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Abstract—Multivariate time series prediction has fundamental
importance to various practical domains. Many useful techniques
have been proposed in literature for improving the accuracy
and efficiency of prediction. However, due to the complicated
dependency between time stamps and the interactive dependency
between multiple time series, it is very difficult to pursue a high
accuracy and alleviate the prediction error. In this paper, we
propose a residual compensation scheme for multivariate time
series prediction, where the prediction error is modeled by a
PID-based residual network (PID-R) to cover various linear,
cumulative and differential effects. To evaluate the effectiveness
of the residual compensation, a hybrid structure integrating the
Seq2Seq model with the classic vector auto-regression (VAR) is
built as an initial predictor. The proposed final predictor with
residual compensation (FPRC) incorporates the initial predictor
and PID-R. Extensive experiments show that the FPRC achieves
superior accuracy in comparison to state-of-the-art methods
and ablation analysis demonstrates the effectiveness of residual
compensation.

Index Terms—time series, prediction, residual model

I. INTRODUCTION

As is well known, time series modeling and prediction is of
indispensable significance to numerous practical fields, such
as business, finance, economics, climate, society, science and
engineering [1]–[6]. Thus a lot of active research works during
the past few years are still going on in this subject. Many
important models have been proposed in literature to improve
the accuracy and efficiency of time series modeling and predic-
tion [7]. These prominent methods can be largely categorized
into two classes: statistical models based prediction and deep
network based prediction. Statistical models assume that time
series follows certain function form like a linear or quadratic
function [8] while deep network based prediction constructs
a model for mimicking the intelligence of human brain and
attempts to recognize regularities and patterns from the past
data [9], [10].

In general, statistical models for time series data may have
many forms and represent different stochastic processes [7].
By employing traditional statistical analysis, a variety of meth-
ods have been proposed for time series prediction, containing
both linear and nonlinear techniques. Linear statistical models
primarily consist of auto-regression (AR), moving average
(MA) and their variants [8], [11]. Auto-regressive integrated
moving averages (ARIMA) is one of the most popular and

†Corresponding author.

effective method, which works well for stationary univariate
series [12]. Seasonal ARIMA (SARIMA) further considers the
seasonal effect in the sales dataset [13]. Vector auto-regression
(VAR) considers the dependency among time series while
ARIMA does not [14], [15]. VAR addressed the high com-
putational cost problem faced by ARIMA in high dimensional
time series prediction ( [11], [16]). Nonlinear statistical models
primarily consist of the non-linear autoregressive model, the
nonlinear moving average model, kernel methods, ensemble
methods, and Gaussian processes [7]. The drawback is that
most of these approaches employ a predefined nonlinear form
and may not be able to capture the true underlying nonlinear
relationship appropriately [8], [12].

Deep learning gives rise to a prosperity of time series
modeling and prediction. Recurrent neural network (RNN) is
known as a connectionist model able to capture the sequential
nonlinear dynamics via node cycles while suffering from the
problem of vanishing gradient [17]. Long short-term memory
network (LSTM) and and the gated recurrent unit (GRU)
have overcome this limitation and achieved great success in
various applications [18]. Seq2Seq is a popular method for
time series modeling and prediction [17], [19]. Convolutional
neural network (CNN) is a critical alternative for univariate
or multivariate time series prediction [20]. Recent temporal
convolutional network (TCN) uses a hierarchy of temporal
convolutions to capture features for further prediction [21].
The attention-based encoder-decoder network employs an at-
tention mechanism to adapt a longer input sequence [22]–
[24]. Therefore, it is natural to consider state-of-the-art deep
network as a starting baseline for time series prediction.

By combining statistical analysis and deep network, hybrid
models are invented to improve the prediction accuracy. The
prior study in [25] considers a coupling of full-connected neu-
ral network and the traditional ARIMA. LSTNet-skip uses the
CNN and RNN to extract short-term local dependency patterns
and the long-term trend, and uses the AR model to tackle the
scale insensitivity [26]. On the basis of LSTNet-skip, LSTNet-
Attn leverages the attention mechanism to capture the long-
term dependency of generated features at the convolutional
layer [26]. Wavelet-Trans feeds the scalgram and temporal
signal into CNN and RNN respectively, and fuse them using
a multi-layer perceptron (MLP) [27]. Although statistical
analysis, deep learning and hybrid models show the benefit
for many practical forecasting problems, it is very difficult to
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achieve a precise prediction in complex environments due to
the highly dynamics in both global and local aspects.

Most recently, a couple of research works consider to
estimate the residual error and use it as a compensation
for time series prediction [19], [28], [29]. Residual recurrent
neural network (R2N2) considers the traditional AR model
as the initial predictor and uses the RNN to estimate the
residual error [28]. Dest-ResNet in [19] is designed and
dedicated for the traffic speed prediction, where a Seq2Seq-
based residual network is introduced to alleviate the difference
between the predicted traffic speed and the groundtruth speed.
As concluded, the compensation for the residual error greatly
improves the accuracy of time series prediction.

In this paper, we propose a novel proportion-integration-
differentiation (PID) based residual network (PID-R) to com-
pensate multivariate time series prediction, where the inner
PID module and MLP are combined to calculate the residual
error. By considering a variety of linear effect, cumulative
effect and differential effect of the prediction error at different
time stamps, the residual network is designed to reduce the
difference between the groundtruth and the initial prediction.
Furthermore, we combine the most general Seq2Seq and the
traditional VAR as the initial predictor, different from [28]
only considering the AR. Thus, the initial predictor introduced
in this paper could be easily extended or transferred to other
advanced hybrid models without obstacle. On the other hand,
the proposed PID-based residual network is capable of fitting
well for a general initial predictor. By incorporating the initial
predictor and PID-R, the proposed final predictor with residual
compensation (FPRC) is demonstrated by real experiments to
be superior to state-of-the-art methods. Please be noted that,
different from the piror work [19], [28], the final prediction
in FPRC is further fed back into both the initial predictor and
the residual network for the next prediction.

The main contribution of this paper can be summarized as

• A novel PID-based residual network named PID-R is
proposed to compensate and reduce the predict error.

• A novel initial predictor is proposed by combining the
Seq2Seq model and traditional VAR, which could be
incorporated in the final predictor.

• By combining the initial predictor and the PID-R, we
propose the final predictor, where the prediction at t is
fed back for the prediction at t+ 1.

• Extensive experiments demonstrate the superiority of
our proposed method in comparison to state-of-the-art
approaches.

The remaining of this paper is organized as follows. Section
II introduces the problem definition and the overview of our
scheme. The methodology is detailed in Section III, including
the FPRC, the initial predictor and the PID-R. Experiment
results on three real datasets are reported in Section IV,
followed by Conclusion in Section V.

II. PROBLEM DEFINITION AND OVERVIEW

A. Problem Definition

Consider a multivariate time series XT , which consists
of m time series and T past time stamps. Define XT =

(x1,x2, · · · ,xT ) ∈ Rm×T , where xk =
(
x1k, x

2
k, ..., x

m
k

)T

denotes the multivariate series at time stamp k. The task
of prediction is to provide an accurate estimation for
{xT+1,xT+2, · · · ,xT+H} based on the known past data XT .

Without loss of generality, the task of prediction is based
on the assumption that the value of future samples in time
series is related to that of the past samples and the test data
follows the same distribution as the training data [8]. By
exploiting the feature representation from the past samples
of multivariate time series, we are able to build a proper
model to predict the future samples. For convenience, we
define YT+H , (yT+1,yT+2, · · · ,yT+H), where each yT+t

denotes the estimation of the ground truth xT+t. In other
words, we aim to find the predictor as

yT+t = f(XT ,yT+t−1), 1 ≤ t ≤ H (1)

where f(·) denotes the mapping function from XT to YT+H ,
i.e. rolling prediction of H samples at once.

B. Overview of Scheme

1) Final Prediction with Residual Compensation (FPRC):
Fig. 1(a) shows the overall prediction scheme with residual
compensation named FPRC, which incorporates a proposed
initial prediction and a residual network PID-R that will be
respectively described as below. The initial predictor takes
XT and the delayed final prediction YT+t−1 as inputs and
generates the prediction ỸT+t. The PID-R takes the delayed
initial prediction ỸT+t−1 and the delayed final prediction
YT+t−1 as inputs and generates the current residual error
εT+t. The final prediction in the FPRC is the summation of
the initial prediction ỹT+t and the current residual error εT+t.
Please be noted that the final prediction YT+t is delayed and
fed back into both the initial prediction and the PID-R for
more precise prediction.

2) Initial Predictor: The initial predictor is proposed for
evaluating the effectiveness of the FPRC. Fig. 1(b) illustrates
the block diagram of our proposed initial predictor, which
is one kind of hybrid models. As shown in Fig. 1(b), the
initial predictor combines the LSTM-based Seq2Seq model
and the VAR model, where the Seq2Seq module takes XT

as input and generates a basic prediction φT+t, and the VAR
module takes XT and the delayed final prediction YT+t−1

as its inputs and generates its own basic prediction ψT+t.
Please be noted that, when the initial predictor is utilized
independently for ablation analysis, the feedback is thus as-
signed by ỸT+t−1 = (ỹT+1, ỹT+2, · · · , ỹT+t−1) instead of
YT+t−1 in FPRC. The feedforward neural network (FNN-I)
is employed to combine φT+t and ψT+t to generate the initial
hybrid prediction ỹT+t. Last but not least, the initial predictor
introduced in this paper could be easily extended or transferred
to other advanced hybrid models without obstacle.



(a) FPRC. (b) Initial predictor. (c) Residual estimator PID-R.

Fig. 1. Block diagram of the proposed models.

3) The PID-R: Fig. 1(c) shows the proposed PID-R, which
is designed to evaluate the current residual error εT+t. Firstly,
PID-R takes the delayed initial hybrid prediction ỸT+t−1 and
the delayed final prediction YT+t−1 as its inputs and calcu-
lates the historical residual errors {εT+1, εT+2, ..., εT+t−1}.
Then the residual errors are processed by using PID modules
for covering a variety of linear effect, cumulative effect and
differential effect. As shown in Fig. 1(c), all historical residual
errors (εT+1, εT+2, ..., εT+t−1) are passed through the Pro-
portion unit K, the Integration unit

∫
and the Differentiation

unit ∂, respectively. The resulting outputs are concatenated
and processed by a MLP called FNN-II. Please be noted that
the proposed PID-based residual network is capable of fitting
well for a general initial predictor.

III. METHODOLOGY

In this section, we will describe the details of the FPRC,
the initial predictor and the PID-R.

A. Final Prediction with Residual Compensation (FPRC)

Fig. 1(a) shows the FPRC, which incorporates the initial
predictor and the PID-R for prediction’s compensation, where
the final prediction is delayed and fed back into two separate
modules for more precise prediction.

Specifically, given XT = (x1,xt, · · · ,xT ), the initial
predictor generates its prediction ỹT+t by taking the historical
final prediction YT+t−1 as its input. On the other hand,
by virtue of ỸT+t−1 and YT+t−1, the PID-R generates the
current residual error εT+t. The final prediction at the time
stamp T + t can be obtained as

yT+t = ỹT+t + εT+t. (2)

Considering the next time stamp T + t + 1, the prediction
yT+t and ỹT+t are added into YT+t and ỸT+t respectively
to predict yT+t+1 until the end we obtain all YT+H .

Fig. 2. Seq2Seq model (For easy clarification).

B. Initial Predictor

The initial predictor contains the LSTM based Seq2Seq, the
feedback-induced VAR and the FNN-I module.

1) Seq2Seq based Prediction: The LSTM-based seq2seq
module contains an encoder, a decoder and a context vector
C [17]. For convenient clarification, we simply sketch its block
diagram in Fig. 2. Given XT = (x1,x2, · · · ,xT ), the encoder
takes each xk as an input and updates the hidden state hk and
cell state ck. The final state hT and cT are assigned to the
vector C. The decoder is to generate the serial prediction based
on the hidden state and the vector C from the encoder.

Specifically, in Seq2Seq module, the hidden state hk can
be calculated based on the prior hidden state hk−1 and each
time series xk, for 1 ≤ k ≤ T ,

ik = σ(Wi · [hk−1,xk] + bi)

fk = σ(Wf · [hk−1,xk] + bf )

c̃k = tanh(Wc · [hk−1,xk] + bc)

ck = ik � c̃k + fk � c̃k−1

ok = σ(Wo · [hk−1,xk] + bo)

hk = ok � tanh(ck),

(3)

where ik represents the input gate, fk represents the forget gate,
ok represents the output gate and ck represents the cell state;



σ is the Sigmoid function, [· , ·] represents concatenation,
and � is the element-wise Hadamard product; Wi, Wf , Wc

and Wo represent weights; bi, bf , bc and bo represent the
corresponding biases. The context vector C is thus assigned
by

C = [hT , cT ] . (4)

In the decoder, by passing C into each LSTM block as
shown in Fig. 2, we similarly obtain the hidden states hT+τ ,
1 ≤ τ ≤ t, as

iT+τ = σ(W
′

i · [hT+τ−1,C] + b
′

i)

fT+τ = σ(W
′

f · [hT+τ−1,C] + b
′

f )

c̃T+τ = tanh(W
′

c · [hT+τ−1,C] + b
′

c)

cT+τ = iT+τ � c̃T+τ + fT+τ � c̃T+τ−1

oT+τ = σ(W
′

o · [hT+τ−1,C] + b
′

o)

hT+τ = oT+τ � tanh(cT+τ ),

(5)

where W
′

i , W
′

f , W
′

c and W
′

o represent weights; b
′

i, b
′

f , b
′

c

and b
′

o represent the corresponding biases.
So the output at time stamp T+τ , i.e. φT+τ , can be obtained

by combining hT+τ and the prior prediction φT+τ−1 as

φT+τ = WFC · [φT+τ−1,hT+τ ] + bFC , (6)

where WFC and bFC represent weights and biases, which
could be learned from the training data. The final φT+t can
thus be obtained after t iterations.

2) VAR based Prediction: The orginal data XT and the
feedback at the past time stamps to generate its independent
prediction ψT+t at the current time stamp. By taking the final
prediction YT+t−1 as a feedback, according to the operation
of VAR, we have

ψT+t =

T∑
i=1

Ai · xi +

t−1∑
i=1

AT+i · yT+i + ζ, (7)

where each Ai is a time-invariant m×m matrix, for 1 ≤ i <
T + t, and ζ is a m× 1 constant vector. Please be noted that,
for the ablation analysis later, when this module is utilized
independently for the initial prediction, the feedback at the
time stamp T + t is given by ỹT+t.

3) Hybrid Initial Prediction: We employ the MLP for the
FNN-I module. The hybrid initial prediction is obtained by
integrating the basic prediction of the Seq2Seq module φT+t

and that of the VAR module ψT+t. So we have

ỹT+t = fI (WI · [φT+t, ψT+t] + bI) , (8)

where WI and bI denote the weights and biases in the MLP,
which could be learned from the training data; fI(·) represents
the activation function.

C. PID-R for Residual Estimation

As shown in Fig. 1(c), the PID-R model takes the historical
initial prediction ỸT+t−1 = (ỹT+1, ỹT+2, . . . , ỹT+t−1)
and the historical final prediction YT+t−1 =

(yT+1,yT+2, · · · ,yT+t−1) as its inputs. The historical
residual error εT+i can thus be obtained as

εT+i = yT+i − ỹT+i, (9)

for all i = 1, 2, · · · , t−1. We pass all historical residual errors
(εT+1, εT+2, ..., εT+t−1) through the Proportion unit K, the
Integration unit

∫
and the Differentiation unit ∂, respectively.

Among them, the Proportion unit considers a linear function
in terms of the residual error at the time stamp T + t− 1. In
other words,

PT+t = K · εT+t−1, (10)

where PT+t is the output of the Proportion unit and K denotes
a proportion factor.

The Integration unit focuses on the cumulative effect of
errors and the output can be generated by

IT+t =

∑t−1
i=1 εT+i

t− 1
, (11)

where t ≥ 2 and IT+1 = 0.
The Differentiation unit focuses on the differential control

strategy, implying that the current residual error is affected by
the trend of historical residual errors. So, we have

DT+t = εT+t−1 − εT+t−2, (12)

where DT+t is the output of the Differentiation unit.
The outputs from the PID module, PT+t, IT+t and DT+t,

are concatenated and then passed through the FNN-II module,
where another MLP is employed for fusion. So the output of
PID-R can be expressed as

εT+t = fII (WII · [PT+t, IT+t, DT+t] + bII) , (13)

where εT+t is the residual error at time stamp T + t; WII and
bII are weights and biases, which could be learned from the
training data; fII(·) represents the activation function.

Please be noted that, in the proposed PID-R, the current
residual error εT+t is modeled as the combination of various
linear, cumulative and differential effects from all historical
residual errors (εT+1, εT+2, ..., εT+t−1). This makes sense
intuitively due to the complexity and correlation of residual
errors at consecutive time stamps.

IV. EXPERIMENTS

A. Data Sets

• ENSO1 [28]: ENSO phenomenon is associated with a
band of warm ocean water in the pacific, which consists
of 7 indices with monthly surface temperature from 1951
to 2018. We use NINO 1-2, NINO 3, NINO 3-4 and
NINO 4 as one of our datasets named ENSO, which
consists of 816 multivariate (4 features) measurements.

• Stock High Prices2: The stock prices in Yahoo! from
Jan. 3, 2007 to Dec. 25, 2018 are collected as our dataset,
containing daily high prices among 6 sectors.

1https://www.esrl.noaa.gov/psd/data/climateindices/
2https://pydata.github.io/pandas-datareader/stable/remote data.html



TABLE I
PARAMETER SETTING

Parameters Description Range
T length of past samples {32, 64}
H length of prediction {2, 4, 8}
hsize hidden size of encoder/decoder {64, 128}
bsize the batch size {8, 16, 32}
lr the learning rate {0.01, 0.001}
lrdecay lr = lr · lrdecay {0.95}
wdecay weight decay with L2 reg. {10−5}

• Oil Revenue: Our dedicated dataset provided by an high-
technology company refers to various daily revenue of
tens of oil stations from 2015 to 2019.

B. Compared Methods

• VAR [8]: VAR is a classic statistical approach to model
the dependencies among multivariate time series.

• Seq2Seq [17]: Seq2Seq is a widely used method for
machine translation and other general prediction.

• LSTNet-skip [26]: LSTNet-skip firstly uses the CNN
and RNN to extract short-term local dependency patterns
and the long-term trend, and then uses the AR to tackle
the scale insensitivity.

• LSTNet-Attn [26]: LSTNet-Attn adds the attention
mechanism on the basis of LSTNet-skip.

• Wavelet-Trans [27]: It feeds the scalgram and temporal
signal into CNN and RNN respectively, and then fuse
them using a MLP, where the scalgram is obtained by
using the wavelet transform.

• TCN [21]: Temporal convolutional network (TCN) uses
a hierarchy of temporal convolutions to capture features
for further prediction.

• R2N2 [28]: Residual recurrent neural network (R2N2) is
a residual based model, which uses the AR model as the
initial prediction and estimates the residual error using
RNN.

• FPRC: FPRC is our proposed final predictor with resid-
ual compensation.

C. Evaluation Metrics and Parameters

To measure the performance of multivariate time series
prediction, we use two evaluation metrics defined as follows:
1) Mean relative squared error (MRSE)

MRSE =

√∑m
i=1

∑T
t=1(Zit − Ẑit)2√∑m

i=1

∑T
t=1(Zit − Z̄it)2

,

2) Relative error (RE)

RE =

√∑m
i=1

∑T
t=1(Zit − Ẑit)2√∑m

i=1

∑T
t=1(Zit)

2

,

where Z and Ẑ ∈ Rm×T are the ground truth and prediction,
respectively; Zit indicates the dimension i at time stamp t;
Z̄i = 1

T

∑T
t=1 Z

i
t .

Fig. 3. Longer prediction on ENSO dataset with H ∈ {9, 22}.

Table I summarizes the parameter setting in our experi-
ments. The method is optimized by performing mini-batch
stochastic gradient descent (SGD) with the Adam optimizer.

D. Results and Discussion

To demonstrate the effectiveness of our proposed residual
network PID-R and the resulting predictor FPRC, we conduct
the following experiments and ablation analysis.

1) Comparison to All Baselines on Three Datasets: In this
experiment, we aim to compare our proposed FPRC to all
seven baselines mentioned above on all three datasets, where
the number of past samples to be used is selected as T =
{32, 64} and the number of future samples to be predicted is
selected as H = 8. Table II illustrates the overall experimental
results, where the lowest MRSE and RE in each dataset are
highlighted in boldface. As observed, the FPRC shows the best
performance for all cases in terms of all seven baselines.

More detailed, it is observed that deep learning based meth-
ods and hybrid models outperform statistical analysis based
method VAR in most cases, indicating the powerful capability
of deep network in time series prediction. Deep learning
based methods Wavelet-Trans, TCN and Seq2Seq have a better
performance than hybrid models in ENSO and Stock datasets
because Wavelet-Trans alleviates frequency features while
TCN and Seq2Seq can keep a longer memory for prediction.
However, Considering the residual compensation, the R2N2
and our proposed FPRC outperforms various deep learn-
ing based baselines Seq2Seq, Wavelet-Trans and TCN, and
hybrid models LSTNet-skip and LSTNet-Attn. Furthermore,
our proposed FPRC integrating hybrid model with residual
compensation is better than the R2N2 that combines deep
network and residual estimation. This observation indicates
the significant role of the residual compensation.

2) Extension and More Observations: In this experiment,
we extend the experiment above to both short-term prediction
and a longer prediction on a single dataset ENSO, where
only the baseline Seq2Seq is regarded as a representative to
compare with the proposed FPRC due to its wide significance
in various prediction applications.



TABLE II
PERFORMANCE OF LONG-TERM PREDICTION OF THE FPRC AND ALL BASELINES ON THREE DATASETS, WHERE T = {32, 64} AND H = 8.

models metrics ENSO Dataset Stock High Prices Oil Revenue Dataset
32 - 8 64 - 8 32 - 8 64 - 8 32 - 8 64 - 8

VAR MRSE 1.240 1.182 1.262 1.215 1.205 1.405
RE 0.066 0.066 0.039 0.023 0.163 0.187

Seq2Seq MRSE 0.547 0.477 0.885 1.178 1.263 1.827
RE 0.030 0.027 0.027 0.022 0.171 0.243

LSTNet-skip MRSE 1.177 0.803 1.096 1.241 1.402 1.674
RE 0.064 0.045 0.034 0.023 0.190 0.222

LSTNet-Attn MRSE 1.343 0.811 0.980 1.083 1.685 1.779
RE 0.072 0.046 0.030 0.020 0.228 0.236

Wavelet-Trans MRSE 0.549 0.597 0.888 1.710 1.132 1.745
RE 0.030 0.034 0.027 0.032 0.153 0.232

TCN MRSE 0.468 0.508 0.583 0.752 1.391 2.303
RE 0.025 0.029 0.018 0.018 0.188 0.306

R2N2 MRSE 0.806 0.603 1.289 1.183 1.255 1.701
RE 0.043 0.034 0.040 0.022 0.170 0.226

FPRC MRSE 0.403 0.467 0.531 0.608 1.062 1.151
RE 0.022 0.026 0.016 0.018 0.144 0.153

TABLE III
PREDICTION ON ENSO DATASET WITH H = {2, 4, 8} AND

T = {32, 64, 128}.

T :H Seq2Seq FPRC
MRSE RE MRSE RE

32:2 0.316 0.017 0.293 0.016
32:4 0.348 0.019 0.341 0.018
32:8 0.547 0.030 0.403 0.022
64:2 0.290 0.016 0.254 0.014
64:4 0.358 0.020 0.327 0.018
64:8 0.477 0.027 0.467 0.026

128:2 0.259 0.013 0.284 0.014
128:4 0.336 0.017 0.316 0.015
128:8 0.463 0.023 0.385 0.019

With T = {32, 64, 128} and H = {2, 4, 8}, Table III
illustrates the experimental results for more observations with
different combination. It is observed that the FPRC outper-
forms the seq2seq in general. In terms of MRSE and RE, the
seq2seq has only 2 of 18 results better than our proposed
FPRC. In other words, our scheme exceeds the seq2seq
model on other 16 results, i.e. 88.9%. The only exceptional
experiment at [T,H] = [128, 2] shows that the FPRC performs
approximately equal to Seq2Seq although not better.

On the other hand, we consider a longer prediction where
T is fixed while H ranges from 9 to 22. Fig. 3 shows
the generated RE, indicating the superiority of our proposed
FPRC in a longer prediction. It is observed that the advantage
becomes more evident when H gets larger.

3) Ablation Analysis: In order to examine whether the
residual network PID-R is useful in multivariate time series
prediction, we conduct the ablation analysis. To do so, we
remove the PID-R from the proposed FPRC and the resulting
predictor is named as FPwoRC.

Fig. 4 shows the performance of FPRC and FPwoRC, where
we consider T = {32, 64} and H = 8 on all three datasets.
It is observed that there is a big difference on all cases
between FPRC and FPwoRC, indicating the effectiveness of

Fig. 4. Ablation analysis on the proposed FPRC.

the residual compensation.

V. CONCLUSION

In order to improve time series prediction especially the
long-term prediction, we propose the residual compensation
and the final predictor FPRC. The residual network is proposed
based on PID modules, which considers the combination of all
effects from historical residual errors owing to the complexity
and correlation of residual errors at consecutive time stamps.
The FPRC as well as the PID-R is demonstrated by both
comparison results and ablation analysis to be greatly valuable
in multivariate time series prediction.
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F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation,” in
Empirical Methods in Natural Language Processing, 2014.

[24] Y. Qin, D. Song, H. Cheng, W. Cheng, G. Jiang, and G. W. Cottrell,
“A dual-stage attention-based recurrent neural network for time series
prediction,” in International Joint Conferences on Artificial Intelligence,
2017.

[25] G. P. Zhang, “Time series forecasting using a hybrid arima and neural
network model,” Neurocomputing, vol. 50, pp. 159–175, 2003.

[26] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and
short-term temporal patterns with deep neural networks,” in The 41st

International ACM SIGIR Conference on Research & Development in
Information Retrieval. ACM, 2018, pp. 95–104.

[27] Y. Zhao, Y. Shen, Y. Zhu, and J. Yao, “Forecasting wavelet transformed
time series with attentive neural networks,” in IEEE International
Conference on Data Mining, 2018, pp. 1452–1457.

[28] H. Goel, I. Melnyk, and A. Banerjee, “R2n2: residual recurrent neu-
ral networks for multivariate time series forecasting,” arXiv preprint
arXiv:1709.03159, 2017.

[29] S. Huang, D. Wang, X. Wu, and A. Tang, “Dsanet: Dual self-attention
network for multivariate time series forecasting,” in Proceedings of the
28th ACM International Conference on Information and Knowledge
Management, ser. CIKM ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 2129–2132. [Online]. Available:
https://doi.org/10.1145/3357384.3358132




