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Abstract—We propose a neural network model based on
quantum information processing with quaternionic represen-
tation and operations, called Quaternionic Qubit Neural Net-
work. The state of a neuron is represented by a point on the
Bloch sphere with incorporating quaternionic representation.
The operations for this neuron also follow the operations
in quaternions. The proposed neural networks are evaluated
through numerical experiments for predicting chaotic time
series produced by a Lorentz system. They have better per-
formances in predicting long-term series, as compared to
conventional (real-valued) neural networks.

Index Terms—qubit, quaternion, Bloch sphere, Lorentz sys-
tem

I. Introduction

Much attention has been paid recently to the quantum
computational intelligence (QCI), which is a promising
method for improving the information processing ca-
pabilities in conventional artificial intelligence methods
[1]. Among various QCI methods being proposed and
available, some researchers have developed the quantum-
neuro computing in which the algorithm of quantum
computation is used to improve the efficiency of neural
computing system [2], [3]. The quantum state and the
operator of quantum computation are both important to
realize parallelisms and plasticity respectively in informa-
tion processing systems. Complex valued representation
of these quantum concepts allow neural computation
system to advance in learning abilities and to enlarge
its possibility of practical applications. We have pro-
posed Qubit(quatntum bit) neural network models and
investigated their properties and performances, such as
the effects of quantum superposition and probabilistic
interpretation in constructing quantum computing to
neural networks [4]–[6].

This study was financially supported by Japan Society for the
Promotion of Science (Grant-in-Aids for Scientific Research (C)
19K12141).

Many qubit neural network models, including our mod-
els, adopt the complex numbers to represent neuronal
states and also use the operators in complex numbers
for operating these states. This is useful for achieving
efficient manipulation for the phase angle in neuron’s
state, but the degree of freedom in neuron’s state is limited
by using one phase angle. The pure state of the qubit
system is represented as a point in Bloch sphere [7], i.e.,
two phase angles, resulting in more degree of freedoms
in neuron’s state. The state can be manipulated by in-
corpolating unitary transformations using Pauli matrices,
and these operations are equivalent to the operations
in quaternions, which is one of hypercomplex number
systems [8], [9]. It is expected to extend the neuronal
states by using Bloch representation and to incorporate
operators by using quaternions, in order to attain rich
representation ability for neuron’s state and more efficient
ability for manipulating neuron’s state. Though several
types of qubit-based neural network models have been
proposed, and there are also a lot of neural networks
based on quaternions, there are few neural network models
incorpolating both of quantum information processing and
quaternionic operators.

In this paper, we propose a neural network model based
on quantum information processing based on quaternionic
represetation and operations. Called Quaternionic Qubit
Neural Network (QQNN), this network accepts three-
dimensional signals using pure imaginary quaternions.
Operations for neuronal signals in qubits, i.e. single-
bit rotation gate and two-bit controlled NOT (CNOT)
gates, are described by operations in quaternions. QQNN
in this paper is a type of multilayer perceptron neural
networks with back-propagation algorithm as its learning
scheme, thus a QQNN equivalent of back-propagation
algorithm has been formulated. The proposed QQNN is
evaluated through numerical experiments as compared
with conventional (real-valued) neural network. The task
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for these network is to conduct long-term prediction for
time series of a Lorentz system (three-dimensional chaotic
system) [10]. The rest of the paper is organized as follows.
Section 2 gives the basic definitions of quaternion number
system. The proposed neuron model and its network,
followed by quaternionic representation and operations
for qubit and quantum gates, are described in section
3. Experimental setups and results are demonstrated in
section 4. Finally this paper concludes with section 5.

II. Definition of Quaternion
Quaternions form a class of hypercomplex numbers that

consist of a real number and three imaginary numbers–
i, j, and k. Formally, a quaternion number is defined as
a vector x in a 4-dimensional vector space,

x = x(e) + x(i)i+ x(j)j + x(k)k (1)

where x(e), x(i), x(j), and x(k) are real numbers. H, the
division ring of quaternions, thus constitutes the four-
dimensional vector space over the real numbers with the
bases 1, i, j, and k. Eq.(1) can also be written using 4-
tuple or 2-tuple notation as

x = (x(e), x(i), x(j), x(k)) = (x(e), x⃗), (2)

where x⃗ = {x(i), x(j), x(k)}. In this representation, x(e) is
the scalar part of x, and x⃗ forms the vector part. Pure
imaginary quaternion corresponds to a pure imaginary
number in complex numbers, a quternion x without the
scalar part (x(e) = 0). The quaternion conjugate is defined
as

x∗ = (x(e),−x⃗) = x(e) − x(i)i− x(j)j − x(k)k. (3)

Quaternion bases satisfy the following identities,

i2 = j2 = k2 = ijk = −1, (4)
ij = −ji = k, jk = −kj = i, ki = −ik = j, (5)

which are known as the Hamilton rule. From these rules,
it follows immediately that multiplication of quaternions
is not commutative.

Now, we define the operations between quaternions
p = (p(e), p⃗) = (p(e), p(i), p(j), p(k)) and q = (q(e), q⃗) =
(q(e), q(i), q(j), q(k)). The addition and subtraction of
quaternions are defined in the same manner as they are
for complex-valued numbers or vectors, that is,

p± q=(p(e) ± q(e), p⃗± q⃗) (6)
=(p(e)±q(e), p(i)±q(i), p(j)±q(j), p(k)±q(k)). (7)

The product of p and q is determined by Eq. (5) as

pq = (p(e)q(e) − p⃗ · q⃗, p(e)q⃗ + q(e)p⃗+ p⃗× q⃗), (8)

where p⃗ · q⃗ and p⃗× q⃗ denote the dot and cross products,
respectively, between three-dimensional vectors p⃗ and q⃗.
The conjugate of the product is given as

(pq)∗ = q∗p∗. (9)

Fig. 1. The quantum state on Bloch sphere (from Fig.1 in [7])

The quaternion norm of x, denoted by |x|, is defined
as

|x| =
√
xx∗ =

√
x(e)2 + x(i)2 + x(j)2 + x(k)2. (10)

III. Quaternionic Qubit Neural Network

A. Qubit(Quantum bit) and its representation by quater-
nion

In quantum computing, the concept of ‘qubit’ has been
introduced as the counterpart of the classical concept
of ‘bit’ in conventional computers. The two qubit states
labeled as |0⟩ and |1⟩ correspond to the classical bits 0 and
1 respectively. The arbitrary qubit state |ϕ⟩ maintains a
coherent superposition of states |0⟩ and |1⟩:

|ϕ⟩ = a |0⟩+ b |1⟩ , (11)

where a and b are complex numbers called probability
amplitudes. This means, that the qubit state |ϕ⟩ collapses
into either |0⟩ state with probability |a|2, or |1⟩ state with
probability |b|2 with satisfying |a|2 + |b|2 = 1.

The qubit state |ϕ⟩ is described as

|ϕ⟩ = cos θ |0⟩+ eiψ sin θ |1⟩ , (12)

which is called Bloch-sphere representation. In this rep-
resentation, the state of the quantum state can be rep-
resented as a point on Bloch sphere (Fig. 1) [7]. The
complex-valued probability amplitudes a and b in Eq.(11)
are defined as(

a
b

)
=

(
e−iφ/2 cos θ/2
eiφ/2 sin θ/2

)
, (13)

on the Bloch sphere. Then, the state of a quibit is
described by using the real-parts and imaginary-parts of
a and b,

q⃗ = ℜ(a) + ℑ(a)i+ ℜ(b)j + ℑ(b)k. (14)



Fig. 2. Interpolation operation on Bloch sphere in CNOT gate

B. Operations by quantum gates
In quantum logic circuit, fundamental quantum gates

are the single bit rotation gate and two-bit controlled
NOT gate. These gates are universal in the sense that
any quantum logic circuit can be constructed by their
combinations.

A single bit rotation gate takes a quantum state as its
input and outputs a rotated state in the complex plane.
The function of this gate can be described using q =
a+ bi+ cj + dk as its input,

f(q) = qv = q exp (−uω/2), (15)
u = x/|x|, (16)

where x = li+mj + nk is a pure imaginary quaternion.
The rotation in this gate is represented by quaternion
multiplication, i.e. the rotation is conducted by setting axis
of rotation as u (which is a three-dimensional normalized
vector x) and rotation angle as ω.

A two-bit controlled NOT (CNOT) gate takes two
quantum states as its input and produces two outputs: one
of the input states and the exclusive OR-ed of two inputs.
It is necessary to represent the inversion and non-inversion
of the quantum state in order to describe this operation,
thus a controlled input parameter δ is introduced:

g(q, δ) =
sin ((1− δ)λ)

sinλ
q +

sin (δλ)

sinλ
qnot, (17)

qnot = c+ di+ aj + bk, (18)
λ = arccos (q · qnot). (19)

δ = 1 and δ = 0 corresponds to the inversion and
non-inversion of the input quantum state, respectively.
The output of this gate comes from q and qnot linearly
interpolated on the bloch sphere by δ (see Fig. 2).

C. Quaternionic qubit neuron and network models
The proposed neuron model is shown in Fig. 3, which is

composed by rotation gates f(·) and a CNOT gate g(·, ·).
Each of input signals qis to the neuron is first rotated by
each of rotation gate, and they and bias signal (qbias) are

+
+

+
+

Fig. 3. Neuron model based on quaternionic rotation gates and
CNOT gate

accumulated. The accumulated signal sk is transformed by
a CNOT gate with the parameter h(δ), where the function
h controls the degree of interpolation. ReLU function is
used for the function h in this paper. The transformed
signal is the output from the neuron.

A multilayered perceptron-type network is constructed
by configuring neurons in each layer and connecting
neurons between layers. In order to construct a learning
scheme for this network, differential of the error E with
respect to the connection weights ws should be defined.
We adopt the differential by quaternionic variable as
quaternionic element-wise differential, such as

∂E

∂q
=

∂E

∂qe
+

∂E

∂qi
i+

∂E

∂qj
j +

∂E

∂qk
k. (20)

The partial differential ∂E/∂qe is calculated as
∂E

∂qe
=

∂E

∂pe

∂pe

∂qe
+

∂E

∂pi

∂pi

∂qe
+

∂E

∂pj

∂pj

∂qe
+

∂E

∂pk

∂pk

∂qe
. (21)

This rule of differential can be applied to calculate the
differentials of rotation and CNOT gates.

IV. Experimental results
The performances of the proposed QQNN are explored

in this section, with comparing with conventional (real-
valued) neural network. Prediction of three-dimensional
signals produced from a chaotic system, called Lorentz
system, is used for evaluation of both networks.

A. Setup
The Lorentz system is a system that consists of three

ordinary differential equations:
dx

dt
= σ(y − x), (22)

dy

dt
= x(ρ− z)− y, (23)

dz

dt
= xy − βz, (24)

where x, y, and z describes the state of the system with
time t, and σ, ρ, and β are the parameters of the system.



This system exhibits chaotic behaviors for particular sets
of parameters, for an example, when σ = 10, ρ = 28,
and β = 8/3 are set to the system, this system has
two fixed attractors called Lorentz attractors. Signals for
training and testing networks are generated by solving
these differential equations by Euler method with the
initial configuration (x, y, z) = (1.0, 1.0, 1.0) and the time
step dt = 0.01. A set of 3,000 three-dimensional time series
is then obtained for 0 ≤ t < 30.

A three layered QQNN and real-valued NN are prepared
for predicting the state of a system. The neurons for
QQNN are 9, 16, and 3 for the input layer, hidden
layer, and the output layer, respectively. The number
of trainable parameters is 963. For real-valued NN, the
neurons are 9, 75, and 3 for input, hidden, and output
layers, respectively. The number of trainable parameters
is 975. These networks are selected so the the number of
trainable parameters for these networks become almost
comparative.

For these networks, training and test data sets are
prepared from the time series. For training networks, the
time series for 0 ≤ t < 20 (2,000 samples) are used, and
remaining series for 20 ≤ t < 30 (1,000 samples) are used
for testing networks. Each component for the input is
normalized in the range [0, 1].

These networks are trained so that the prediction
state at time (t + ∆t) is generated (predicted) from the
system states at time t, (t − 1), and (t − 2) presented
on the input of the network. The parameter ∆t takes a
integer value that determines how many time steps ahead
should be predicted. The experiments are conducted for
∆t = 10, 20, · · · , 100. The number of iterations for training
network is set to 1, 000 for both networks.

B. Results
After training a network with training data set, this

network is to predict the states of Lorentz system by using
test data set. From the predicted states, it is possible to
compare this time-series states with the time-series data
from the original Lorentz system. Figures 4 and 5 show
the three-dimensional trajectories constructed from the
output of the network (shown in red blobs) and the output
of the Lorentz system (shown in black blobs) for real-
valued network and the proposed network, respectively.
In this case ∆t = 10 is used, i.e., the networks should
predict the states at 10 time step ahead from the latest
three states. From the output by real-valued network (see
Fig. 4), we see the outline of the trajectory from the real-
valued network look like the original data, but several
points of which difference between states can be found. On
the other hand, the trajectory from the proposed QQNN
is quite similar to the original one, meaning that the
proposed network can acquire the functions of Lorentz
system. In order to evaluate the reconstruction quality in
a quantitative manner, we use the mean squared error
(MSE) between output of Lorentz system and output of

the network. The MSE values for the real-valued and
the proposed QQNN are 1.64 × 10−5 and 9.51 × 10−7,
respectively. From these MSE values, it is shown that
QQNN can simulate the Lorentz system better than real-
valued network.

When the parameter ∆t becomes larger, both networks
degrade in predicting the states of Lorentz system, but the
degree of degradation is different. Figures 6 and 7 show re-
constructed trajectories from the test dataset by the real-
valued network and the proposed network, respectively,
in the case of ∆t = 30. The real-valued network fails to
acquire the functions of Lorentz system from the training
dataset, but the proposed network maintain the capability
of the reconstruction ability though the differences from
the original data becomes large. It can be confirmed by
calculating MSEs from the outputs of these networks,
and MSEs for the real-valued and proposed QQNN are
3.69× 10−4 and 2.64× 10−5, respectively.

We then evaluate the degree of reconstruction quanti-
tatively for the real-valued and proposed networks. For
the test dataset, the squared distances from the predicted
states and original states (test dataset) can be calculated,
and the minimum distance from these distances can also
be identified. We have obtained the minimum distances for
each of ∆t for both networks. The changes of minimum
distance with respect to ∆t are shown in Fig. 8. It is
observed that the minimum losses from the proposed
network are always lower than those from the real-
valued network. This means that the proposed networks
can perform better in predicting time-series of a chaotic
system.

V. Conclusion
In this paper, we have proposed a neural network model

based on quantum information processing. The neuron in
this model has four-dimensional state by using quater-
nionic representation, which is a hypercomplex number
system; the state of a neuron is represented by a point on
the Bloch sphere. The operation of neuron model adopts
the operations in quaternion, which is equivalent to the
operations by Pauli matrices. Multilayered perceptron-
type network is composed from this neuron model and
the learning algorithm is also formulated.

The performances of the proposed network are eval-
uated through a problem for predicting the time-series
states from a chaotic system called Lorentz system. The
results from numerical experiments show that the pro-
posed network outperforms the conventional real-valued
network.

There are several points to be considered for the pro-
posed network. The activation functions in the proposed
network are missing for neurons in the hidden layer, thus
appropriate configuration for the activation function is
necessary. In order to compose the networks for accepting
image/test signals, it is important to extend the proposed
network so that convolution and pooling functions are



Fig. 4. Trajectory reconstructed from NN (∆t = 10) Fig. 5. Trajectory reconstructed from QQNN (∆t = 10)

Fig. 6. Trajectory reconstructed from NN (∆t = 30) Fig. 7. Trajectory reconstructed from QQNN (∆t = 30)



Fig. 8. ∆t-dependence for minimum loss in learning networks

endowed. Also, the performance evaluations for various
tasks are necessary. These remain for our future work.
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