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Abstract—Accurate remaining useful life (RUL) estimation is
of crucial importance to numerous industrial applications where
safety and reliability are among primary concerns. Recently,
deep learning based prognostics methods have been emerging
as an effective method to improve RUL prediction results.
However, these methods, e.g. recurrent neural networks (RNNs),
convolutional neural networks (CNNs), only capture temporal
information of the sensory data while ignoring intrinsic spatial
relations between sensors. To solve this problem, in this work,
we propose a framework, namely, adaptive spatio-temporal
graph convolutional neural network (ASTGCNN). The proposed
framework consists of two parts. In the spatial domain, since
the intrinsic graph structure of sensors is not provided in most
situations, a dynamic graph neural network is proposed to learn
the sensors’ spatial relation. In the temporal domain, a stacked
dilated 1D CNN is utilized to capture long range dependency of
input sensor signals. These two parts are integrated in a unified
framework and can be trained in an end-to-end manner. The
performance of ASTGCNN is investigated on the turbofan engine
dataset. Experimental results show that the proposed framework
can improve the RUL prediction performance of the current deep
learning methods, and learn the intrinsic spatial information of
sensors.

Index Terms—RUL estimation, spatio-temporal modeling,
adaptive graph learning

I. INTRODUCTION

Regular maintenance is of crucial importance in many
industry areas where high reliability is required, e.g. aerospace,
automotive and manufacturing. In order to reduce unnecessary
maintenance and improve safety and reliability, prognostics
and health management (PHM) has been emerging as a hot
research topic in the last few decades, with remaining useful
life (RUL) prediction being a challenging task.

By leveraging conditional maintenance (CM) data, accurate
RUL prediction results can be achieved using machine learning
techniques [1]. Among various machine learning algorithms,
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deep learning has been demonstrated as one kind of effective
method with great scalability and generalization, and has
gained a lot of research attention in recent years [2]-[6]. Com-
pared with traditional machine learning prognostic methods,
deep learning based prognostics do not require any specific
feature extraction techniques to construct health indicator.
Deep learning based RUL prediction methods consist of two
stages. Firstly, run-to-failure sensory data are collected for net-
work training. Secondly, using a sliding time window, the run-
to-failure sensory data can be divided into smaller sequences
which can be used as the network input and corresponding
end-of-life running cycles or times are used as label. Then
RUL prediction problem can be converted to a deep learning
regression problem. With a well trained deep neural network,
the newly observed sensory data are fed into the network for
RUL prediction.

For example, Babu et al. [2], Li et al. [3] utilized 1D con-
volution neural networks (CNNs) to capture the information
in the temporal domain to predict the RUL of aircraft engines.
Recurrent neural networks (RNNs), as a kind of powerful
methods to model time series data, also have been used in
prognostics. For example, Zheng et al. [4] proposed a long
short-term memory(LSTM) network for RUL estimation and
outperformed the traditional approaches. Ellefsen et al. [5]
proposed a LSTM based semi-supervised deep architecture
for turbofan engine degradation prediction. Huang et al. [6]
developed one kind of bidirectional LSTM framework to
jointly learn operational conditions and sensor signals.

Since the sensory data are always in the sequential form,
it can be observed that both CNNs and RNNs based prog-
nostic methods only extract features in the temporal domain,
while the information in the spatial domain are deprecated.
For a concrete example, in the aircraft tubofan engine RUL



prediction task, signal sensors such as pressure, temperature
and flow are located at different parts in the engine system.
The temperature signal at one location could be affected
by its nearby physical signals such as pressure or flow. It
means there exists a underlying graph structure in the turbofan
engine system, where the sensors at different locations can
be considered as the nodes and the relations among sensors
can be considered as the edges. So it is nature to take the
underlying graph structure into consideration when modelling
the time series sensory data for RUL prediction. Therefore,
the challenge for RUL prediction problem is how to model the
time series sensory data with capturing spatial and temporal
dependencies simultaneously.

Recently, spatio-temporal graph neural networks have ver-
ified that it is effective to model the time series data with
a graph structure. The typical applications include road traf-
fic forecasting [7]-[9], wind speed forecasting [10], action
recognition [11], and driver maneuver anticipation [12]. These
researches either integrate graph convolution neural networks
into RNNs or into CNNs, and have the following challenges
when applied to RUL estimation tasks.

1) In the traffic forecasting problem task, the road Eu-
clidean distance between nodes can be considered as the
edge weights. When used in the skeleton recognition,
distances between joints coordinates are regarded as
edges. However, in RUL estimation tasks, although
these senor signals have inter-dependency relationships,
connections between sensors are always not provided.
In this case, spectral-based graph convolution network
(GCN) and spatial-based GCN can not be used, where
a predefined graph structure is required.

2) RNN-based spatio-temporal graph networks have the
inherent deficiency in learning long-term dependencies
and cannot be parallelized. Although the CNN-based
spatio-temporal graph networks can be parallelized, they
still suffer from the problem of capturing long-term
dependencies. Because in standard 1D CNNss, the recep-
tive field grows linearly with the network depth. When
the input sequences are long, more convolution layers
should be added to expand the receptive field of the
network .

To overcome the above-mentioned deficiencies of existing
spatio-temporal graph neural network for RUL prediction, we
propose a framework, namely, adaptive spatio-temporal graph
convolutional neural network(ASTGCNN). Our contributions
are as follows:

1) Two adaptive spatial graph convolution layers for un-
derlying graph structure learning are proposed. The
first one adopts the metric learning to adaptively learn
adjacent matrix in the spatial feature space. The second
one utilizes the attention mechanism to learn the graph
structure in an embedded dot-product way.

2) 1D dilation convolution is utilized to capture temporal
dependency with the receptive field growing exponen-
tially with the depth of network. A unified framework is

proposed to integrate these two parts, with an end-to-end
training manner.

This paper is structured as follows: Section II introduces
the researches related to our work. Section III gives the
mathematical definition of the RUL estimation problem and
introduces the proposed framework. Section IV shows the
experimental results on the turbofan engine dataset. Section
V draws the conclusion.

II. RELATED WORKS
A. Graph Convolution Networks

Graph convolution networks are deep learning approaches
for graph structured data [13], and have been applied in
domains such as network embedding, link prediction, node
classification, etc. There are two kind of basic approaches
exploring to generalize CNNs in the irregular graph domain.
One is to expand the definition of graph convolution in the
spatial domain, and the other uses the graph Fourier transforms
[14] to extend GCNs in the spectral domain [15].

Let © € R™™? be a graph signal, i.e., a signal defined on
an undirected weighted graph G = (V, &, A), where V is a
finite set of |V| = n vertices, £ is a set of edges and A €
R™*™ is the adjacent matrix. The row i of graph signal =
is a d dimensional feature vector at the i*" node. Denote *¢
convolution operator defined on graph G. The spectral graph
convolution is defined as

y=go*gr=go(L)x = go(UANU )z = Uge(AN)U 'z, (1)

where U € R™*" is the eigenvectors matrix and A € R"*"
is the diagonal matrix of eigenvalues of the normalized graph
Laplacian L = I,, — D=Y2AD~1/2_ g4 is a parametric kernel,
where gy = diag(f), 6 € R™ is a Fourier coefficients vector.
D € R™*™ is the diagonal graph degree matrix, where D;; =
> y W;;. Note that the computation of matrix multiplication
is O(n?).

ChebNet [16] reduces the computation complexity from
O(n?) to O(KE). It uses Chebyshev polynomials to parame-
terize gg as a truncated expansion,

K—-1
go(A) = OxTr(A), @)
k=0

where T}, (A) is Chebyshev polynomials of A = 2% A/Apae —
I,, and 6 € R¥ is a vector of Chebyshev coefficients. Then
the graph convolution can be written as

K-1
y=go(L)x =Ugg(MU" "z = > 6Ti(L)x. (3
k=0

B. Spatiol-temporal Graph Networks

A spatio-temporal graph is a kind of network where the
nodes attributes changes dynamically over time. A spatio-
temporal graph is defined as G* = (V,&, A, a?), with 2 €
R™*? changes dynamically. Thus, the researches on spatio-
temporal graph networks are aimed to capture the spatial
dependency and the temporal dependency simultaneously. The



majority researches on spatio-temporal graph networks follows
two main directions, the RNN-based and CNN-based methods.
An early work of RNN-based methods [9] incorporated spec-
tral GCN into the recurrent long short-term memory network
to capture spatio-temporal dependency. [8] used diffusion con-
volution combined with RNN to improve model performance.
The main drawback of RNN-based spatio-temporal networks
is the inherent gradients vanishing and explosion problems
and low efficiency when training on long sequence data. The
CNN-based methods [7], [11] adopted the 1D CNN and graph
convolution to make the model more efficient. The graph
Wavenet [17] used dilated convolution to increase the receptive
field of CNN-based methods.

III. METHODOLOGY

In this section, we first give the mathematical definition of
the RUL estimation problem. Then we show the pipeline of
the proposed method. After that, we introduce the two parts
of the proposed model.

A. Problem Formulation and Pipeline Overview

Let G' = (V,&, A?) denote the graph structures of the
sensory data in an industrial system, where A! is a dynamic
adjacent matrix. Denote z' € R"*? the sensory data, and
y® the corresponding remaining useful life. In this paper, A’
is calculated dynamically from z', where A}; = f(},x"),
r! € R? is the data of the i'" sensor at tlme t. The RUL
estimation problem is to predict the most likely §¢ given the
previous J observations,

gt :argn;%XP(yqxthJrl?"'7xt;g)7 (4)
where P(yt|Ti_j41,...,74;G) is the probability of y* condi-
tioned on the past J observations.

The pipeline of the proposed framework is shown in Fig. 1,
we use the structure of WAVENET [17], [18], which has been
proved effective in learning sequential data. In the proposed
ASTGCNN, we have stacked k layers of ASTGCNN layer,
and in each ASTGCNN layer, we use temporal CNN to extract
information in the time domain. After that, an adaptive GCN
is utilized to learn the adjacent matrix A}, = f(x}, %), and
then new spatial features are achieved using graph convolution.
Residual connection is utilized in the whole framework. After
k layers of stacked ASTGCNN, an regression layer is added
to predict the RUL 4.

B. Adaptive Spatial Graph Convolution Layer

As shown in Section I, a predefined graph structure is not
provided in RUL prediction task, and has to be learned from
sensory data. We provide two ways of calculating the pair-wise
function f(zf, z%).

1) Adaptive Metric Graph Convolution: Since Euclidean
distance is not a good metric for graph structured data [19].
Generalized Mahalanobis distance is used to adaptive learn the
adjacency matrix in the spatial feature space. In this case, the

pair-wise distance function is formulated as:

D(x}, z%) = \/(mf—xz)TM(:rf—x;) S

Since M is a Symmetric semi-definite matrix, we use the pPPT
to parameterize it, where P € R?*? is the trainable weights.
In this way, the distance metric can be learned adaptively
according to the characteristic of feature space.

Then, by using the Gaussian kernel, the adaptive adjacent
matrix is formulated as:

= f(al,2}) = e~ P@2))"/27%, 6)

Using the adjacent matrix calculated by Eq. (6), the normal-
ized graph Laplacian L' can be derived using L' = I, —

D~1/2AtD=1/2, Using Eq. (3), the adaptive graph convolution
can be formulated as:
K—1
eka Llf l‘ Wk (7)
k=0

where L' = 2L'/Apqz — I,. Using the recurrence relation
Te(z) = 20Tp_1(x) — Tx—2(x) with Ty = 1 and T} = .
Eq. (7) is a K order polynomial of the adaptive Laplacian,
which is K-localized, which means each nodes depends only
on nodes that are at maximum K hops away from the central
node. The parameter W), € R%*? are trainable weights, which
perform transformation in the feature space.

2) Spatial Attention Graph Convolution Layer: Attention
mechanism has been proved effective in relationship learning
[20], which evaluates similarity in an embedded dot-product
way. In this paper, we adopt the attention mechanism to learn
the intrinsic spatial structure in the graph data. Thus, the
similarity function f is formulated as:

f('Lza*Lg

1 HT t
where C(z') = N, and N is the number of nodes in graph
data. While in the original attention mechanism, C(z') =
>ov; f (@, a%) is always used. We use this form to simplify
gradient calculation [21]. Then the spatial attention graph
convolution is formulated as:
1
b
YT e

C. Temporal Convolution Layer

(WQLL‘DT(W(j,LL';-)IL't 9)

Since most RNNs cannot be parallelized and are vulnerable
to gradient exploding and vanishing problem in capturing long-
range dependencies, we adopted dilated CNN [17], [18] to
be our temporal convolution layer. The visual comparison be-
tween dilated convolution and casual convolution is illustrated
in Fig. 2. In a standard 1D-CNN, the receptive field grows
linearly with the depth of network, while in a dilated CNN,
the receptive field grows exponentially with the network depth,
making it possible to capture long range-dependency with less
layers. Denote * the temporal convolution operator, the dilation

convolution in the temporal dimension is formulated as:
T-1
Z f(s)x(t —d xs),

z =z x f(t) (10)

where d is the dilation factor.
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Fig. 1. A simple illustration of the proposed ASTGCNN. The network consists of k stacked ASTGCNN layer. In each ASTGCNN layer, a temporal convolution
layer is used to capture dependency in the time domain. After that an adaptive graph convolution layer is added to learn the underlying graph information.
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Fig. 2. A comparison with dilation convolution and causal convolution. (a)
is a stacked four layers dilation convolution, and (b) is stacked four layers of
casual convolution. With the same deep, dilation convolution has a receptive
field size of 8, while casual convolution has a receptive field size of 4.

Gating mechanism has been proved effective in sequence
learning. We adopt the same architecture as [17] used in spatio-
temporal traffic forecasting. It takes the forms:

z=tanh(01 * X +b) ® (b * X + ¢), ehY)

where © denotes the Hadamard product, and o(-) denotes
the sigmoid activation function. #; and 6> denote convolution
parameters in Gate CNN and CNN separately.

D. Regression layer

After stacked k layers of ASTGCNN layer, a regression
layer is added to output the final RUL §*. The parameter k is
artificially designed to get a proper receptive field size. Mean
square error is chosen as the training objective of ASTGCNN
for RUL estimation. It is defined as:

N
1 "
L(x—gy1, s 045 ©) = N Z (9 — vi)? (12)
i=1

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our method on the four subsets
of NASA turbofan engine dataset [22].

A. Dataset Description

The turbofan engine dataset comes from the NASA Ames
prognostics data repository. Engine degradation simulation
was carried out using Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) tool. Details of the simulation
setting and the platform can be found in [23].

Run-to-failure engine degradation data in four different sub-
sets are acquired under different combinations of operational

TABLE 1
INFORMATION OF THE C-MAPSS DATASET

C-MAPSS
Dataset
FD001  FD002 FD003  FDO004
Engine units 200 519 200 497
Operation conditions 1 6 1 6
Fault modes 1 1 2 2

conditions and fault modes. Several sensor channels were
recorded to characterize fault evolution, and details of the C-
MAPSS subsets is shown in TABLE 1.

The sensory data from 18 sensors are selected, i.e., sensor
#1, #2, #4, #5, #6, #7, #9, #10, #11, #12, #14, #15, #16, #17,
#18, #21, #22 and #23. A sliding time window with length
of a fixed length T and stride of 1 is used to enclose the
data into small multidimensional time sequences. Min-max
normalization is used to covert the sensory data with different
scales within the range [0, 1]. Based on the assumption that
degradation is a piece-wise linear process,which has been
validated effective for this dataset [2]—[4]. It is assumed to
have a constant RUL value at the initial stage and degrades
linearly afterwards. In our experiment, the constant RUL is set
to 130.

B. Baselines
We compared the proposed ASTGCNN with the following
models:
¢« DCNNI. An early CNN architecture using stacked 1D-
convolution for RUL estimation [2] .

o« DCNN2. An improved deep CNN framework for RUL
prediction [3].

« MODBNE. A multiobjective deep belief networks ens-
meble method for RUL prediction [24].

o DeepLSTM. Stacked RNN architecture with fully con-
nected LSTM units [4] .

« B-LSTM. A bidirectional long short-term memory net-
work for RUL estimation. [6].
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Fig. 3. Comparison sample plot of RUL prediction result. The blue line is RUL label, green line represents the ASRGCNN-Metric result, red line is the
ASRTGCNN-Attention prediction result and the orange line shows the Wavenet result.
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Fig. 4. Training and validation loss over iteration of Wavenet, ASRTGCNN-Metric and ASTGCNN-Attention. Orange line denotes the training loss and the

blue line represents the loss on the validation set.

« Wavenet. A dilation convolution architecture for model-
ing sequence data [18].

C. Experimental Setting and Evaluation Metrics

We conducted the experiments on a 64-bit windows server
with one Intel Core 17-7800x cpu, a 64G RAM and one Nvidia
GTX 1080Ti GPU. The code is implemented using the Pytorch
library, which is available at https://github.com/zhangyu233/
AdaptiveSPT.

To quantitatively evaluate the performance of our meth-
ods, two evaluation metrics are used, i.e., root mean square
error(RMSE) and average scoring function(ASF). The com-
monly used RMSE is defined as the error of estimated RUL
and true label. Denote g; the predict RUL, y; the RUL label
and (2 the indices of observed samples. The RMSE is defined

as:
RMSE = | =%,
il

where d; = 1; — y; is the error between the estimated ¢ and
the true RUL y of the i-th testing sample. In prognostics areas,
early prediction is always better than late prediction. The ASF
metric gives penalty to the late prediction, which is defined
as:

13)

(14)

D. Comparison with other Deep Learning Methods

TABLE II compares the experimental results of the pro-
posed method ASTGCNN with the baseline models on the four
subsets FD001, FD002, FD003 and FD0O04 of turbofan engine
dataset. ASTGCNN obtains the superior results on all of the
four subsets. Compared with the RNNs based deep learning
methods including DeepLSTM and B-LSTM, ASTGCNN-
Metric and ASTGCNN-Attention outperforms them by a
large margin. Compared with the CNNs based prognostic
methods such as DCNNI1 and DCNN2, ASTGCNN-Metric
and ASTGCNN-Attention still have the best performance
on these datasets. Compared with the Wavenet which only
utilized the temporal dilation convolution, ASTGCNN-Metric
and ASTGCNN-Attention has a better prediction accuracy,
which indicates that spatial information is beneficial for RUL
prediction.

Fig. 3 compares the RUL prediction result of ASTGCNN-
Metric and ASTGCNN-Attention on 4 test samples. It shows
that ASTGCNN-Metric generates the most stable results.
ASTGCNN-Metric and ASTGCNN-Attention produces more
accurate prediction results than Wavenet. Since Wavenet does
not utilize any spatial information, its prediction result has a
big deviation from the label.

Fig. 4 compares training and validation loss over the train-
ing iteration of ASTGCNN and Wavenet. It is illustrated
that ASTGCNN-Metric converges using the least number of



TABLE II
PERFORMANCE OF THE PROPOSED METHODS AND OTHER DEEP LEARNING METHODS

Method FDO0O01 FD002 FDO003 FDO004
RMSE ASF RMSE  ASF RMSE ASF RMSE ASF
DCNNI [3] 12.61 2.73 2236 40.20 12.64 2.84 23.31  50.20
DCNN2 [2] 18.45 1287 30.29 53.00 19.82 1596 29.16 31.80
MOBDBNE [24] 15.04 3.34 25.05 21.81 12.51 4.22 28.66  26.44
DeepLSTM [4] 16.14  3.38 2449 17.18 16.18 8.52 28.17  22.38
B-LSTM [6] - — 25.11  18.72 — - 26.61  20.04
Wavenet [18] 17.45  5.29 22.48 16.15 12.04 2.61 21.34  25.84
ASTGCNN-Metirc 8.78 1.46 12.25 2.58 7.76 0.89 13.19 5.64
ASTGCNN-Attention 10.23  2.04 16.67  8.27 8.35 1.37 13.84  8.26
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Fig. 5. Tlustration of learned spatial graph. (a): Heat-map of learned adjacent matrix. (b)(c): Plot of raw sensory data.

TABLE III
COMPARISON OF COMPUTATION TIME

Computation Time

Model
Training(s/epoch)  Inference(s)
Wavenet 37.75 3.06
ASTGCNN-Attention 46.96 5.04
ASTGCNN-Metric 63.65 7.11

training steps and has the smallest training loss. ASTGCNN-
Attention has a worse convergence than ASTGCNN-Metric,
however it still outperforms Wavenet by a large margin, which
verifies the importance of spatial information.

E. Dynamic Spatial Graph Analysis

In order to show the effectiveness of the proposed adaptive
spatial graph convolution layer, we plot the learned graph
adjacent matrix and the corresponding sensory data in Fig.
5. It is shown in Fig. 5(a) that sensor 9 has a high level
correlation with sensor 4 and sensor 17. In addition, sensor
15 and sensor 16 have a low level correlation. Fig. 5(b) plots
the raw sensory data of senor 4, sensor 9 and sensor 17. It is
obvious that these signals have similar trends, indicating these

signals have a high level of correlation. Fig. 5(c) plots the raw
sensory data of sensor 15 and sensor 16. It can be observed
that these two signals are obviously not similar to each other,
which is consistent with our learned adjacent matrix. These
results verify that our model could learn the intrinsic spatial
information of sensors.

F. Computation Time

TABLE III shows the computation time of the proposed
method ASTGCNN and Wavenet in our experiment. It can be
observed that the proposed ASTGCNN requires more training
time and inference time than the Wavenet for the extra added
spatial graph convolution layer. In addition, ASTGCNN-
Metric requires more computation time than ASTGCNN-
Attention.

V. CONCLUSION

In this paper, a deep learning framework ASTGCNN was
proposed for RUL prediction. To utilize the intrinsic spa-
tial information in industrial systems, two kinds of adaptive
spatial graph convolution layer, i.e., ASTGCNN-Metric and
ASTGCNN-Attention, were proposed to learn the spatial in-
formation of sensory data. Dilation convolution was utilized
to capture long range temporal information.



Experimental results have shown that the proposed methods
have a good performance on the benchmark turbofan engine
dataset and have outperformed the existing deep learning based
approaches. ASTGCNN-Metric has a better performance than
ASTGCNN-Attention, however, ASTGCNN-Metric requires
more computation time. In addition, experimental results ver-
ifies that the proposed ASTGCNN could also learn the under-
lying graph structure of sensory systems which is beneficial
to physical analysis.
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