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Abstract—A convolutional neural network based on quater-
nion, a four-dimensional hypercomplex number system, is
proposed and evaluated in this paper. Called Quaternionic
Convolutional Neural Networks (QCNNs), these networks can
accept and operate three-dimensional signals by neurons in
the networks. The performances of the proposed networks are
investigated through classification of CIFAR-10 color images,
and it is shown that the proposed QCNN outperforms a
conventional (real-valued) CNN.

Index Terms—quaternion, convolutional neural network,
complex-valued neural network

I. Introduction
Hypercomplex number systems would be useful tools

to cope with multi-dimensional data in neural networks.
Typically a single neuron can take only one real value as its
input, thus a network should be configured so that several
neurons are assigned for accepting multi-dimensional data.
This traditional way to treat multidimensional data can
be inadequate for the data of which each element itself has
less meaning than the data with unified elements, such as
radio frequency/acoustic signals and coordinates in the
space.

The complex number system is a system where a
number consists of one real number and one imaginary
number, or a phase and an amplitude. Complex num-
ber systems have thus been utilized to represent two-
dimensional data elements as a single entity. Application
of complex numbers to neural networks have been exten-
sively investigated, and recent researches are summarized
in the references [1]–[4].

Extensions for higher dimensionality (dimensions more
than two), which is similar to the extension from the real
numbers to complex numbers, can be considered. Several
hypercomplex systems have been introduced, such as
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quaternion (four dimensions), octonion (eight dimensions),
and sedenion (16 dimensions). Also, Clifford algebras
are introduced as a generalization of these hypercomplex
systems [5], [6].

Quaternion is a four-dimensional hypercomplex number
system introduced by Hamilton [7], [8]. This number
system has been extensively employed in several fields,
such as modern mathematics, physics, control of satellites,
computer graphics, and so on [9]–[11]. One of the benefits
provided by quaternions is that affine transformations
of geometric figures in three-dimensional spaces, espe-
cially spatial rotations, can be represented compactly and
efficiently. Applying quaternions to the field of neural
networks has been recently explored in an effort to
naturally represent high-dimensional information, such
as color and three-dimensional body coordinates, by a
quaternionic neuron, rather than complex-valued or real-
valued neurons.

Thus, there has been a growing number of studies
concerning the use of quaternions in neural networks.
Multilayer perceptron (MLP) models have been developed
in [12]–[18]. The use of quaternion in MLP models has
been applied to several engineering problems such as
control problems [13], color image compression [15], color
night vision [19], [20], and predictions for the output of
chaos circuits and winds in three-dimensional space [16],
[17].

Though many quaternionic neural network models have
been proposed, only a small number of neural net-
works with much more complexities, such as deep neural
networks and convolutional neural networks, have been
considered [21]–[24]. Thus, scalability for quaternionic
(also complex-valued or hypercomplex-valued) neural net-
works has not been clarified for large-scaled networks.
It would be important to investigate the properties and
performances of such types of neural networks based
on quaternion, for the applications of image classifica-
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tion/generation tasks by neural networks.
In this paper, we propose a convolutional neural network

based on quaternion, called Quaternionic Convolutional
Neural Network (QCNN) and investigate its performances
through the classification of color images in the CIFAR-10
dataset. The neuron model in the proposed network fol-
lows the one from [15] with split-type activation function.
Operations in the convolution and pooling layers in the
proposed network are also defined. The performances in a
simple QCNN with three pairs of convolution and pooling
layers are explored through the classification of images,
with compared to conventional (real-valued) convolutional
neural network. The rest of the paper is organized as
follows. Section 2 gives the basic definitions of quater-
nion number system. The proposed convolutional neural
network is described in section 3. Section 4 demonstrates
experimental results. This paper finishes with conclusion
in section 5.

II. Definition of Quaternion
Quaternions form a class of hypercomplex numbers that

consist of a real number and three imaginary numbers–
i, j, and k. Formally, a quaternion number is defined as
a vector x in a 4-dimensional vector space,

x = x(e) + x(i)i+ x(j)j + x(k)k (1)

where x(e), x(i), x(j), and x(k) are real numbers. H, the
division ring of quaternions, thus constitutes the four-
dimensional vector space over the real numbers with the
bases 1, i, j, and k. Eq.(1) can also be written using 4-
tuple or 2-tuple notation as

x = (x(e), x(i), x(j), x(k)) = (x(e), x⃗), (2)

where x⃗ = {x(i), x(j), x(k)}. In this representation, x(e) is
the scalar part of x, and x⃗ forms the vector part. Pure
imaginary quaternion corresponds to a pure imaginary
number in complex numbers, a quaternion x without the
scalar part (x(e) = 0). The quaternion conjugate is defined
as

x∗ = (x(e),−x⃗) = x(e) − x(i)i− x(j)j − x(k)k. (3)

Quaternion bases satisfy the following identities,

i2 = j2 = k2 = ijk = −1, (4)
ij = −ji = k, jk = −kj = i, ki = −ik = j, (5)

which are known as the Hamilton rule. From these rules,
it follows immediately that multiplication of quaternions
is not commutative.

Now, we define the operations between quaternions
p = (p(e), p⃗) = (p(e), p(i), p(j), p(k)) and q = (q(e), q⃗) =
(q(e), q(i), q(j), q(k)). The addition and subtraction of
quaternions are defined in the same manner as they are
for complex-valued numbers or vectors, that is,

p± q=(p(e) ± q(e), p⃗± q⃗) (6)
=(p(e)±q(e), p(i)±q(i), p(j)±q(j), p(k)±q(k)). (7)

Fig. 1. A rotation in three-dimensional space using quaternions

The product of q and p is determined by Eq. (5) as

qp =(q(e)p(e) − q(i)p(i) − q(j)p(j) − q(k)p(k))

+ (q(i)p(e) + q(e)p(i) − q(k)p(j) + q(j)p(k))i

+(q(j)p(e) + q(k)p(i) + q(e)p(j) − q(i)p(k))j

+(q(k)p(e) − q(j)p(i) + q(i)p(j) + q(e)p(k))k.

(8)

The conjugate of the product is given as

(pq)∗ = q∗p∗. (9)

The quaternion norm of x, denoted by |x|, is defined
as

|x| =
√
xx∗ =

√
x(e)2 + x(i)2 + x(j)2 + x(k)2. (10)

A rotation in three-dimensional space can be described
by using a quatenrion and its conjugate, as

y = pvp∗, (11)

where p is a quatenrion and v is a pure imaginary quater-
nion. p is composed from a pure imaginary quaterion u
with |u| = 1 and a phase parameter α with |α| < π,
defined as

p = cosα+ (sinα) · u. (12)

Thus, we obtain (11) as

y = (cos 2α) · v + (sin 2α) · (u× v). (13)

This represents that, y is the three-dimensional vector
(pure imaginary quaternion) v rotated with the axis u
around the angle 2α (see Fig. 1).

III. Quaternoinic Neural Network Model
A. Neuron model

The proposed quatenrionic neural network is an exten-
sion of the one in [15], where each neuron in this network
accepts three-dimensional signals as its input and output.
The output of the neuron j, denoted by yj , is defined as

sj =

N∑
i=1

wjixiw
∗
ji

|wji|
+ θj , (14)

yj = h(s
(i)
j )i+ h(s

(j)
j )j + h(s

(k)
j )k, (15)



where N is the number of neurons connected to the neuron
j and i denotes the index for these neurons. The variables
x ∈ I, w ∈ H, θ ∈ I, s ∈ I are the input, connection
weight, threshold, and action potential, respectively. The
activation function for this neuron adopts a split-type
function, i.e. real-valued function h(·) is applied to each
of quatenrionic components. We use the ReLU function
as h(·), defined as

h(x) = max(0, x). (16)
B. Convolution and pooling elements

Convolutional operation for quaternionic neuron is
presented. As in the real-valued convolutional neural
networks, a quatenrionic convolutional neuron accept the
signals from local receptive fields. The operation for this
type of neuron is similar to neuron model in Eqs.(14) and
(15):

sijk =

m∑
s=1

m∑
t=1

wstkxi+s,j+tw
∗
stk

|wstk|
+ θk, (17)

yijk = h(s
(i)
ijk)i+ h(s

(j)
ijk)j + h(s

(k)
ijk)k, (18)

where m denotes the size of filter for local receptive field.
Pooling operation act as a resolution reduction (down

sampling) from the input signals. In the proposed network,
we adopt so-called max pooling, where the maximum value
for each of quaternionic components in a set of neurons is
extracted:

pij = max
s∈[0,m]

(y
(i)
mi+s,mj+s)i

+ max
s∈[0,m]

(y
(j)
mi+s,mj+s)j

+ max
s∈[0,m]

(y
(k)
mi+s,mj+s)k.

(19)

C. Batch Normalization
Batch normalization [25] is a process that is used

for making normalization for the distribution of training
data, in order to accelerate the speed for training. We
incorporate a scheme for batch normalization as used in
[24] for quaternionic neural networks.

An extension for the mean (QE(x)) and variance
(QV (x)) of quaternions x are first defined as follows [26]:

QE(x) =
1

m

m∑
i=1

x
(i)
i i+ x

(j)
i j + x

(k)
i k, (20)

QV (x) =
1

m

m∑
i=1

(xi −QE(x))(xi −QE(x))∗. (21)

Using these quantities, a batch normalization QBN(xi)
is defined as

QBN(xi) = γ

(
xi −QE(x)√
QV (x) + ε

)
+ β, (22)

where γ is a scalar called stretch scale, β is a pure
imaginary quaternion called shift scale, respectively, and
ε is a non-zero small constant. The parameters γ and β
will change through training a network.

Fig. 2. Real-valued transformation for softmax operation in quater-
nionic neural network

D. Softmax operation
In classification tasks by neural networks, softmax

operation is useful to obtain the classification results,
because the outputs of neurons through softmax operation
can be interpret as the probabilities or confidences for the
classification. It is not applicable to introduce this softmax
operation into quatenrionic neurons in a straightforward
way, due to three-dimensional output being available in
these neurons. Thus, it is necessary to introduce some pro-
cedures to implement softmax operation in quaternionic
neural network.

In our model, we adopt a scheme for replacing quater-
nionic neurons to real-valued neurons at the output layer,
in order to obtain real-valued signal (see Fig. 2). By using
these real-valued outputs, the softmax operation can be
applied.

IV. Experimental results
Two types of convolutional neural networks are eval-

uated for conventional (real-valued) and quaternionic
extension networks. The first one is a simple convolu-
tional neural network with two pairs of convolution and
pooling layers. The structures of networks are shown in
Table.I. These structures are chosen so that the trainable
parameters for these networks are almost same. We adopt
classification of images in the CIFAR-10 dataset the
classification task for these networks. The images (RGB
color images with 32 × 32 pixels) in this dataset are
categorized as 10 classes. The numbers of training and
testing images are 50,000 and 10,000, respectively. Adam
optimizer is used for training networks with 128 of mini-
batch size. In training networks, the training dataset is
augmented by applying horizontal/vertical shift of 20%,
horizontal flips, and ±20◦ rotations.

The transitions of the losses for test images are shown
in Fig. 3, and the transitions of classification accuracies
are shown in Fig. 4. From these results, we see that the
proposed QCNN has better performance than the real-
valued CNN.

The second convolutional neural network is so-called
ResNet (residual network) [27], where residual blocks and
shortcut connections for the block are incorporated. This
network is shown as effective for constructing deep neural



Fig. 3. Transitions of loss for QCNN and CNN

Fig. 4. Transitions of classification accuracies for QCNN and CNN

network with with maintaining the gradient information.
Table II shows the structures of real-valued and quater-
nionic equivalent of ResNet networks, where residual block
is represented with brackets. The residual block used in
this paper is shown in Fig.5. Other configurations for
training networks are the same as those in the experiments
for convolutional neural networks, except for the setting
of learning rates. The learning rates for this experiment is
changed in a phased manner; the learning rate is reduced
by 1/10 times at the epochs 150th and 225th.

The transitions of the losses for test images are shown

in Fig. 6, and the transitions of classification accuracies
are shown in Fig. 7. Sharp changes are observed at the
epoch 150th, this is due to the change of learning rate.
Also in this experiment, the proposed QCNN performs in
the classification task, better than conventional network.

V. Conclusion
We have presented a convolutional neural network

model based on quaternionic algebra, a hypercomplex
number system. The proposed network deal with three-
dimensional signals by using pure imaginary quaternions,



TABLE I
Network architectures on QCNN and CNN.

Layer Output size Filter size ActivationQCNN CNN
Conv1 3× 32× 32× 16 32× 32× 32 3× 3 ReLU

Maxpool1 3× 16× 16× 16 16× 16× 32 2× 2

Conv2 3× 16× 16× 16 16× 16× 32 3× 3 ReLU
Maxpool2 3× 8× 8× 16 8× 8× 32 2× 2

Flatten 3× 1024 2048

FC1 3× 256 512 ReLU
FC2 10 Softmax

TABLE II
Network architectures for ResNet34 based on QCNN and CNN.

Building blocks are shown in brackets, with the number of blocks
stacked.

Layer Output size Filter
QCNN CNN QCNN CNN

Conv1 3× 32× 32× 16 32× 32× 32 3× 3, 16 3× 3, 32

Conv2_x 3× 32× 32× 16 32× 32× 32

[
3× 3, 16
3× 3, 16

]
× 3

[
3× 3, 32
3× 3, 32

]
× 3

Conv3_x 3× 16× 16× 32 16× 16× 64

[
3× 3, 32
3× 3, 32

]
× 4

[
3× 3, 64
3× 3, 64

]
× 4

Conv4_x 3× 8× 8× 64 8× 8× 128

[
3× 3, 64
3× 3, 64

]
× 6

[
3× 3, 128
3× 3, 128

]
× 6

Conv5_x 3× 4× 4× 128 4× 4× 256

[
3× 3, 128
3× 3, 128

]
× 3

[
3× 3, 256
3× 3, 256

]
× 3

GAP 3× 128 256

Dropout 3× 128 256

FC 10

and affine transformations in three-dimensional space are
adopted as operations in neurons. By introducing convo-
lution and pooling layers in quatenrionic neural networks,
it would be possible to construct many types of deep
neural networks. Thus, two types of convolutional neural
networks are constructed in this paper, such as simple
convolutional network and Residual network. The perfor-
mances of the proposed network are evaluated through
the classification of color images in CIFAR-10 dataset.
Experimental results show that the proposed network
works better than the conventional network.

More elaborate investigations on the performances of
the proposed network should be conducted for the image
datasets larger than CIFAR-10, in order to show the
effectiveness of the proposed network. Quaternionic neural
networks have a wide variety of configurations such as ac-
cumulating input signal due to non-commutable property,
definitions of gradients, selection of activation functions.
Better performances can be obtained by appropriate
choice for these configurations. It is also important to
find applications for this type of networks, such as mul-
tidimensional signal classification and generation. These
also remain for our future work.
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