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Abstract—Mammalian neural circuits respond to different
sensory stimuli by firing spikes at particular times. Closely
mimicking this phenomenon, the evolving 3rd generation neural
networks, known as Spiking Neural Networks (SNNs), are found to
be capable of memorizing and learning from the spatio-temporal
spike patterns. This makes SNN applicable in identification of
human actions and gestures, especially in the robotics domain.
The paradigm is also suited for Neuromorphic Systems leading
to less energy intensive applications. In this work, we present a
novel spiking neural network constituting multiple convolutional
layers and a reservoir layer to extract spatial and temporal
features respectively from human gesture videos captured with
DVS camera. We achieved more than 95% Top-3 accuracy on
IBM DVS dataset and we claim that the performance of our
network is better in terms of accuracy vs. learning parameters
ratio when compared to other networks.

I. INTRODUCTION

In the era of artificial intelligence, robots and drones have
slowly gained prominence across domestic and industrial en-
vironments. Assistive Robotics is often viewed as the future of
elderly-care in the domestic space, whereas, robots and drones
are already being used industrially in multiple domains such
as retail, manufacturing, healthcare, disaster management etc.
Presently however, robots and humans do not share the same
workspace - a situation which is likely to change drastically in
a not-too-distant future. As a consequence, interaction between
humans and robots is a real need, and has led to the evolution
of a new research area on Human Robot Interaction (HRI).

The problems in this area mainly centre around learning and
identification of gesture/speech/intention of human co-workers
along with the classical problems of learning and identifica-
tion of objects/obstacles within a dynamic environment. The
current state of the art vision-based solutions using artificial
neural networks (including deep neural networks) [1], [2]
are highly accurate and widely used. However, these require
a large volume of training data for successful learning and
accurate inferencing, and are hence both time and computation
intensive. They are also bounded by the conventional von
Neumann architectures leading to a data transfer bottleneck
between memory and processing units and related power
consumption issues as robots and drones are constrained by
their battery life.

Lately, an alternative non von Neumann paradigm known as
Neuromorphic Computing [3], [4] has evolved where computa-
tion is performed on processors architected as connections of
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millions of neurons and synapses, closely mimicking mam-
malian brains. Computation resembles sensory information
processing in mammals with data represented as inherently
sparse spike trains which capture environmental changes as
events. Highly parallel computations are performed in neurons
and the processed information are stored at synapses resulting
in collocation of computation and memory. The learning
method is based on the precise timing of two different layers
of neurons spiking activity signifying how correlated they
are. As a result, the Spiking Neural Networks (SNN) [5],
the 3rd generation of neural networks which form the basis
of neuromorphic systems, are capable of learning temporal
dynamics of an event efficiently. The capability of faster online
learning from less data, real time inferencing and optimal
energy usage make these networks more suited for power-
constrained devices like robots and drones.

In this paper, we have designed and implemented a novel
spiking neural network using the idea of convolution and
reservoir computing in order to classify human hand gestures.
This SNN takes event-based input from a dynamic vision
sensor (DVS) [6] camera, thus making the input data sparse
and in form of spike trains. The network first learns the spatial
features of the gesture by performing convolution over input
data and then learns the temporal features by using a reservoir
layer of spiking neurons. It has been trained on the IBM DVS
gesture data set [7] and we have achieved Top-1 and Top-3
accuracy as 65% and 95% respectively over all 11 gesture
classes. The achieved overall accuracy is 89% over 8 spatially
non-overlapping classes. We have also observed that - (i) the
network uses lesser number of parameters for learning, and
(ii) the ratio of test accuracy to the number of parameters is
high compared to existing state of the art.

The paper is organised as follows: Section II and III
provide an overview of the state of the art with respect to
gesture recognition and a background of SNN respectively.
Section IV explains the components and functionalities of our
proposed SNN model, followed by the implementation details
& experimental results in Section V. We conclude with an
outline of future works in Section VI.

II. RELATED WORKS

A. Gesture recognition using DNN

A large body of work for identifying human gestures using
state of the art deep neural networks (DNN) exists. The work



done by Tran et al. [1] is a significant one where the network
tries to learn the spatio-temporal activity from a video using a
deep 3D convolutional network (ConvNet). Simonyan et al. [§]
produced better results by training a temporal ConvNet on
optical flow instead of raw video frames. For classifying the
action sequences, Baccouche et al. [9] proposed a method
using Recurrent Neural Network (RNN) architecture with
one hidden layer of long-short term memory (LSTM) [10]
cells to learn dynamics of the spatial features extracted by a
convolutional neural network (CNN). Shi et al. [11] used a
3D-ConvNet to capture 3D features of gestures and attached
an LSTM network to capture the temporal patterns therein.
Later works [2], [12] showed improvements by fusing different
streams of features along with above techniques. Despite
having high accuracy, these models are not the most efficient
solutions as learning methods and inference frameworks of the
conventional deep networks require huge amount of training
data and are typically compute and energy intensive. Recently,
developments have been made in DNN based frameworks to
recognize gestures from a DVS data on mobile phones. Maro
et al. [13] used online clustering-based method for learning
the gestures and did not exploit the learning capabilities and
processing architecture of SNN. Amir et al. [7] proposed a
CNN architecture running on IBM True-North neuromorphic
chip [14] to classify human gestures in real time - however,
although the system utilizes benefits of neuromorphic chip, the
training was not performed on True-North.

B. Gesture recognition using SNN

There are a number of research works on designing spiking
neural networks capable of performing classification tasks.
Diehl et al. [15] proposed a mechanism using Spike Time
Dependent Plasticity(STDP) [16], lateral inhibition and home-
ostasis to recognize digits using MNIST dataset. Lee et
al. [17] and Delbruck et al. [18] have proposed a supervised
learning mechanism mimicking back-propagation of conven-
tional ANNs that can efficiently learn to recognize the digits
with higher precision. However, since SNN seems potent for
learning temporal features, researchers have devoted efforts to
capture the temporal dynamics within a video - for which,
primarily, two methodologies are followedx.

The first one uses feed-forward layers of spiking neurons
and a variant of back-propagation by defining an error function
between desired and spiking activity. Shrestha et al. proposed
Spike LAYer Error Reassignment(SLAYER) [19], a learning
rule for back-propagating error to the previous SNN layers.
This addresses the problem of approximating the derivative
of the spike function that inherently brings in the question of
biological plausibility. A recent prototype [20], [21] by the
present authors jointly with BrainChip [22] shows a variant of
the feed-forward approach.

The second method, based on the idea of reservoir com-
puting, was independently researched by two research groups
in the previous decade. These two models are Echo State
Networks (ESN) [23] and Liquid State Machines (LSM) [24],
with ESNs focussing on rate based neurons and LSMs on

spiking neurons. ESN proposes driving a large recurrently
connected network of artificial neurons with an input signal to
produce a nonlinear response in the network nodes and obtain
the desired output signal by training all these responses. On
the other hand, in LSM, the temporal features of the input
are extracted by a recurrently connected network of spiking
neurons, called the “liquid”, the output of which is trained to
produce certain desired activity based on some learning rule.

Over the years, both have evolved considerably and have
been used in many temporal prediction problems, most of
which are focussed on forecasting time series. A simplistic
time series prediction on Mackey-Glass System(MGS) dataset
by Zhang et al. [25] is one of the first notable works in this
domain. Bellec et al. [26] further advanced it by incorporating
the idea of LSTM into spiking domain and applying it on
speech and digit recognition. By adding adaptive threshold
for the neurons, they have balanced an excitation-inhibition
ratio among the reservoir neurons, thus stabilising the net-
work. They have also increased the computing and learning
capability of the network by training with Back Propagation
Through Time (BPTT) combined with a rewiring algorithm.
They also proposed a Learning-to-Learn (L2L) scheme, which
transfers prior knowledge to learn new tasks very quickly.
However, these ideas remaine unexplored for learning spatial
and temporal features together.

For gesture/action recognition, i.e. for classifying temporal
and spatial features of a video simultaneously, works of Panda
et al. [27] and Soures et al. [28] are most recent and notewor-
thy. In [27] the authors have applied a Driven/Autonomous ap-
proach for reservoir creation that can learn video activity with
limited examples. The Driven Network is first trained with Re-
cursive Least Square(RLS) [29] rule to provide a desired signal
for the Autonomous model that learns to produce the desired
activity from a supervised form of STDP [30]. The authors
used frame difference and bounding box selection mechanism
for encoding the input data but for real time purpose it is
inherently compute intensive and resultant data is not sparse.
While implementing it, we observed that driven/autonomous
models are good at modeling temporal dependencies of a
single-dimensional known time signal but lacks the potential
to learn spatio-temporal features together as required for action
recognition. Also, supervised STDP suffers from catastrophic
forgetting. It is true that the network learns to recognize the
action class very quickly, but it forgets them even faster.

On the other hand, Soures et al. [28] proposed a deep
architecture of recurrently connected spiking neural network,
each layer followed by an unsupervised winner-take-all (WTA)
layer. This network is capable of understanding the inter-
play between the dynamic and high-dimensional information
captured by the reservoir layer and encoding that to a low-
dimensional representation by WTA layers. An attention based
neural mechanism is used here to selectively process informa-
tion in the reservoir layers. This work is beneficial with respect
to memory and computational resources; however, the use of
ANN-based spatial feature extraction dependent on pre-trained
large models (like that of ResNet [31]) makes it unsuitable for



neuromorphic chips.

Before we describe our network architecture, a brief de-
scription of SNN and its learning mechanism, as described in
section below, will be helpful.

III. SNN AND ITS LEARNING MECHANISM

In mammalian brains, billions of biological neurons are
connected in a complex network via synapses. Stability is
maintained via mutual excitation and inhibition processes
unless some external stimuli interrupts the system. On receiv-
ing a stimulus, the membrane potential of the corresponding
neuron increases and if a threshold is reached, a spike or
voltage surge is generated which is carried forward to the
next neuron. Spikes can be generated in bursts, in repeated
fashion or as one time event depending upon the stimuli
and nature of receiving neuron. Synapse, conductance of the
cell body and other chemical interactions play important role
in the subsequent processing of the spike(s). Rate at which
these spikes occur carry information about the stimuli and
the temporal relation (i.e. before or after) of spike-response
between pre- and post-synaptic neurons make their synaptic
bond stronger or weaker. In Hebbian learning, this is called
“fire together, wire together.”

SNNs, unlike classical ANNs, use such bio-plausible spik-
ing models of neurons in order to remain closer to the
mammalian brains compared to ANNs. Spiking neurons are
energy efficient due to the inherent sparsity and asynchronous
communication in form of spikes [32]-[34]. But SNNs need
the input data to be converted into spike format before process-
ing, unlike ANNs which can handle continuous valued input.
SNNs are considered as the third generation of neural networks
with formally proven computational capabilities comparable to
that of regular ANNs [35].

A. Spiking Neuron Model

There are few mathematical models of spiking neurons
having different levels of complexity and granularity - most
detailed and complex being the Hodgkin-Huxley model [36]
and most simplified (also, mostly used) being the Leaky
Integrate and Fire (LIF) model [37]. In LIF, the membrane
potential V/, at any point in time, can be described by the
differential equation 1. We use the same neuron model in our
network.

av
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The resting potential, V.., is a point attractor towards
which the membrane potential tends to evolve. Hence, without
any input from other pre-synaptic neurons, membrane potential
will remain at V,..s. Similarly, E.,. and F;,; represent the
equilibrium potentials for excitatory and inhibitory synapses.
Synapses are modelled as conductance values, namely, g., the
excitatory conductance, and g;, the inhibitory conductance.
Excitatory pre-synaptic neurons increase the membrane poten-
tial, whereas, inhibitory pre-synaptic neurons tend to decrease
it. When the membrane potential crosses a threshold, Vipresh,

a spike is generated by the neuron. When a pre-synaptic neuron
spikes, the conductance of the synapse is increased in magni-
tude. The dynamics of excitatory and inhibitory conductance
are modelled as per equations 2 and 3 respectively.
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B. Learning Rule

A spike event is mathematically modelled using the Dirac
Delta function' at the time of spike. Due to the non-
differentiability of this function, gradient based learning al-
gorithms cannot be applied for SNN. In case of SNN, positive
temporal correlation between pre- and post-synaptic spiking
neurons strengthen the synaptic bond and that actually trans-
lates into learning (and in turn memory). This is completely
unsupervised and local in nature. This type of learning is
expressed via Spike Time Dependent Plasticity (STDP) [16].
STDP is a modification of classical Hebbian learning rule [38]
improved with temporal asymmetry. A spiking neuron with
STDP has been proved to be able to learn a linear dynam-
ical system with minimum least square error [39]. For each
synapse, we have a pre-synaptic trace x,,. which keeps track
of the activity of the pre-synaptic neuron and a post-synaptic
trace Tpost, tracking activity of the post-synaptic neuron. Each
trace decays exponentially with time as shown in the equations
4 and 5 with synaptic trace decay constants 7p.. and Tpos;.

dzpre
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When a spike occurs at pre- or post-synaptic neurons, it’s
trace is increased in magnitude by a constant value a. For
each pre-synaptic firing, the synaptic weight is depressed with
a value proportional to the post-synaptic trace and for each
post-synaptic firing, it is potentiated with a value proportional
to the pre-synaptic trace. The learning process of an arbitrary
synapse is shown in Figure 1.
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Fig. 1: Synaptic depression and potentiation in STDP
"https://en.wikipedia.org/wiki/Dirac_delta_function



The complete learning rule can be described as per equa-
tions 6 and 7.

(6)
(7

Awdep = ndep(xpost X Sp?‘e)

AU)poif = npot(mpre X spost)

Spre and Sp,4¢ represent spike of the pre- and post-synaptic
neurons. In practice, equations 6 and 7 are vector equations
where s, and s, denote the spike vectors of a population
of neurons and X is an outer product operation.

C. Lateral Inhibition and Homeostasis

Lateral Inhibition or Winner-Take-All [40], [41] is a bio-
plausible non-linear computation mechanism employed in neu-
ral networks. It is mainly used in neural networks to enhance
competition between neurons. In lateral inhibition, the first
excited neuron which produces a spike, tries to stimulate other
inhibitory neurons or directly inhibits one or more of them. In
a learning scenario, a pattern which is being learnt will excite
one or more neurons, which in turn will try to deactivate other
neurons with the help of lateral inhibition, preventing them
from learning the same pattern. In SNN world, this mechanism
helps multiple neurons to compete and learn different things.
We utilize a softer form of Lateral Inhibition like that of
k-WTA, which is proven to be computationally less power
intensive than a hard Lateral Inhibition [42] and leads to better
shared feature selectivity in cortical pyramidal cells [43].

Homeostasis is the process of maintaining a steady inter-
nal state, widely observed in many biological systems like
maintaining body temperature, blood sugar, pH levels etc. In
this context, homeostasis of neuronal firing rate is meant to
prevent the dominating effect of any particular neuron. We
employ a rate homeostasis similar to that used in Diehl et
al. [15], where threshold of neuronal firing is adapted so
that continuous firing by the same neuron is discouraged.
Our membrane threshold, V;j,,.sn 1S @ combination of a static
threshold value, Vipresh—static and a dynamic memory based
component, # which increases with each firing by a constant
value and decays exponentially with time. The complete
spiking mechanism is described by equations:

o 17 V(t) > Vvthresh
S(t) B {Oa V(t) Z ‘/thresh (8)
Whr(zsh == %hresh—static + o(t) (9)
fewy+c, Sy =1
6(t+1) = {9@), S(t) =0 (10)
do
TQE =—0 (1

In the following section, we describe the network that we
have designed and implemented for gesture recognition.

IV. NETWORK ARCHITECTURE

The proposed SNN architecture (refer Figure 2) consists
of three main components: (i) the data pre-processing layer,
(ii) the Convolutional Spiking layer (CSNN), and, (iii) the
reservoir layer.

The data pre-processing layer performs compression and
encoding on DVS data in order to render the computation
faster, while the CSNN layer, whose design and action is
inspired from CNN, contains multiple spiking layers which
extract the spatial features from the input data. The feature
extraction mechanism is hierarchical in nature with each layer
concentrating on features of higher orders than the previous
one. The reservoir layer helps in extracting temporal aspects
of features from the convolutional layer. The convolutional
features of a layer along with its reservoir features form an
enriched feature set, which is then passed to a classifier for
final recognition of the gestures. The figure shows multiple
connected CSNN layers with one of them enlarged on the
right side to describe the detailed composition. A description
of each component is given below.

A. Data pre-processing layer

Data captured by DVS is usually stored in Address Event
Representation (AER) format [44]. Any luminosity change
(event) at a pixel is captured and represented as a quadruple [X,
y, t, p] where (X, y) is the pixel co-ordinate, t is the timestamp
of the event, and p signifies polarity of change in luminosity. In
this work, we have used the IBM DVS dataset 2 (details given
in Section V-A). This AER dataset contains events captured at
very high temporal resolution (~ 10%). Though by definition,
each of these records is a separate temporal event, it is found
that a number of these can be safely considered redundant for
our classification task, and we can compress the dataset to a
lower time resolution scale without losing spatial information.
Few experiments led us to a scaling down factor of 10* to
derive a safe workable dataset. Within the evenly distributed
time window of length 10000 between each A; and A; 1 (in
the original dataset), if multiple events or spikes occurr at a
particular pixel, we consider it as a single spike occurring at
x; when the time axis is scaled down by a factor of 10* (in
the derived dataset). This compression approach is illustrated
in Figure 3a. The useability of this technique is emphasised in
Figures 3b and 3c, with the former showing a snapshot of a
set of events (AER records) in higher time resolution scale (as
in the original dataset) and the latter showing the compressed
version. Evidently, no significant spatial information are lost
by incorporating the compression mechanism; instead it leads
to faster processing time and less data handling. The dataset is
captured with a resolution of 128 <128 and after compression,
the AER records are converted to multiple spike-frames of size
128 x 128, with each pixel having values 1 or O only.

B. Convolutional Spiking Layer (CSNN)

The Convolutional Spiking layer comprises of class-wise
filter blocks along with a lateral inhibition based competition

2http://research.ibm.com/dvsgesture/
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Fig. 3: DVS data preprocessing.

mechanism between the filter blocks. The output from the data
pre-processing module acts as the input to this layer in form
of spike-frames. There can be multiple such convolutional
layers in the architecture. Connectivity from input to the
convolutional layer as well as from one convolutional layer to
the next is same as that of a traditional CNN. These class-wise
filter blocks contain multiple filters inside them and that helps
in capturing spatially co-located patterns within the spike-
frames of a single gesture class.

As shown in Figure 2, each spike frame of a gesture is
connected to convolutional layers via a sliding window based
connectivity. For this purpose, initially a sliding window of the
size w X h pixels is chosen from within the input spike frame.
Each input pixel belonging to this sliding window is connected
to a single neuron of a filter block in the first convolutional
layer. For the second neuron in the same filter block, the initial
window is slided horizontally by a stride and each pixel in
the new shifted window is connected to this second neuron.
The process is repeated horizontally and then vertically till
the entire spike-frame is connected to all the neurons in this
filter. As more spike-frames come over time, similar sliding
mechanism connects those frames with same neurons in the
same filter. Once the first convolutional layer is connected
to the input, the second and other consecutive layers can be
connected to previous convolutional layers in the same fashion.
The number of convolutional layers is a design choice, to be
set according to the complexity of the spatial features present
in the dataset.

As mentioned, class-wise filter blocks capture spatially co-
located patterns within the spike-frames of a single gesture
class. Instead of learning a 3D filter (spatial and temporal)
from consecutive spike-frames, the proposed approach uses
a switching mechanism. Among all filters of the same filter
block, only one is activated at a time. The selection is made by
a special LIF neuron node, called the switcher node, at periodic
intervals. By applying inhibition, the switcher node forces all
other filters to remain inactive for ‘some’ time steps, except the
next filter in the block. This duration of inactivation depends
entirely on the strength of inhibition, a configurable parameter,
applied by the switcher node. After the period of inactivity,



all filters start to compete again and the one which spikes
the most is considered as the winner, exactly as in the WTA
mechanism mentioned in Section III-C. Based on the decay
time constant of the switcher node, this process will repeat
during the training time of convolutional filters. The switcher
node ensures that all filters get a chance during the training
phase and that spatially collocated but temporally separable
features appear on different filters without getting mixed up.
This is essential for spiking neurons to learn overlapping fea-
tures. This type of forced inhibition and selection mechanism
is applicable to spiking neurons only to make sure that some of
them learn a particular feature; unlike ANNs, where neurons
are selected to learn by global error reducing mechanism like
backpropagation.

Another level of long-term inhibition exists between the
class-wise filter blocks which ensures that during training
phase, only one of the filter blocks is active at a given point of
time for a given gesture video. This also ensures that multiple
filter blocks are not trying to learn the same redundant pattern.
Lateral inhibition among filter blocks allows them to compete
for classes. Weights in the filter blocks are initialised randomly
and one of the blocks wins for the first time for a particular
gesture class. This win ensures that it will spike maximally
only for that particular class during the later part of training.
Once a filter block wins due to maximum initial spiking, an
inhibition signal of higher strength is sent to other filter blocks
preventing them form being activated.

There are two distinct benefits of this filter-block-wise
inhibition mechanism:

(1) Since all the filter blocks are not active at a given time,
the number of active convolutional neurons of a CSNN
layer during training time for each gesture is reduced.

It allows us to set different periodicity (i.e. different decay
time constant) for switcher nodes of different filter blocks
according to its associated gesture. Switching periodicity
is dependent on the total duration of gesture and different
spatial patterns present therein. If multiple repetitive pat-
terns occur within a short duration, switching periodicity
for that particular filter block can be set to a small value.
For example, right hand wave gesture repeats patterns
more frequently than right hand clockwise rotation; hence
the optimal switching periodicity for right hand wave is
set at 10ms (by parameter tuning) whereas that for right
hand clockwise rotation is 62ms.

(ii)

During testing time, both long term inhibition between filter
block as well as switching of filters within a block are removed
as they are useful during training only.

C. Reservoir layer

The last component in the architecture is a reservoir layer
where spiking activity of each CSNN layer (i.e. the spatial fea-
tures present within the gesture) is forwarded to one reservoir.
The temporal components of the gestures are captured ex-
plicitly by the spiking behaviour of the recurrently connected
sparse reservoir.

The reservoir is a recurrent neural network where instead
of training the recurrent connections, a population of neurons
with cyclic connections and random sparse connectivity is
constructed. At the core, reservoir is a form of Liquid State
Machine (LSM). The output spikes of the reservoir captures
the higher dimensional embedding of the spatio-temporal
features present in the data. The output from the reservoir
is connected to a readout layer of neurons and the synaptic
weights between reservoir and readout are modified to get the
desired classification.

Connectivity from convolutional filter blocks to the reservoir
is considered as a sparse connection with random weights.
Amount of sparsity is a hyper-parameter and can be tuned
for optimal performance. The weight matrix of the reservoir
is constructed as a random sample from uniform distribution
with a specific density (in our case, 0.2). Reservoir weight
matrix is constructed ensuring that it’s spectral radius, i.e
largest absolute eigen-value is less than unity. This helps in
keeping the dynamics of the reservoir from falling into chaotic
regimes. Neurons in the reservoir act as inhibitory as well as
excitatory. The ratio of excitatory to inhibitory neurons is kept
as 4:1 for our purpose.

V. DATASETS, IMPLEMENTATION AND RESULTS
A. Datasets

The network described in Section IV was trained and
tested on IBM DVS Gesture data set. The data set consists
of a set of 11 hand and arm gestures of 29 people under
three different lighting conditions captured using a DVS128
camera. Each trial consists of one person performing all 11
gestures sequentially in front of a static background. The
gesture set includes hand waving (both arms), arm rotations
(both arms, clockwise and counter-clockwise), arm rolling,
hand clapping, playing guitar or drums in the air and some
“other gestures” performed by that particular person. The
three lighting conditions are combinations of natural light,
fluorescent and LED lights, which were selected to control
the effect of shadows and flicker noise from fluorescent lights
on the DVS128. Each gesture lasts for about 6 seconds. To
evaluate classifier performance, out of total 29 persons’ data,
23 were marked as the training set and the remaining 6 were
kept for testing.

B. Implementation

The network was implemented using BindsNet v0.2.4 [45], a
GPU based open source SNN simulator written in Python. The
simulator itself being in a development stage had some bugs
which have been handled. It was used primarily because it
supports parallel computing unlike other available simulators
like Brian, Nest etc. We also observed that BindsNet needs
more memory footprint for simulating SNN networks com-
pared to ANN frameworks (like TensorFlow) for ANN models
of similar size as a result of which the networks may run at
a lesser speed at times.

Table I summarizes the parameters used for implementing
the neuron model and learning mechanism as described in



Section III. Most of these parameters are consistent with
the values of their biological counterparts. The threshold
voltage of neurons Vipresh—static (as in Eqn. 9) is set at
a comparatively high value to reduce spikes due to random
noise. Also, the learning rate parameters 7qep & 7por (as in
Eqns. 6 & 7) are set in a manner such that features are best
learnt in CSNN layer (as explained in Section V-C). Value of
Fere & E;ipp (as in Eqn. 1) are kept same as V5. Also value
of 7. and 7; (as in Eqns. 2 & 3) have been kept same as that
of .

TABLE I: Parameters for neuron model & learning mechanism

Parameter Value Parameter Value
‘/thresh—static -15.0 mV Viest -65.0 mV
T 100 ms o 107 ms
Tpre 20 ms Tpost 20 ms
Ndep 10°° Tlpot 1072

C. Results & Discussion

Spatial patterns learnt by corresponding neurons on different
filter blocks are visualized in Figure 4. Each square block
shows a 20 x 20 pattern learnt by a randomly chosen single
neuron from a filter block. Three rows are shown in the
figure, which represent learning by three such neurons from
three different spatial positions of a filter block. Each column
represent the pattern learnt by the corresponding neuron for a
given class and there are 11 such columns. The patterns learnt
are sparse and varied according to their spatial positions.

Fig. 4: Neuronal activities in CSNN filters

Table II shows the comparison between input, compressed
input and the accumulated feature map of a filter layer
of a filter block over the entire simulation time. First two
rows show spatially overlapping classes namely right hand
clockwise rotation and right hand wave while the third row
represent one example from other gesture class. In the learnt
feature map, it is seen that only key regions where the hand
motion occurs are being learnt and less significant details like
the features of the person who does the gesture are treated as
noise and are not learnt.

Various experiments were conducted to determine the ef-
fectiveness of our approach with different hyper-parameters
and settings. The results are summarized in Table III. All
the experiments were conducted with a single convolutional
spiking layer connected to a reservoir. In Experiment 1, a
convolutional window size of 20 x 20 is taken, which is large
enough to cover the activity regions in each frame of the

TABLE II: Visualisation of Data and feature learning

Raw input Compressed input Trained filter

gesture video. Further, we used only a single filter per filter
block (i.e. total 11 filters), without any switching mechanism.
The resultant accuracy is 59% on the test data.

A separate run containing 8 out of 11 classes was executed.
The 8 classes were chosen such that they do not contain any
purely temporally separable classes (i.e. right hand clockwise
rotation and left hand clockwise rotation are included but
their counter clockwise versions are excluded). This increased
the accuracy from 59% to 88% indicating that the network
performs well while classifying gestures which are spatially
separable.

For Experiment 3, we increased the number of filters in the
convolutional filter blocks to 2 (i.e. total 22 filters), introducing
the switching mechanism. Accuracy on the entire test data
increased from 59% to 63% as the switching mechanism is
beneficial for spatially overlapping classes where two compet-
ing filters are trying to learn two spatially collocated gestures.
At the same time, accuracy in identification of the 8-class
set reduced from 88% to 86% because these classes being
distinctly spatially separable, benefit more if there are no
competing filters. Experiments 2 and 4 are repetitions of ex-
periment 1 and 3 respectively but with a smaller convolutional
window (6x6), increasing the no. of learnable parameters.
The best accuracy obtained is 65% on the entire test data
and 89% on the spatially separable data. It is to be noted
that the reservoir size i.e. the number of neurons inside the
reservoir is 8000 in case of Experiment 1 & 3 while it is
12000 for Experiment 2 & 4. As window size is decresed
from 20x20 to 6x6, thereby increasing the CSNN filter size
from 13x13 to 62x62, the number of neurons in reservoir
had to be increased for proper extraction of spatio-temporal



TABLE III: Experimental Results

Exp. No. of Window Stride Reservoir Training All 8 class Total Active  Efficiency Top 3
no. filters size size accu- class test ac- no. of  params ratio accu-
(h,w) racy test ac- curacy param- at each racy

curacy eters time

step
El 11 (20, 20) 9 8000 72.8 59.2 88.3 0.8316M 0.1556M  0.711 95.51
E2 11 (6, 6) 2 12000 82.5 58.7 88.1 1.6542M  0.2703M  0.354 94.68
E3 22 (20, 20) 9 8000 73.8 63.2 86.5 1.5752M  0.2232M  0.401 90.03
E4 22 (6, 6) 2 12000 81.6 65.0 89.5 3.1764M 0.4087M  0.205 95.12

§The accuracy figures shown are in %-age, and the number of parameters are in millions

features from this input.

One interesting outcome of our experiments is the achieve-
ment of above-90% value for Top-3 accuracy for all cases,
with best Top-3 accuracy being 95% in cases of Experiment
1 & 4. Clearly, there is a gap between overall accuracy (65%)
and Top-3 accuracy (95%) and that can be attributed to the
sensitivity of SNN to learnt weights. As the gesture videos
have different durations, it may happen that one particular class
is learnt more by the network thereby increasing corresponding
weights in the corresponding filter blocks more than that of
similar spatially overlapping classes. For example, the average
duration of the right hand counter clockwise videos is lesser
than that of right hand clockwise one. Hence, the latter gets
more training time than the former and corresponding weights
in the filterblock are slightly higher on its side. As a result,
during testing, whenever the former class video appears, it
makes the filter block corresponding to the second class
to spike slightly higher than its own, resulting in wrong
classification and thereby reducing overall accuracy from 95%
to 65%.

The best state of the art result on IBM DVS Gesture dataset
is 91% on a temporal cascade filters combined with 16-layered
CNN architecture [7]. One surprising result we observed is
that, even though Top-1 accuracy is lower than that of ANN
based approaches, our model triumphs with respect to two
metrices:

o number of parameters to be learned during training -
this is directly related to the memory complexity of
the runtime network and corresponding time and power
consumption.

o ratio of test accuracy and number of parameters (in
millions) - this is an indicator of the efficiency of the
SNN network as it tells us how much accuracy we are
able to achieve per parameter that is learnt.

These metrices are important as state of the art deep
learning models, despite providing higher accuracy, are larger
in size and thus have an increasing number of parameters and
decreasing accuracy per parameter ratio. A standard ResNet-
50 [31] Feature extraction architecture has nearly 20 Million
parameters, with other state of the art networks nearing this
value. Our network in all test configurations were under 4
Million parameters with max accuracy observed at 3.1 Million.
Top-1 Accuracy of Resnet 50 on imagenet classification is
around 79.26, making its accuracy to parameter ratio 0.0398

where as in all our experiments, lowest we have encountered
is 0.2, roughly 5 times better. Accuracy to parameter ratio
worsens for really large networks like VGG-16 and Resnet
152.

VI. CONCLUSION

In this paper we have discussed a novel spiking neural
network to classify hand gestures using IBM DVS dataset. It
learns both spatial and temporal features of the gestures and
is capable of classifying those with standard accuracy.

As a continuation of this work, we will be experimenting
further with layers, parameter values and different connection
patterns in order to enhance the accuracy for spatially overlap-
ping classes. We also plan to replace the logistic regression
classifier in the last layer of the architecture with an SNN
based classifier. Finally, we intend to run the network on
available neuromorphic platforms like IBM TrueNorth [14],
Intel Loihi [46], Brainchip Akida [22] etc. and replace the
input DVS data set with live feed from DVS camera so that
the network can learn and classify in real time.
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