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Abstract—In this paper, we tackle the issue of timbre transfer
on a given monophonic music sample. The objective is to change
the timbre of source audio from one instrument to another while
preserving features such as loudness, pitch, and rhythm. Existing
approaches use image-to-image translation techniques on the
entire region of time-frequency representations of the raw audio
wave, which may lead to the addition of unwanted elements in
the final audio waveform. We propose Attention-based Timbre
Transfer (ATT), an attention-based pipeline for transferring
timbre. To the best of our knowledge, ATT is the first approach
which leverages attention for achieving timbre transfer. Further,
ATT uses MelGAN for spectrogram inversion, which provides
a fast and parallel alternative to other autoregressive music
generation approaches, without compromising on the quality.
ATT shows promising results, thus efficaciously transferring
timbre with minimal offset to other physical characteristics.

Index Terms—Generative Adversarial Networks, Timbre
transfer, Style transfer, mel-frequency spectrogram.

I. INTRODUCTION

Music is composed of different elements such as rhythm,
dynamics, texture, timbre and melody together creating both
short and long-range structure. One of the distinctive features
of a musical sound is timbre. The American Standards As-
sociation (1960) define timbre as “that attribute of auditory
sensation in terms of which a listener can judge that two
sounds similarly presented and having the same loudness and
pitch are dissimilar”. They further add, “Timbre depends pri-
marily upon the frequency spectrum, although it also depends
upon the sound pressure and the temporal characteristics of
the sound”, thereby making timbre a multidimensional entity
and modelling it a challenging task.

In this paper, we propose a novel attention-based approach
for timbre transfer, i.e. given a monophonic music sample, we
aim to transfer the timbre of source audio from one instrument
to another while preserving features such as loudness, pitch
and rhythm. For instance, given a music sample composed
using a violin, we aim to obtain an audio waveform for the
same composition but with the instrument being a piano.
To the best of our knowledge, this is the first application
of attention-guided image-to-image translation for transferring
timbre.

Further, to convert the translated time-domain representation
back to audio, multiple methods can be used. One such method
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is Griffin-Lim (GL) (Griffin Lim, 1984) which, however,
is known to introduce disturbances in the output wave [1].
Recently, neural network-based models such as WaveNet [2]
and SampleRNN [3] have been highly successful in generating
high-quality audio. However, the inference time of these
models is high as the audio needs to be generated sequentially,
making them inefficient for real-time usage. Therefore, we
have used MelGAN [4], a Generative Adversarial Network
based approach for raw audio generation which uses Mel-
frequency spectrogram. MelGAN is faster than other Mel-
frequency spectrogram inversion methods and can be used for
generating audio in parallel. Therefore, making it ideal for
real-time applications.

Building upon the above components, we propose attention-
based timbre transfer (ATT). For training, ATT uses non-
parallel monophonic sound samples. For time-frequency rep-
resentation, we have used Mel-frequency spectrogram; this is
because Mel-frequency distribution is done in a perceptually
motivated manner. Empirically, ATT shows promising results,
successfully transferring timbre on a given set of monophonic
sounds, while preserving other characteristics such as pitch and
loudness. Additionally, it achieves high score on a test aimed
at classifying musical instrument based upon time-frequency
representation.

II. RELATED WORKS AND MOTIVATIONS

A. Generative Adversarial Network (GAN)
Generative adversarial network (GAN) [5] is a technique

for implicitly learning the distribution of a dataset. The task is
formed as a zero-sum game between a generator network(G)
and a discriminator network(D). During the training process,
G and D are trained sequentially. First, the discriminator learns
to minimize the classification loss by assigning a high score
to natural data samples and a low score to synthetic data
samples. Second, the generator learns to synthesize synthetic
data samples such that the score assigned by the discriminator
to them increases. The objective function is defined as follows:

G∗, D∗ = argmin
G

max
D
− 1

2
Ex∼pdata (x)[logD(x)]

− 1

2
Ez∼pz(z)[log(1−D(g(z)))]

Where, pdata (x) denotes the real data distribution, pz(z) de-
notes a prior distribution such as Gaussian distribution. GANs
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have been successfully applied to a range of tasks such as
image super-resolution [6], image-to-image translation [7], and
text-to-image synthesis [8].

B. Unpaired image-to-image translation
Unsupervised image-to-image translation techniques aim to

create a mapping between the source and the target domains
without the presence of paired data samples. In their semi-
nal work, [9] proposed CycleGAN, a generative adversarial
network based approach which uses cyclic consistency for
learning the desired mapping between two given domains
of data. For the source domain X and the target domain
Y . The model learns the mappings FY→X : Y → X and
FX→Y : X → Y along with adversarial discriminators DX

and DY , such that DX distinguishes between the elements
of X and translated samples created by FY→X and DY

distinguishes between the elements of Y and artificial samples
created by FX→Y . The objective function is given as :

L (FX→Y , FY→X , DX , DY ) = Lx
GAN (FX→Y , DY )

+ Ly
GAN (FY→X , DX)

+ λLcyc(FX→Y , FY→X)

where,

Lx
GAN (FX→Y , DY ) = Ey∼pdata(y) [logDY (y)]

+ Ex∼pdata(x) [log (1−DY (FX→Y (x)]

Lcyc(FX→Y , FY→X) = Ex∼pdata (x) [‖FY→X(FX→Y (x))− x‖1]
+ Ey∼pdata (y) [‖FX→Y (FY→X(y))− y‖1]

Building upon CycleGAN, [10] propose an attention-guided
image-to-image translation technique. The main advantage of
using attention-guided architecture is that mapping mecha-
nism translates only those parts of the source image sample
which are the most relevant for the translation operation,
minimizing changes to any other elements in the background.
They introduce attention networks in generators of CycleGAN
architecture. The attention networks are trained in tandem with
the generator networks. These attention networks are then used
to create attention maps for regions which the discriminator
networks ’perceives’ to be the most discriminative between
the given source and target domains. We delineate upon the
architectural details in the next section.

C. Audio style transfer
Similar to unpaired image-to-image translation, GAN-based

methods have also been applied for unpaired audio-to-audio
timbre transfer. [11] proposed Timbretron, a timbre trans-
fer pipeline which uses log amplitude Constant-Q-Transform
(CQT) for the time-frequency representation of the audio-
waveform. A translation between the source and the target
CQT is then performed using CycleGAN [9]. Finally, they use
WaveNet [2] for generating the target audio waveform from
the CQT representation. Since, Timbretron uses CycleGAN
for image-to-image translation, unwanted artifacts might be

introduced in the target representation. Further, as WaveNet
generates audio waveform in a non-parallel manner, it is
unable to scale to real-time environments.

GAN based methods have been further applied to voice
transfer applications and singing voice separation [12]. Addi-
tionally, [13] propose an encoder-decoder approach for suc-
cessfully translating music across different instruments and
styles.

D. Audio generation from time-frequency representation
This process involves the creation of audio waveform from

its corresponding time-frequency representation such as the
Mel-frequency spectrogram. Various techniques have been
proposed for the inversion of spectrogram to audio; we briefly
highlight them here. One of the most popular approaches for
inverting a short-time Fourier transform is Griffin-Lim (Griffin
Lim, 1984) method. Griffin-Lim method iteratively estimates
the unknown phases by continuously converting back and forth
between the time and frequency domain by using short-time
Fourier transform and its inverse, replacing the magnitude of
each frequency component by that of the predicted magnitude
in each iteration. While simplistic, the approach is known
to introduce powerful artificial features in the final output as
observed by [1].

Wavenet [2] is a fully convolutional, autoregressive model
that is capable of producing life-like speech samples. Further,
it can also generate high-quality music samples. However,
audio samples are required to be generated in a sequential
manner which makes the speed of these methods unsuitable
for real-time applications.

Recently, GAN based methods have also been used for au-
dio generation. One such approach is MelGAN [4]. MelGAN
is a lightweight and parallel GAN architecture for conditional
audio synthesis. MelGAN is capable of producing high-quality
audio-waveforms parallelly, therefore, making it suitable for
real-time applications. Hence, We have employed MelGAN in
our approach for constructing the audio waveform from the
translated Mel-frequency spectrogram representation.

III. PROPOSED METHOD

The aim of audio timbre transfer is to construct a mapping
from a source audio domain X to a destination audio domain Y
such that properties such as pitch and loudness are preserved,
while transforming the timbre of the instrument in X to that
of target instrument in Y. To this end, we propose ATT:
Attention-based Timbre Transfer pipeline. In this work, we
have only considered monophonic sound samples. We intend
to work on polyphonic sound samples in the future.

As shown in figure 1, the working of ATT can be divided
into three stages:

1) Convert the raw input audio waveform into its equivalent
Mel-frequency spectrogram representation.

2) Considering the Mel-frequency spectrogram representa-
tion as an image, we model the timbre transfer as an
image-to-image translation problem and perform unsu-
pervised attention-guided operation proposed by [10].



Fig. 1. ATT: Attention-based timbre transfer

3) Finally, the image resulting from the image-to-image
translation operation is used as the source in the audio
synthesis process using MelGAN [4]. In the subsequent
sections, we describe each of these stages in detail.

A. Music representation using Mel-frequency spectrogram

An audio waveform is a variation of pressure with respect
to time, carrying the information about changes in amplitude
with time. However, utilizing crude audio wave for modelling
sound is practically infeasible. This is because crude audio
waves are usually sampled at a very high frequency (usually
16Khz or above) for an enhanced temporal resolution, thus,
creating a deluge of data, making it unsuitable for modelling
purposes. Therefore, modelling methodologies operate upon
a simplified representation of the original audio waveform.
This representation is lower in resolution than the initial raw
wave, but it is easier to work with. In our approach, we
have used the Mel-frequency spectrogram for representing
the sound. Mel-frequency scale is obtained by the application
of non-linear transformation on the linear frequency axis of
a spectrogram obtained from short-term Fourier transform
(STFT). The transformation results in a frequency scale in
which frequencies are represented in a manner which is
perceived by the human auditory system, i.e. higher resolution
is given to low frequencies and lower resolution is given to
high frequencies. Properties such as these have made Mel-
frequency spectrogram an attractive choice for training neural
networks on large scale audio corpus [14].

B. Timbre transfer on mel-frequency spectrogram Representa-
tion

We have employed the attention-guided architecture pro-
posed by [10] for image-to-image translation on the Mel-
frequency spectrogram. The advantage of this approach over
other methods such as CycleGAN [9] and DualGAN [15] is its
ability to discern the most discriminative parts of the image,
thereby making changes only to the most relevant parts and
adding minimal or no changes to the background. It achieves
its objective by creating foreground and background attention
maps.

By using attention maps on Mel-frequency spectrograms,
we can focus on only those areas of the spectrogram which are
most important for discerning the characteristics of the given
audio wave. Therefore, When subjected to a image-translation

procedure, changes are brought about in only these regions.
This reduces the addition of unnecessary features which may
deteriorate the quality of audio wave which is obtained from
the resulting spectrogram. We now discuss our approach based
upon the methodology proposed by [10] in detail.

Having obtained the Mel-frequency spectrogram for the
source audio domain X and the target audio domain Y . The
attention networks are referred to as Ax and Ay respectively.
Each attention network creates attention maps which are
denoted as follows: AX : X → Xa, AY : Y → Ya
where Xa, Ya refer to the attention maps induced by X and Y
respectively and consist of [0,1] values per-pixel.

For an input Mel-frequency spectrogram x ∈ X the trans-
fered representation using the mapping function FX→Y and
the attention network AX is defined as :

x′ = xa � FX→Y (x) + (1− xa)� x (1)

where, xa denotes the attention map AX(x) and � denotes
an element-wise product. In the expression above, the former
part of the sum denotes the foreground of the image (which is
focused upon by the attention map) and the latter part of the
sum refers to the background. Figure 2 shows the procedure
on actual Mel-Frequency spectrograms. The adversarial loss
is then defined as:

Lx
GAN (FX→Y , AX , DY ) = Ey∼Pdata(y) [log (DY (y))]

+Ex∼Pdata(x) [log (1−DY (x′))]

Further, similar to [9], [10] introduce a cyclic consistency loss
which is defined as follows:

Lx
cyc (x, x

′′) = ‖x− x′′‖1
where, x′′ is obtained from x′ via FY→X and AY in a same
manner as equation 1.

The final objective function is then defined as:

L (FX→Y , FY→X , AX , AY , DX , DY ) = Lx
GAN +Ly

GAN+

λcyc
(
Lx
cyc + Ly

cyc

)
(2)

During our training procedure we set the value λcyc as
10. Further, the input to the discriminator network is also
modified using the attention maps so that it consider only
attention mapped regions in the synthetic and the real image
distribution. Lastly, [10] threshold the learned attention maps
in order to prevent attention maps from interfering with the



Fig. 2. The generation of output using the mapping function FX→Y and the attention network AX . The network works in a symmetric manner for domain
Y , mapping function FY →X , and attention network AY .

representation of actual images. We use the threshold value
as 0.1 as proposed in the original setup. For further details
regarding the architecture, the readers may refer [10].

C. Raw audio waveform generation from mel-frequency spec-
trogram

After processing the input Mel-frequency spectrogram un-
der the methodology described in the previous section, we
obtain the Mel-frequency spectrogram of the audio waveform
of the timbre transferred audio. However, the absence of
phase information makes it non-trivial to convert the resultant
spectrogram into an audio waveform. Therefore, we have
used MelGAN for obtaining the audio waveform. MelGAN
comprises of generative adversarial networks to produce high-
quality audio waveforms given a Mel-frequency spectrogram.

The objective minimized during the training process, as
proposed by [4], are defined as follows:

min
Dk

Ex [min (0, 1−Dk(x))] +

Es,z [min (0, 1 +Dk(G(s, z)))] ,∀k = 1, 2, 3 (3)

min
G

Es,z

 ∑
k=1,2,3

−Dk(G(s, z))

+ λ

3∑
k=1

LFM (G,Dk)


(4)

where, G denotes the generator network, D denotes the
discriminator network, x is the raw audio waveform, z denotes

Gaussian noise vector and s denotes the conditional informa-
tion (the input Mel-frequency spectrogram) and k denotes the
index of the respective discriminator network. LFM denotes
the feature matching objective, used for reducing the L1
distance of discriminator feature maps of synthetic and real
audio. we use λ = 10 during our training procedure. For
further details, the readers may refer [4].

IV. EXPERIMENTS AND RESULTS

A. Datasets

We have used two datasets, namely, MIDI-BACH and
real-world dataset for the training and evaluation of our
proposed approach.
MIDI-BACH: It is a catalog of J.S Bach’s compositions
using different Instruments. We use the audio data generated
from piano and violin for our analysis.
Real World Dataset: We collected two hours of real world
recording from Youtube videos for each instrument [16] [17]
[18] [19]. We subsequently converted these video files to
audio files. Real World dataset helps us in creating a robust
model, effective against noise inherent to real-world audio
samples, unlike the MIDI-BACH

These recordings from both the datasets were segmented into
six seconds of audio samples. Mel-frequency spectrograms
generated for these audio samples were used for training and
testing our model. For generating spectrograms, we used 512



samples between successive frames and FFT window of length
2048. The resolution of each spectrogram was [432*432*3].
We generated 2000 Mel-frequency spectrograms for each
instrument. We further split this dataset into training,
validation, and test set using a 60:20:20 split.

We used an initial learning rate of 0.00005 for the complete
network with Adam [20] optimizer for training our network.

B. Evaluation of results

Figures 3 and 6 depict the Mel-frequency spectrograms gen-
erated for the audios recorded using piano. These spectrograms
were fed as input to our model. Figures 5 and 8 represent the
spectrograms for violin generated after attention guided image-
to-image translation. [10], using figures 3 and 6 respectively
as input. Figures 4 and 7 are the attention maps generated for
our first and second input respectively.

Fig. 3. Input spectrogram of piano: MSP1

Fig. 4. Generated attention map for MSP1

1) Convolutional Neural Network based evaluation:
We trained a Convolutional Neural Network for identifying
the instrument used for generating the input Mel-frequency
spectrogram. The classifier was trained on Mel-frequency
spectrograms obtained using 1400 audio samples for each
instrument category, i.e., piano and violin.

Table I provides a brief overview of the architecture of
CNN used during the quality evaluation phase. RGB images
[128*128*3] of Mel-frequency Spectrograms were fed as input
to the model, and the output was the label for each image.

Our model achieves an accuracy of 99.2% during the testing
phase. Figure 9 depicts the Receiver Operating Characteristic

Fig. 5. Generated spectrogram of violin: MSP1V

Fig. 6. Input spectrogram of piano: MSP2

curve plot obtained for our Convolutional Network during the
testing phase. This represents the high accuracy of our Convo-
lutional Neural Network in identifying the source instrument
for the input Mel-frequency Spectrogram.

This CNN was subsequently used for predicting the class
labels for our generated images. We obtained an accuracy of
98.89% while predicting the class of our generated spectro-
grams for a given target label, indicating the good quality and
superiority of our proposed architecture in performing timbre
transfer.

2) MelGAN based evaluation: We used MelGAN for
reconstructing audio waveform from our generated Mel-
frequency spectrograms. These generated audio waveforms
were subjected to human listening tests. While the audio-

Conv2d Layers with BatchNorm2d
Filter Stride Output Activation Max Pooling kernel size

3 1 8 LReLu 2
5 1 32 LReLu 2

Fully Connected Linear Layer
Input Features Output features

32768 8192
8192 4000
4000 2000
2000 500
500 50
50 2

TABLE I
CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE



Fig. 7. Generated attention map for MSP2

Fig. 8. Generated spectrogram of violin: MSP2V

Fig. 9. ROC curve plot for CNN

waveform generated sounded close to its target instrument
domain, improvements can be done with regard to reduction
of unwanted noises.

V. CONCLUSION

In this paper, we propose Attention-based Timbre Transfer
(ATT), an attention-based pipeline for musical timbre trans-
fer. ATT is capable of manipulating the timbre of a given
monophonic audio sample to that of target instrument while
adding a minimal offset to other physical characteristics of
sound such as loudness and pitch. By using attention, ATT
is capable of manipulating only those regions of the Mel-

frequency spectrogram which carry the highest importance for
determining the timbre, thereby reducing the addition of un-
wanted characteristics in the translated image representation.
Further, we also use MelGAN [4], which increases the speed of
spectrogram inversion process without degrading the quality.
In future, we would like to modify the training process for
noise reduction as well as extend ATT towards polyphonic
sound samples.
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