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Abstract—Machine vision is required by autonomous heavy
construction equipment to navigate and interact with the en-
vironment. Wheel loaders need the ability to identify different
objects and other equipment to perform the task of automatically
loading and dumping material on dump trucks, which can be
achieved using deep neural networks. Training such networks
from scratch requires the iterative collection of potentially large
amounts of video data, which is challenging at construction sites
because of the complexity of safely operating heavy equipment in
realistic environments. Transfer learning, for which pretrained
neural networks can be retrained for use at construction sites, is
thus attractive, especially if data can be acquired without full-
scale experiments. We investigate the possibility of using scale-
model data for training and validating two different pretrained
networks and use real-world test data to examine their gener-
alization capability. A dataset containing 268 images of a 1:16
scale model of a Volvo A60H dump truck is provided, as well
as 64 test images of a full-size Volvo A25G dump truck. The
code and dataset are publicly availableﬂ The networks, both
pretrained on the MS-COCO dataset, were fine-tuned to the
created dataset, and the results indicate that both networks can
learn the features of the scale-model dump truck (validation mAP
of 0.82 for YOLOV3 and 0.95 for RetinaNet). Both networks can
transfer these learned features to detect objects on a full-size
dump truck with no additional training (test mAP of 0.70 for
YOLOV3 and 0.79 for RetinaNet).

Index Terms—construction equipment, automation, computer
vision, deep learning, machine learning

I. INTRODUCTION

Wheel loaders are multi-purpose vehicles often used to
move materials from the ground into the tipping body of a
dump truck. Dump trucks are used to move large volumes of
materials from one place to another. For autonomous construc-
tion equipment to be able to function in environments where
autonomous vehicles are interacting with non-autonomous
vehicles and people, it is crucial that the autonomous vehicle
is equipped with a reliable visual system [2].

Systems for machine vision have been developed for au-
tonomous driving, where vehicles need to gain information
from road signs, avoid obstacles and ensure that they stay on
the road. Compared to autonomous construction equipment,
the task of autonomous vehicles on, for example, a highway
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is more passive, as the vehicle is not directly interacting with
the environment but rather navigating through it. Autonomous
construction equipment such as wheel loaders not only navi-
gates through an environment but also interacts with it by, for
example, moving dirt around. This type of interaction makes
the automation of construction equipment challenging [3|].

To perform tasks that require interaction, a visual system
that relies on cameras as the main sensor is needed [3]].
One task in which operators rely on the visual system is,
for example, when determining the point of attack on a pile
when filling the bucket with material. The shape of the pile
changes over time as material is removed, which typically
causes the best point of attack to be different even between
two consecutive scoops. Another example is when offloading
material from the bucket to the tipping body of the dump truck.
A visual system is needed to detect how the material inside
the tipping body is positioned to decide where to offload the
next bucket.

Compared to other types of visual sensors, such as radio de-
tection and ranging (RADAR) and light detection and ranging
(LIDAR), cameras have the added benefit of being relatively
cheap sensors, and each frame contains a large amount of
information. Although cameras are less efficient than RADAR
and LIDAR in detecting distances, they are an attractive option
for the automation of construction equipment due to their
lower cost, high resolution and ability to distinguish objects
with different surface properties, e.g., those made possible with
deep neural networks.

The aim of this work is to investigate whether it is possible
to use scale models in the training of a deep neural network
and to use the features learned during training to detect the
wheels, cab and tipping body of a full-size dump truck.
When training such networks using scale models, motivated
by the simplicity of the experiments compared to a full-
scale approach, a key issue is how well the resulting network
generalizes to the real world. In this paper, we examine the
generalization properties of two different deep learning models
by comparing the mean average precision (mAP) of YOLOv3
and RetinaNet in scale-model and full-scale experiments.

When off-loading materials from the bucket of a wheel
loader on to the tipping body of a dump truck, it is vital that
the network understands more about how the dump truck is
composed of its parts rather than seeing it as one entity. It is,
for example, important to understand where the tipping body


https://github.com/phnk/yolov3
https://github.com/phnk/yolov3
https://github.com/phnk/keras-retinanet

and cab are located to make it possible for the machine to
dump materials into only the tipping body and avoid dumping
material over the cab. This property is especially important if
autonomous vehicles are to interact with human-driven load
carriers.

Our results indicate that it is possible to use the features
learned by a network pretrained on images containing scale-
model construction equipment to detect the corresponding
objects on full-size construction equipment. However, we
obtain different average precisions for the wheels, tipping body
and cab and note that transfer learning from the scale-model
environment is more successful for scaled-down objects that
more closely resemble full-size objects.

II. COMPARISON OF EXPERIMENTAL ENVIRONMENTS

The process to automate earth-moving equipment can be
divided in steps [3]], including assisted tele-operation and fully
autonomous operation. In this process, many experiments with
heavy equipment partially and subsequently fully controlled
by machine learning models such as neural networks need
to be carried out to develop potential solutions and compare
them in different environments. Thus, aspects such as the
ability to accurately repeated experiments, to what extent the
results generalize to realistic operational environments, the
cost of the experiments, the safety and the execution time
are highly relevant metrics when performing the experiments.
In Table [, we qualitatively compare four different kinds of
experimental environments from the perspectives of advanced
simulations, basic simulations, reality and scale models when
used to develop object detection features for the automation
of construction equipment. Repeatability determines to what
extent an experiment can be repeated with the same result.
Generalization refers to how well results generalize to realistic
operational conditions. Cost includes the amount of labour
required by the experiment, as well as the cost of the equip-
ment and materials. Safety concerns the risks involved when
performing experiments, and the execution time deals with the
experimental runtime. It should be noted that these metrics are
not independent of each other. For example, if the experiment
is dangerous, then the cost of maintaining constant oversight
of the experiment will rise.

Real-world experiments offer the highest chance for good
generalization, as these experiments are conducted in the target
environment. However, the environment has properties that
change over time, such as lightning and material properties,
which affect the visual appearance and dynamic properties
of objects. Real-world experiments also require constant su-
pervision in case intervention is needed. To address this
problem, different simulated environments are used to learn
and generalize to the real world. Recently, simulations have
shown great progress in tasks, such as computer vision and
robotics tasks, where the aim was to perform simulation-to-real
transfer [4]—[7]] using high-end simulators [8]—[10]. It is easier
to run experiments within a simulator than in the real world. If
a simulator exists for the use case, as it does for autonomous
driving []3], it is quite inexpensive to run experiments; however,

if no such simulator exists, it is quite a costly process to
create one. To our knowledge, no simulator to test autonomous
construction equipment in the correct environment exists,
which would mean that using simulations to train a network in
the described use case would require thes implementation of
such a simulator or try to use an autonomous vehicle simulator,
both of which are very time consuming. Different simulators
have also managed, with varying success, to simulate real-
world properties such as sensor and kinetic properties [11].
Simulators are also different in how advanced they are in
how they deal with realistic graphics, physics and decision
making of agents [[I1]. A simulator that closely models real-
world properties usually has an increased execution time.
Examples of this phenomenon are the difficulties that exist
when modelling bucket and pile interactions [12], [13].

As both simulation and real-world experiments have dif-
ferent strengths and weaknesses, we wanted to see if it was
possible to use scale models to perform experiments and then
generalize what the network learned to the real world. The
task of object detection was used to test the viability of such
a method, as object detection is important in the given use
case. Scale models in this case are scaled-down versions of
different construction equipment. When using scale models,
the safety is high, but the execution time is still long. How
well the network generalizes to a full-size environment is what
this paper investigates.

III. DATASET

To investigate the possibility of using scale models of
construction equipment for the (initial) training of a machine
vision system, data had to be collected and labelled.

A. Data collection

The training data were collected by using a remote-
controlled (RC) wheel loader scale model of comparable scale
equipped with a Foxeer box camera [[14] mounted on the cab.
The camera recorded in 1080 p/30 fps with all the other factory
settings. The same camera was used to collect the test data
with full-size dump trucks.

A 1:16 scale model of a Volvo A60H dump truck was
positioned in different environments, the RC wheel loader was
driven towards the side of the dump truck at different angles,
and the approach was recorded. To add some variance to the
training and validation sets, the data were collected in different
environments and under different lightning conditions. A few
of these conditions can be seen in Fig. [I]

The dataset was created to encapsulate both a few different
light conditions and a few different ground materials. The
lightning conditions were direct sunlight, indirect sunlight and
artificial light. The different ground conditions were snow,
grass, gravel and pavement. The tipping body of the dump
truck and the bucket of the wheel loader were also placed in
both the down position and up position, as seen in Fig.

The test videos, containing a full-size Volvo A25G dump
truck, were collected in a similar way, where a wheel loader
was allowed to approach the dump truck from the side.



TABLE I: Qualitative comparison of environments for development and validation of artificial intelligence-based automation
solutions for construction equipment. Here, we investigate the generalization properties of deep neural networks for machine

vision trained on a scale model.

Method ‘ Repeatability ~ Generalization Cost Safety  Execution time
Advanced simulations HIGH MEDIUM HIGH HIGH MEDIUM
Basic simulations HIGH LOW LOW HIGH SHORT
Scale models MEDIUM ? MEDIUM  HIGH LONG
Reality LOW HIGH HIGH LOW LONG

However, these data did not contain as much variety in the
environments as the videos were collected at the same place
and at similar times of day.

The full-scale dump truck used is model A25G, whereas the
scale-model dump truck is of an older model: A60H. Using
different models allows the object we are trying to classify to
vary by different amounts. In this case, the wheels are similar,
the tipping body has small detail differences but still similar,
and the cab has large differences, as shown in Figs. [1| and

The videos used to create the training and validation set
were collected in [[15]]; however, because of inconsistencies in
which frames were extracted from the videos and how they
were split into training and validation images, the dataset was
recreated for this paper. A few examples of images in the
dataset can be seen in Fig. [I]

B. Dataset

The collected videos were split in such a way that no frames
from one video could be used for both training and validation.
Each video frame was extracted at a rate of one frame every
two seconds to decrease the number of similar-looking frames
in the dataset. After the frames were extracted into training
and validation images, the images were labelled using the
YOLOV3 label structure [[16]]. The test data were extracted
from the test videos and labelled in the same way. The dataset
contained 268 training images, 90 validation images and 64
test images. A few examples of the training images can be
seen in (Il Only the central dump truck was labelled, and we
assume that when we are looking for wheels, cabs and tipping
bodies, we are only looking for dump truck wheels, cabs and
tipping bodies. As neither vehicle in the background is a dump
truck, all detections on any of these vehicles will be treated
as false positives.

From Fig. [T and[I}d, it is important to realize that the bucket
of the wheel loader can block the entire view of, for example,
the back wheels. This realization is important, as the bucket
can block the direct view of the tipping body while offloading
materials from the bucket, which is a concern that needs to be
addressed.

IV. EXPERIMENTAL SET-UP
A. Networks

The networks used in these experiments were YOLOvV3
[17] and RetinaNet [[18]. Two networks were chosen, not to
compare them against each other but rather to make sure that
different networks can learn similar features. We felt that it
was important to see whether or not two completely different

networks could learn and perform well to make sure that the
results are not dependent on a single network.

1) YOLOv3: YOLOvV3 [17] is an object detector that was
first introduced in 2015 [[19] to show that it was possible
to achieve real-time performance while still maintaining high
accuracy. As the name alludes, YOLOV3 is the third version
of YOLO, or You Only Look Once, which has incrementally
improved over the last few years. The implementation of
YOLOV3 used was that from [16], and it was implemented
using PyTorch [20]. When training this implementation on
a dataset other than COCO [21]], it is recommended by the
author to change the internal filters in YOLOv3 to match the
number of classes in the dataset. YOLOV3 uses Darknet-53 as
its backbone network [22].

2) RetinaNet: The second network used was RetinaNet
[18]. The aim of RetinaNet was to present a one-stage detector
that matches the current state-of-the-art performance of two-
stage detectors on the COCO dataset. This network was
introduced after YOLO9000 (v2) [22] in early 2018. The
RetinaNet implementation used can be found at [23] and was
implemented using Keras [24]]. No implementation changes
were made to this network, nor any configuration. RetinaNet
uses ResNet-50 [25] as its backbone network.

B. Training set-up

When training both networks, the same hyperparameters
were used where possible; however, no large changes were
made to the implementation of either training schema, which
includes no changes to the optimizer, learning rate scheduler,
loss function or the size of the input images. The hyperpa-
rameters used during training for both networks were 500
epochs, a batch size of 1, 268 steps and a learning rate of
0.001. As there were 268 training images in the dataset, using
a batch size of 1 and 268 steps ensured that 1 epoch means
that we looked through the entire dataset only once. These are
hyperparameters that can be matched easily between the two
networks, but as mentioned, hyperparameters that would have
required a lot of work were not changed. These differences are
described below. Both networks were pretrained on the COCO
dataset and then fine-tuned on the given dataset.

In this context, fine-tuning means that we let all weights be
updated during the training phase of both networks.

1) YOLOv3: YOLOvV3 was trained on images with a width
of 416 pixels and a height of 416 pixels (the default size). We
used the loss function defined in [19] and SGD as an optimizer
with a short burn-in phase at the start of training, which
ramps up the learning rate over the first 1000 iterations. This



Fig. 1: A few example images from the training set on which
the targets have been drawn. a) The dump truck positioned
indoors with an artificial light source. b) The dump truck
positioned on grass with direct sunlight. ¢) The dump truck
positioned on snow in the shadow. d) The bucket of the wheel
loader blocks the view of two wheels.

Fig. 2: Example of an image from the full-scale test data with
a wheel loader that approaches the dump truck from the side.

procedure was done to help keep the network from diverging.
To help the network generalize, a few augmentation techniques
were utilized: translation, rotation, shear, scaling, reflection,
HSV saturation, HSV intensity and quality degradation. The
images were augmented at a rate of 50%, or in other words,
every other image was augmented in some way.

2) RetinaNet: RetinaNet was trained on images with a
width of 1333 pixels and a height of 800 pixels (the default
size). The implemented RetinaNet used the focal loss
for the classification loss and smooth_l1 for the bounding
box regression loss. RetinaNet used the Adam optimizer
and reduced the learning rate whenever the validation loss
plateaued. The augmentation techniques utilized in the imple-
mentation of RetinaNet were rotation, translation, shearing,
scaling, horizontal flipping and vertical flipping.

Another RetinaNet network was also trained on images
of size 416x416 to see whether it could match YOLOv3’s
performance.

C. Testing set-up

The metrics used to measure how well the object detector
was performing are the average precision (AP), mean average
precision (mAP) and inference time. AP and mAP are used to
measure how well the network performed, and the inference
time is used to determine whether the network can meet
the real-time requirement of 0.033 seconds per frame. The
inference time was calculated by taking the average inference
time of the different networks when processing every frame of
one test video containing the full-size construction equipment.
AP was calculated as described in , where th% Erecision,

p, and the recall, r, were calculated by p = d

o TP+ FP "
r = ————. mAP was calculated as the average over all

the classes of AP values. Both networks used an intersection-
over-union (IoU) threshold of 0.50, confidence threshold of
0.55 and a non-maximum suppression (NMS) threshold of
0.50. Examples of the test images can be seen in Fig. 2]
Both networks’ test image input size was decreased incre-
mentally to see how the two networks perform in regards
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Fig. 3: YOLOv3 image scale vs the mean average precision.
Each marker is a data point. Here, an image scale of 1 denotes
images with the default size of 416x416, and smaller scales

denote scaled-down images resulting in objects with lower
resolution.

to mAP. The implementation of YOLOvV3 required that input
images be a multiple of 32; thus, in every trial, the input image
width and height were both decreased by 32. RetinaNet, how-
ever, did not have such a limitation; the width and height of the
images in RetinaNet were decreased by 10% per trial, which
translates to a decrease in the width of |0.10 % 1333] = 133
and a decrease in the height of 80.

Images larger than the training images were not tested. For
images smaller than the input, we can simulate the fact that
the objects we are trying to detect are farther away, and we
can obtain an understanding of how the networks will perform
on smaller objects.

V. RESULTS

As mentioned in Section the metrics used in this
paper are the inference time, AP and mAP. Section also
discussed that both networks used an IoU threshold of 0.50, a
confidence threshold of 0.55 and an NMS threshold of 0.50. A
few images with bounding boxes from the two networks can
be seen in Fig. [/} Both the training and inference tests were
conducted using an Nvidia 980 Ti [27]). The data collection and
labelling procedures are described in Sections and
respectively. After training, the validation mAP on images with
the trained input size was 0.82 for YOLOv3 and 0.95 for
RetinaNet. RetinaNet, which was trained on 416x416 images,
performed fine on the validation data but had a hard time
transferring the knowledge to the test data. It reached an mAP
of 0.72 on the validation set and 0.38 on the test set.

Table |II| shows the test results for both networks using the
same size of input images as those used during training. As
RetinaNet is trained on larger images, it will take longer to
perform inference compared to YOLOV3. Both networks’ per-
formances are comparable to each other; however, RetinaNet
has a larger difference between the precision and recall. Table
indicates that both YOLOv3 and RetinaNet can transfer the
features of the wheels from a scale-model dump truck to a full-
size dump truck. It also indicates that transferring the features
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Fig. 4: RetinaNet image scale vs the mean average precision.

Each marker is a data point. Here, a scale of 1 denotes images

of the default size of 1333x800, and smaller scales denote

scaled-down images.

for the cab is very difficult for RetinaNet, while transferring
features about the tipping body is easier. YOLOV3 outperforms
RetinaNet in detecting the cab, while RetinaNet outperforms
YOLOV3 in detecting the tipping body. Both networks do,
however, have a harder time finding the cab than any other
part of the dump truck. The low score in the cab class for
RetinaNet may also explain why the RetinaNet recall is so
low. Figs. [5¢| and [6c] reinforce the finding that both networks
can learn the features of the cab in the training images but
have a hard time transferring that knowledge to the full-size
cab regardless of the input image size.

As discussed in Section the width and height of the
input images were decreased incrementally for each data point.
The values of the width and height were then divided by the
original size of the training images to be presented in Figs.
[l @ ] and [6] which means that the image scale cannot be
compared between the two networks, as they do not mean
that the networks have the same input size but rather that the
input has been decreased by the same percentage.

Both Figs. [4] and [3] show that both networks can learn the
features in the training set and use them to understand the test
set, and the difference between the validation mAP and test
mAP is similar for both networks.

From Fig. 3] we can see that YOLOV3 always has decreased
performance when the input is down-scaled. However, from
Fig. 4] the RetinaNet’s test mAP seems to start on a plateau
of an mAP of approximately 0.8 but drops off at a scale of 0.6
of the training size. The RetinaNet validation mAP is always
decreasing, however. The fact that the test mAP for RetinaNet
starts off plateauing indicates that an image decreased to 70%
of the size of the original input image will have minimal
impact on RetinaNet’s performance.

From Figs. [5a] [5b] [6a] and [6b] we can see that both networks
have similar performance on the test data compared to the
validation data for the wheel and tipping body classes. From
Figs. [5c] and [6c] we can see that both networks have a large
discrepancy between the validation AP and test AP for the cab
class. This discrepancy seems to be size independent except



TABLE II: Test results of the two networks for the default image sizes.

Network Size Precision  Recall ~Wheel AP Cab AP  Tipping body AP mAP  Inference time
YOLOV3 416x416 0.74 0.77 0.83 0.59 0.67 0.70 0.029
RetinaNet | 1333x800 0.80 0.49 0.89 0.29 0.93 0.79 0.098
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Fig. 6: Individual class AP for each class using RetinaNet. The validation vs the test AP.

for very small images where the performance is very low.
YOLOV3 does, however, perform better on the cab class for
the test images and decreases the performance on the cab class
similarly to the other classes in the dataset. RetinaNet does not
seem to be able to understand the features of the full-size cab
regardless of the input size.

As discussed in Section [[V-C| if we consider reduced
images as simulating smaller objects in the images, we can
see that the networks will perform much worse on smaller
images, as shown in Figs. [3] and @] For example, if all the
objects in the image are 40% smaller, then RetinaNet will
lose approximately 50% accuracy.

VI. DISCUSSION

Overall, both networks learned the features in the training
set, performed well on the validation set and could generalize
the features learned during training to the test set, which
can be seen in Figs. [3] and ] There was no class that was
impossible for the networks to learn on the scale-model dump
truck during training. From Fig. [5] we can see that YOLOV3

has a similar mAP for the wheel and tipping body class during
both validation and testing, while it performs much worse on
detecting the cab class. Figs. [] and [6] show that RetinaNet
produces similar results, as it performs quite well on the wheel
and tipping body classes but has a much lower performance
on the cab class.

From the inference examples in Fig. [/, we can see that
neither network is perfect. All 4 sub-figures contain false
positives of some sort, while Figs. [7p and [Td both contain
false negatives. When the wheel loader is far away from the
dump truck, all the detected objects are very small. As seen
from Figs. [3] and [3] both networks have a lower performance
when trying to find small objects.

Moreover, to be able to reach level (5) of automating
earth-moving equipment as described in Section |} it is very
important to understand what type of representation a planning
system needs from the perception system. Many papers use
world models [28], [29], [30] to describe the internal repre-
sentation of all systems, which can help the planning system
perform. Systems other than the perception system on a wheel
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Fig. 7: A few inference examples from both YOLOv3 and
RetinaNet. a) Inference example of RetinaNet where the
network has difficulties detecting the cab class. b) Inference
example of RetinaNet where all the objects were correctly
detected and classified. ¢) Inference example of YOLOv3
where all dump truck objects were correctly detected and
classified. One wheel of a distant vehicle in the background
is also detected. d) Inference example of YOLOvV3 from very
far away. YOLOv3 has a hard time with smaller objects that
are far away. A false negative is in the cab class. There are
two false positives: one in the tipping body class and one in
the wheel class.

loader could be all other perception systems on all the other
vehicles, a mapping system or other sensor information. These
systems can all be fused to give the wheel loader a better
understanding of its surroundings and help the planning system
perform well.

For example, when the wheel loader is far away but has the
bucket filled with material, it is still critical that the networks
can identify the dump truck that is ready for the material and
ignore other vehicles that exist in the background. To address
this problem, we could take inspiration from the human visual
system where humans have good resolution on the focal point,
which allows for more resources to be used to process what
is near the focal point.

Another example might be that once the wheel loader is
close to the correct dump truck, it is vital that the networks
can correctly identify both the cab and the tipping body, as
dumping materials over the cab can result in serious bodily
harm or death to the driver of the dump truck. To combat this
problem, the system could use other high-level information
about dump trucks, such as the two back wheels being always
above the tipping body to help the system reassure itself that
it is in fact performing a safe unloading of materials into the
tipping body.

As both networks perform well on the cab during validation
but poorly during testing, as seen in Figs. [5cJand[6d] it leads us
to believe that we do not have enough training and validation
data, the training and validation data do not contain enough
variance or that the differences in the cab between the scale-
model as seen in Figs. [T] and [2] are too large. We assume
that these hypotheses are true, but we cannot confirm them as
there exists no exact scale-model copy of the A25G dump
truck. Another reason why the wheels are easy to detect
while the cab is difficult to detect might be because the
wheels are very distinct and look similar regardless of the
lighting conditions or approach angle, while the look of the
cab changes considerably when the lighting conditions and
approach angle change. The cab is also quite different between
the scale-model and the full-size dump truck, where the plastic
of the scale-model dump truck does not reflect light in the
same way as the windows of the full-size dump truck.

From Figs. [6a] and we can see that RetinaNet performs
better on the test data than the validation data for some image
scales. As the tipping body can be in an up position, as shown
in Fig. [T, the validation data add more complexity to both
the tipping body and the wheels. The wheel class becomes
harder to recognize because it is now possible to see the wheels
behind the tipping body.

VII. CONCLUSION AND FUTURE WORK

As mentioned in Sections [I] and working with large
construction equipment is an expensive and time-consuming
process. Simulations have their own drawbacks, and it can be
difficult to properly model camera or kinetic processes. In this
paper, we tried to determine whether using scale models for
training and testing on real construction equipment could fill
this gap. Two different pretrained object detection networks,



YOLOVvV3 [17] and RetinaNet [18]], were trained and evaluated
on a labelled dataset including images of both scale-model and
full-size construction equipment. The training and validation
sets contained images of scale-model construction equipment,
and the test set contained images of full-size construction
equipment. The results indicate that it is possible to use the
features learned by the networks during training and transfer
them to test data with no additional training. The results also
indicate that objects that are more similar between the scale-
model and full-size dump truck are easier than objects that are
very different. The generalization score for the scale models as
described in Table [ would thus be medium. YOLOv3 reached
a validation mAP of 0.82 and a test mAP of 0.70, while
RetinaNet reached a validation mAP of 0.95 and a test mAP
of 0.79.

The results obtained in this work pave the way for continued
work on studying the use of scale models for the development
of Al solutions for the autonomous operation of construction
equipment. Our goal is to investigate whether and how scale
models can be used for the development of a navigation system
that uses camera-based machine vision to autonomously navi-
gate the wheel loader towards the dump truck tipping body and
correctly position it for offloading materials in construction
environments.

Future work should investigate kinetic property transfer, as
the scale models weigh much less than the real construction
equipment, which will help contribute to the larger goal of this

paper.
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