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Abstract—This paper aims to propose an innovative method
to obtain the traversability maps of unstructured environments
and the best path between two points on the basis of the
specific characteristics of the robots that has to perform a
given mission. Taken in consideration a robot team that have
to traverse an assigned terrain, the peculiar capabilities of each
robot are underlined in a dynamic simulation environment and
then embedded into a neural network finally used as a robot
model for the generation of the traversability maps. On the basis
of the obtained results, the best robot within the team (wheeled,
legged, hybrid) can be selected. The proposed strategy, together
with the obtained simulation results, are presented, carefully
analyzed and then compared.

Index Terms—path planning, traversability map, neural net-
work, dynamical simulation.

I. INTRODUCTION

Path planning in Robotics is an interesting topic in all
the tasks in which the achievement of different points in
an area is performed using roving robots. A strategy to
select the best among all the possible paths is important to
guarantee a safe behavior for the mobile robot performing
the assigned task. One of the applications of the described
method regards the topic of the positioning of sensors for
landslides monitoring [1] in which the prediction of optimal
routes in highly unstructured terrains plays a fundamental
role. Some novel approaches involve motor-skill learning and
bio-inspired methods to make the robots able to improve
their climbing capabilities in front of novel terrain conditions
[2]. Other approaches consider multiple robots available with
different characteristics and the optimal configuration can be
selected depending on the task. This concept can be extended
considering a target area where different robotic structures
are deployed and each one can accomplish part of the whole
task depending on its particular capabilities. Moreover, when
needed, some of them can self-assemble to create a new robot
to solve an otherwise impossible task. This mechanism has
biological fundamentals as described by Dorigo and colleagues
[3] that introduced the biological swarm intelligence dealing
with self-organizing systems in which a complex behavior
can be possible only though the cooperation among multiple
members of the team driven by a collective intelligence, as
happens in ant colonies, in bird swarms or in schools of fish.

Dynamic simulators and neural networks can be used to-
gether to predict which areas of an environment are traversable
using mobile ground robots, in order to plan feasible paths. An
approach based on Convolutional Neural Network was adopted
in [4] to predict whether a robot will be able to traverse a
patch taking in input an image representing the height map of
a terrain patch. However, this approach is not feasible when
longer paths are to be planned. Images locally acquired by
the ground robot cannot be useful in this case. Instead, if
the images, covering a suitably large area, are acquired from
drones, it is asked to derive traversability maps useful for
planning the whole path of the robot from a starting to a
target position, which is impossible to be derived with on
board visual sensors, with the additional drawback to be stuck
in local minima. In literature most of the works concerning
the topic of optimal route planning are dealt with an on-line
approach, (i.e. taking into consideration real sensors and real
robots). Mobile robots, using GPS and sensors, can move in
an area of which they know the characteristics a priori or
in an area that needs to be explored for the first time. The
traversability information can be achieved in real time using
a path detection method that mixes together 3D mapping and
visual classification trying to learn, in real time, the actual road
characteristics [5]. In this case the robot does not know the
geometry of the terrain, but the information are acquired in run
time. The terrain analysis can be developed also using sensors
through which it is possible to separate traversable regions
for autonomous driving using cameras and LIDARs. In this
case two maps can be distinguished: one is the recognition
map and the other is the terrain modelling map; these have to
be built independently and then fused [7]. Using a computer
vision unit it is possible to extract the colour, geometric, and
texture parameters of a local area of the environment. A single
image is than converted into a binary image from which it is
possible to individuate the smoothness of the area representing
the capability of the robot to travel that area [8].

The innovative contribution of this paper is related to the
possibility to obtain the traversability maps and the optimal
path between two or more points with an a priori analysis
of the available terrain map. The idea is to limit the em-
ployment of real robots that are instead simulated in a dy-
namic environment to acquire information about their moving
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capabilities. The acquired data are finally embedded into a
neural network that memorizes and interpolates them. This
strategy allows us to obtain specific models for each robot
taken into account. These models are built on the basis of
the real terrain morphology used as the input information and
then provide as output the traversability of the selected area.
In [9], to face with the traversability task, all places of the
environment are classified into occupied by an obstacle, free,
or not mapped, using an Occupancy-Elevation Grid where each
cell stores a probabilistic estimation of occupancy and other
terrain characteristics. In our work instead, to ensure that the
optimal path matches the physicality of the robot, this latter
is left to explore the acquired environment and some of its
characteristics are detected, such as the success or failure in
reaching a given point. Therefore a black box model of the
robot can be learned to identify the areas in which it fails
to go and those in which it moves fluently and, from these
information, the optimal paths. This strategy allows to extract
a robot traversability model that can be extended to other
terrains, exploiting the generalization capabilities of neural
structures. The traversability map can so be considered as an
affordance map, i.e. an implicit model that can represent the
robot capabilities in front of different types of terrain patches.
The topic related to the choice of the best path among all
the possible paths is really interesting in view to create an
autonomous navigation system. The common path planning
algorithms, by using the global information of the terrain,
can find the optimal paths but it is really difficult to build
up the global distribution of the terrain information. In other
words, it is very complex to receive the terrain distribution in
advance in some special applications [10]. Another method for
the estimation of the best path is the usage of algorithms for
the generation of points-cloud thanks to which it is possible
to obtain terrain information such as roughness, slopes and
breakline [11]. In this work the selection of the best paths
is realized thanks to the exploitation of a model that will
represent the robot’s capabilities in dealing with a given type
of terrain. Moreover the paper aims at experimentally show
how simple and traditional neural network structures, like
Multilayer Perceptron, are able to solve complex environment
traversability problems still showing good performance in
front of simple and shallow architectures. So the present
work aims to answer the following question: given one or
more terrains and a series robots, which paths within the
environment can them better cope with in terms of their current
capabilities or improving them using coupling mechanisms
between robots? This paper is organized as follow: section
II shows the neural network approach applied to the robotic
exploration and the generation of the robotic models different
for each platform. Section III deals with the topic related to
the mobile robots used and the analysis of the models in terms
of predictive reliability. In section IV the algorithm through
which is possible to obtain the best path in a map is presented
and different test are shown. Finally conclusions are reported
in Section VI.

II. A NEURAL NETWORK APPROACH FOR TERRESTRIAL
INSPECTION

In order to obtain the neural model of the robot’s ca-
pabilities, this latter is placed in an unknown environment,
divided into tiles of fixed dimensions, that it will have to
explore. The selected robot is randomly placed in different
areas from which some morphological characteristics, that will
be analyzed in the following paragraph, are recorded during its
movements. Also the information related to the success, coded
as bit 0, and failure, coded as bit 1, in passing from a tile
to another along one of the possible directions are recorded.
These information are given as input and target respectively
to a neural network that is trained to classify as traversable or
not the passage between two adjacent tiles. After completing
the learning phase, a first task which was assigned to the
network, to test its generalization capabilities, was to perform a
testing phase using the same map as in the learning campaign,
but requesting the network to predict traversability between
tiles arranged in the diagonal directions: north-west, north-
east, south-west and south-east. The task was also useful for
the best arranging of the inputs to the networks, as it will be
detailed in the following. The successful results obtained in
this phase gave the possibility to generalize the application
of the neural structure also to different terrains. A further
advantage of using a neural network consists in training the
network with data obtained from a dynamic model of the robot
and then performing a fine tuning using information drawn
from the real behavior of the robot. Typically these real data
are more expensive and then used only to refine the already
trained model.

To address the difference in scales among features, the
so called z-score normalization is employed for each feature
descriptor across all the samples. Namely the mean from each
value is subtracted and divided by the standard deviation of
that particular descriptor. In doing so, the original data were
turned into a standard scale for each feature [12]. It was
verified that this dataset normalization increases the neural
network performance.

In Fig. 1 a flow chart representing the complete algorithm
is shown. It starts with the selection of a representative map
and the extraction of its morphological characteristics. The
successive step consists in letting a set of simulated robots
move through the previously selected map and using the data
recorded by the dynamic simulator, for each robot, to train a
neural models (NN) specific for each robot, embedding their
motion capabilities. The next step consists in the selection of
a target map, i.e., the map where each neural network, repre-
senting a robot model, will be run to provide the traversability
among specific points in the target map. This will provide a
dataset for generating eight traversability maps used as input of
an optimal path algorithm that will provide an optimal route
among those specific point set, solving the assigned motion
task.



Fig. 1. Flow chart of the implemented algorithm.

A. Feature extraction from the terrain

In order to obtain the inputs of the neural network we
consider the height map of the terrain reported in Fig. 2(a) ob-
tained using drones [6]. The image is in the GeoTIFF standard
which allows the embedding of georeferencing information. A
sampled version of the terrain was adopted (Fig. 2(b)) so that
it is possible to take into account the geometry of a set of
tiles and to consider the following characteristics: the average
height difference, the average slope, the average roughness
and the maximum height between two consecutive tiles [11].
The choice to use the average values for each input is adopted
to reduce the number of inputs in the Neural Network. The
modularity of the algorithm gives the possibility to set the tile
physical dimensions based on the physical size of the robot.
In our case each tile is equivalent to 0.65 meters.

(a) (b)

Fig. 2. Terrain used as testbed: (a) Aerial image and (b) 3D reconstruction.

The height differences are calculated considering the differ-
ences between the quotes of a tile, given by the mean of the
quote of each corner, and the quotes of its near tiles. In this
way eight maps of different heights, one for each direction, are
generated. The slope is of a tile, with respect to the tangential
movement of the robot, was also used. Different methods can
be adopted to calculate the roughness, for example in [11]
the standard deviation method is taken into account, fixing a
threshold. The least-squares plane fitting [13] is the method
used in our paper: this gives the possibility to obtain a plane
starting from a point cloud that represents the map quotes.
The maximum quote in the set of roughness is selected as the
maximum height that the robot has to face with while moving.

III. METHODS

In this section the software tools and the robotic structures
used to test the whole algorithm are described. Moreover
the results of the developed neural models are analyzed and
compared presenting their outcome in terms of traversability
maps.

A. Framework

The tools employed to develop the algorithm are Matlab
and Vrep. The control system used to drive the robots is im-
plemented in Matlab. Here, the environmental characteristics
extracted from a terrain are used as inputs for training a neural
model. The outputs of this latter are useful to generate the
traversability maps used in the path planning algorithm. Vrep
is a dynamic simulation environment [14] in which the robots
and terrains are imported to acquire the data needed to obtain
the traversability maps .

B. The robotic structures

To evaluate the proposed method, different robotic structures
are considered: wheeled, legged and hybrids.

The Robotnik Summit-XL (Fig. 3(a)) is a four wheeled
platform with skid-steering kinematics. Each wheel integrates
a brushless motor with gearbox and encoder. It has two
possible kinematic configurations and the omnidirectional
configuration mounts mecanum wheels on an independent
suspension system. The mecanum wheels can be easily re-
placed by conventional wheels, thus allowing easy switch from
the indoor omnidirectional configuration to the versatile skid-
steering configuration, both indoors and outdoors [15].

The 5BSPL robot (Fig. 3(b)) is a quadruped-like robot
adopting a particular kinematic structure called “5-bar sym-
metric planar linkage” that is composed by a set of 5 links
connected in a closed chain by 5 revolute joints, of which two
are actuated by brushless DC electric motors (BLDC) and two
are passive, made up by ball bearings. This robot is inspired
by the Minitaur quadruped configuration [16].

The Asguard robot (Fig. 3(c)) is another hybrid prototype
with a very interesting structure composed by four rotating
wheels modeled as a five-pointed star. Each point of the star
serves as a leg during locomotion and is controlled using bio-
inspired central pattern generators (CPGs). This robot is highly



agile and fast on flat ground and, at the same time, should be
able to deal with very rough terrains, e.g. rubble, gravel, and
even stairs [17].

All the considered robots have comparable dimensions
(about 60 cm) and the same moving speed (about 10 cen-
timeters/second).

To improve the robot locomotion capabilities, following
a bio-inspired strategy, it is possible to reproduce coupling
mechanisms. Just think of snails having a reproductive organ
or octopuses that to attract females perform a courtship ritual
creating a mechanical connection with the partners [18]. To
test the improvements that a coupling mechanism can give
to the robotic performances two Asgard robots (Fig. 3(d)),
a male and a female exemplaries, are connected through a
latching mechanism formed by a harpoon installed in the male
robot that remains locked inside a slot in the female one.
Details about the performance of the assembling mechanism
are outside the focus of the paper. Here an already assembled
structure will be analyzed. What is expected is that the coupled
structure is more stable and capable to overcome higher
obstacles than the single system.

(a) (b)

(c) (d)

Fig. 3. Different robotic structures taken into consideration for the simulation:
(a) Robotnik Summit-XL, (b) 5BSPL, (c) Asguard, (d) Cooperative Asguard.

C. Neural model of the robot locomotion skills

In this paragraph two learning strategies are evaluated for
the elaboration of the traversability maps. The two structures
are the well-known Multilayer Perceptron (MLP) and the
Decision Tree Learning (DTL) that are used to correctly
classify if the transition between tiles is feasible or not. In
fact, it will be experimentally shown how using just a shallow
network architecture and a decision tree structure, instead of
the more recent, high performing but more complex deep
networks, good results can be obtained, which open the way
to very fast learning procedures and still good generalization
capabilities. For the goal to be pursued the dataset, composed

of about 2000 patterns, obtained from the robot simulation, is
divided in learning (80%) and test data (20%).

Decision tree learning is one of the predictive modeling ap-
proaches used in statistics, data mining and machine learning
whose goal is to build a decision tree that is consistent with a
given data set and this typically means to chose the smallest
decision trees [19]. It uses a decision tree (as a predictive
model) to go from observations about an item (represented
in the branches) to conclusions about the item’s target value
(represented in the tree leaves). The Multilayer Perceptron is
the well known neural network model composed by an input
layer that in our case is composed by four inputs (the average
height difference, the average slope, the average roughness
and the maximum height between two consecutive tiles), one
hidden layer and an output layer. The purpose is to map the
set of inputs data to a set of target data using a supervised
learning technique called backpropagation.

The convergence times of both algorithms are in the order
of seconds on a desktop PC with the following characteristics:
quad-core processor 1.4 GHz, 4GB Ram, without using any
GPU acceleration on board. This can give an idea of the
possible speed up, using dedicated hardware.

The parameters used during the test to set the two structures
are reported in tables I for the MLP and in II for the TREE.

TABLE I
MULTILAYER PERCEPTRON SETTINGS.

MLP
Attivation function (for hidden
and output neuron layers)

Sigmoid tangent

Curve fitting algorithm Levenberg-Marquardt
Performance function Mean Squared Error
Hidden neurons Range [1 100]

TABLE II
DECISION TREE LEARNING SETTINGS.

TREE
CrossVal on
Max number of splits Range [1 100]

In order to evaluate the algorithm’s ability to predict the
correct traversability information the accuracy index is used.
Considering the MLP case, in (Fig. 4(a)) the accuracy values
when the number of hidden neurons changes from 1 to 100
are reported. To have a reliable statistical value, for each
hidden neuron, the accuracy value is given by the average
of one hundred learned models, each time with a different
randomization between learning and test patterns. Considering
the DTL method the accuracy is related to the maximum
number of splits of the tree, using the average values as seen
in the MLP case (Fig. 4(b)). Overall the accuracy values for
each structure are really satisfactory being just below the 90
percentage; in particular the best accuracy values are obtained
using the MLP, even if the difference with the DTL method is
not so marked. This data analysis certifies suitability for the



subsequent steps in which are generated the traversability maps
because it proves that the network is capable of adequately
predicting its outputs.

(a)

(b)

Fig. 4. Accuracy results obtained with the MLP (a) and DTL methods (b).

In tables III and IV the data related to the best accuracy (the
degree to which the result of a measurement, calculation, or
specification conforms to the correct value or a standard, so the
closeness of the measurements to a specific value), sensitivity
(the proportion of actual positives that are correctly identified
as such), specificity (the proportion of actual negatives that
are correctly identified as such) and the relative standard de-
viations for each robot adopting the two previously discussed
methods are reported for the best network configuration.

TABLE III
MLP STATISTICAL PERFORMANCE

Multilayer Perceptron

Accuracy Sensitivity Specificity Hidden
neurons

Robotnik 87.93 ±2.11% 86.34±2.84% 83.09±3.03% 10
5BSPL 84.97±2.51% 91.45±4.10% 78±3.57% 69
Asguard 84.90±1.99% 94.35±2.19% 78.92±2.79% 43
Coop.
Asguard 90.89±2.01% 95.11±1.77% 84.55±2.96% 75

TABLE IV
DLT STATISTICAL PERFORMANCE

Decision Tree Learning

Accuracy Sensitivity Specificity Max
splits

Robotnik 85.39±2.07% 89.52±3.11% 82.18±3.55% 17
5BSPL 80.30±2.19% 84.14±3.21% 76.30±3.55% 72
Asguard 86.77±1.73% 91.44±1.97% 79.73±3.34% 36
Coop.
Asguard 86.70±1.79% 90.81±2.03% 80.32±3.55% 58

D. Traversability maps

The outcome of the learned models are the traversability
maps with respect to the four cardinal directions (north,
east, south and west) and the four diagonals among them.
Analyzing the accuracy performance related to the previously
seen methods, it was decided to use the MLP architecture due
to the better accuracy values obtained compared with the other
one.

The next step consisted in further processing the neural
network outputs, forming the traversability map’s elements.
These were scaled to serve as inputs for an optimal path
algorithm. The traversability matrix structure was built as
follows: each element represents a physical point in the map
and its value is related to the possibility for the robot to reach
that point coming from the opposite direction. In particular
the maximum value of the tiles, related to an unreachable
position, is fixed to 0.1, whereas the minimum value is set
to 105. For example, considering the north matrix and an
element of value equal to 0.1(105), this means that specific
point the cell is referring to is reachable from the south cell
adjacent to the selected one. This structure is repeated for each
of the eight maps all values. Using this strategy it is possible,
applying appropriate algorithms, to select the best path from
a point to another. The traversability map values are obtained
from the average of one hundred iterations of the algorithm,
each time changing the dataset learning and test splitting. As
example, in Fig. 5, the eight traversability maps related to
the Asguard robot are shown. The colors are related to the
numeric value assigned to tiles; the areas in which the color
is yellow are those in which the robot can not pass, the others
tending to the blue are those in which it can travel in a safer
way. The comparison with Fig. 2 reveals that the traversability
maps represent the mirror of the robot capabilities in reaching



specific points in the real map.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Traversability maps obtained for the Asguard robot in the eight
direction of motions: (a) North, (b) South, (c) East, (d) West, (e) North-East,
(f) North-West, (g) South-East, (h) South-West.

In Fig. 6 the results of the north traversability maps for
the four previously mentioned robots are reported. Comparing,
for example, the maps related to Cooperative Asguard with
the others it is possible to see that this robot can cover a
higher portion of the map to prove the fact that, thanks to the
coupled configuration the whole structure assumes a higher
capability to overcome the obstacles. Therefore this robotic
structure manages to find pass through gaps along the path
which are more difficult for other robots to be faced with. The
prize to be paid is the need of a more complex and expensive
solution that has to be adopted if simpler structures are not
adequate to fulfill the assigned task.

(a) (b)

(c) (d)

Fig. 6. Traversability maps obtained for the four robots considering only
the north direction: (a) Robotnik, (b) 5BSPL, (c) Asguard, (d) Cooperative
Asguard.

IV. OPTIMAL PATH ESTIMATION

The shortest path problem can be now taken into account
using as input the traversability maps previously generated. We
adopted the Dijkstra’s algorithm that is a shortest path solver
also used in the optimization of routes taken by robots [20]
and Automatic Guided Vehicle (AGV) [21] According to the
literature, it can be considered the most classical and mature
algorithm among all the others used for the optimization of
paths in graphs [22]. From the height map of the environment
the oriented and weighted graph is obtained in which each
node is connected to its neighborhoods so that it is possible
to compute the shortest path from a source node to the target
one [23]. The weights for the eight directions are given by
the relative traversability maps: high (low) weights along
a given direction reflect a less (more) convenient path for
traversability.

In Fig. 7 three optimal paths obtained using the Asguard’s
traversability maps are shown. From this view it is possible
to see that the most relevant obstacles, like the central fenced
structure and the cliff on the left, are areas avoided as results
from the path calculation.

In order to test the different robotic models the same task, in
terms of initial and final positions, has been assigned and the
different paths followed by each robot are depicted in Fig. 8.
As expected each robot follows its own route depending on
its traversability capabilities; the better the robot ability to find
passages along the way, the less tortuous the path taken. Table
V reports the number of tiles that each robot has to cross to
arrive to the end of the assigned path. It is possible to notice
that the mechanical solution to couple two Asguard robots
instead of using a single one is a winning strategy in terms of
traversability capacity for the assigned task.



Fig. 7. Examples of optimal paths, for the Asguard robot, changing the start
and target position.

(a) (b)

(c) (d)

Fig. 8. Optimal paths performed by the robots with the same start and target
position: (a) Robotnik, (b) 5BSPL, (c) Asguard, (d) Cooperative Asguard.

TABLE V
NUMBER OF TILES COVERED BY EACH ROBOTS FOR THE SIMULATION IN

FIG. 8.

Crossed tiles
Robotnik 91
5BSPL 82
Asguard 99
Coop. Asguard 52

In Fig. 9 the results obtained in a typical run of the dynamic
simulation environment when all robots are requested to reach
a given target, are depicted. During the simulation, when
the Cooperative Asguard reaches the target position (green
sphere), the other three robots are still moving to complete
their routes.

(a)

(b)

Fig. 9. Trajectories followed by the considered robots to reach the target
(green sphere) starting from the same initial point (red cuboid): (a) Robotnik
and Cooperative Asguard, (b) 5BSPL and Asguard. When the Cooperative
Asguard reaches the target, the other robots are still far away from it.

V. CONCLUSION

The need to have an algorithm capable, in a reasonable short
time, to foresee the best path that a particular type of robot
can follow in a given terrain is certainly an ambitious goal,
in particular when performing field tests is both complex and
economically expensive. One of the most interesting topics
in which such a method finds application is the landslide
monitoring in which it is necessary to know in advance the
best paths that a robot can tackle to prevent damages during
the path or to avoid to trigger the subsidence of the ground
itself. In this work we investigated the possibility to use a
neural network to learn the capabilities in moving on complex
terrain morphologies. A set of high level features have been
collected from height maps and used to learn neural structures
able to classify if a specific area of the map is traversable for
a selected robot. The learning patterns were obtained using a
dynamic simulation environment where the robot capabilities
can be easily tested and evaluated. Two different solutions
based on a multilayer perceptron and a binary tree structure
were compared showing their statistical performances in terms
of classification accuracy. The MLP gave, from the beginning,
interesting generalization capabilities, since after learning to
model traversability in the cardinal directions of the map,
provided the same performance when tested in the diagonal
directions. The traversability maps, that can be generated
adopting these structures, can be used to evaluate the optimal
path between a start and target position. Finally, depending on
the assigned task, the best performing robotic structure can be
selected to be used, trying to emphasize the peculiarities of



each structure in handling the different terrain configurations.
In particular, the reported simulation results show that the
capabilities of a single robot can be improved using assembly
mechanisms, inspired by the animal world, through which a
new more versatile structure can be obtained.
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