.69± 0.95 78.95± 1.01 80.74± 0.57 -

EfficientNet v5 AvgPool 63.25 75.00± 0.95 - 76.99± 0.87 77.38± 0.73 -
(pre-trained), embeddings Attention 59.58 77.45± 1.34 - 80.58± 0.92 82.08± 0.60 -

EfficientNet v7 AvgPool 64.81 77.11± 0.53 - 79.58± 0.43 80.37± 0.58 -
(pre-trained), embeddings Attention 60.19 80.12± 0.48 - 81.53± 0.78 83.42± 0.76 -

TABLE IV
ACCURACY (%) OF THE PROPOSED APPROACH, ML-CUFED.

CNN Aggregation Baseline Embeddings Scores Scores (normalized)
L2 χ2 L2 L2 χ2

MobileNet2, α = 1.0 AvgPool 54.41 67.54± 0.76 67.42± 0.93 69.83± 0.74 70.42± 0.41 -
(pre-trained), embeddings Attention 51.05 68.71± 0.71 68.55± 0.61 71.44± 0.82 71.61± 0.69 -

MobileNet2, α = 1.4 AvgPool 53.54 66.93± 0.60 67.21± 0.55 68.56± 0.73 69.47± 0.36 -
(pre-trained), embeddings Attention 51.12 68.34± 0.68 68.62± 0.50 70.79± 0.75 71.78± 0.74 -

MobileNet2, α = 1.4 AvgPool 56.01 - - 70.57± 0.48 71.61± 0.28

(fine-tuned), scores Attention 56.09 - - 72.90± 0.59 73.46± 0.58

Inception v3 AvgPool 57.26 69.91± 0.58 70.01± 0.62 72.25± 0.61 72.78± 0.71 -
(pre-trained), embeddings Attention 50.89 69.30± 0.47 68.52± 0.89 72.73± 0.72 73.00± 0.65 -

Inception v3 AvgPool 57.12 - - 72.18± 0.63 73.20± 0.74

(fine-tuned), scores Attention 57.29 - - 73.06± 0.74 73.92± 0.81

ResNet-101 AvgPool 55.56 69.90± 0.73 69.06± 0.71 72.14± 0.60 71.87± 0.62 -
(pre-trained), embeddings Attention 51.80 70.25± 0.66 68.14± 0.70 72.80± 0.91 73.58± 0.82 -

EfficientNet v5 AvgPool 59.78 73.05± 0.48 - 74.36± 0.57 75.28± 0.41 -
(pre-trained), embeddings Attention 56.31 73.88± 0.44 - 76.02± 0.59 77.08± 0.38 -

EfficientNet v7 AvgPool 61.58 75.20± 0.41 - 75.92± 0.43 76.82± 0.71 -
(pre-trained), embeddings Attention 57.79 76.10± 0.53 - 76.63± 0.45 78.31± 0.75 -

from the previous experiment (Table II). The fine-tuned CNNs
obviously lead to the most accurate decision, but the difference
(0.1-1.6%) with the best results of the pre-trained models is
rather small. However, the latter do not require additional
inference in existing scene recognition models, so the im-
plementation of event recognition in an album will be very
fast if the scenes should be additionally classified, e.g., for
more detailed user modeling [14]. Surprisingly, computing the
distance between confidence scores of classifiers (ρ(pt,pt−1))
reduces the error rate of conventional matching of embeddings
(ρ(xt,xt−1)) on 2-7%. Let me recall that conventional cluster-
ing of embeddings was 1-2% more accurate when compared

to the classifier’s scores (Table II). It seems that the threshold
ρ0 can be estimated (Fig. 4) more reliably in this particular
case when most images from the same event are matched in
the prediction procedure (Fig. 3). Finally, the most important
conclusion is that the proposed approach has 9-23% higher
accuracies when compared to baseline state-of-the-art image-
level event recognition. Moreover, my algorithm is 13-16%
more accurate than classification of groups of photos obtained
with hierarchical clustering (Table II).



V. CONCLUSION

Existing studies of event recognition cannot be directly
used for processing of a gallery of mobile device because the
albums of photos corresponding to the same event may be
unavailable. The usage of event recognition in single images
is possible but is very inaccurate even if similar photos are
combined with a clustering of visual features (Table II). I
have demonstrated that grouping of consecutive photos and
attention-based recognition of resulted image sets (Fig. 3) can
drastically (up to 23%) improve the accuracy (Tables III, IV)
of the baseline state-of-the-art methods of image-level event
recognition (Table II). The consecutive photos from the same
album are discovered much better if the confidence scores
of classifier are matched. The classifier has been learned on
unfolded training set X. It was unexpected that L2-normed
confidence scores of SVM classifier (distances to the hyper-
plane) are grouped so efficiently. Moreover, the χ2 distance for
the CNN-based scores works much better than conventional L2

distance. It is important that the usage of the same training set
is enough to automatically estimate the most important param-
eter, namely, distance threshold ρ0, in the learning procedure
(Fig. 4). Finally, the proposed implementation of attention-
based network and its training procedure slightly improved the
known state-of-the-art for two widely-used datasets (Table I)
if EfficientNet v7 is used for feature extraction [22].

Proposed engine has been implemented in the publicly
available Android application (Fig. 5) that extracts the profile
of user’s interests. It is applicable for such personalized mobile
services as recommender systems and target advertisements.

The main disadvantage of the proposed approach is its
rather lower accuracy (up to 8-11%) when compared to
the best models for the case of known borders of albums
(Table I). In future it is necessary to replace the pre-defined
distance ρ(pt,pt−1) to a metric learned on a given training
set [17]. Moreover, the issue of irrelevant photos [10] should
be thoroughly studied. The proposed approach with matching
of the distances between neighbor images simply splits an
album into several chunks so that unimportant photos will be
assigned to very small groups. However, it was experimentally
noticed that it is better to match neighbor images than find
the minimal distance of the t-th photo with several previous
photos or even all images in the current group. Finally, it is
desirable to improve the attention model, which does not work
well now for single photos: its accuracy for the baseline with
pre-trained CNNs is 4-5% worth than the accuracy of linear
SVM (row “AvgPool” in Tables III, IV).
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