
On the automatic calibration of fully analogical
spiking neuromorphic chips

Daniele M. Papetti
Department of Informatics,

Systems and Communication
University of Milano-Bicocca

Milan, Italy
d.papetti1@campus.unimib.it

Simone Spolaor
Department of Informatics,

Systems and Communication
University of Milano-Bicocca

Milan, Italy
simone.spolaor@disco.unimib.it

Daniela Besozzi
Department of Informatics,

Systems and Communication
University of Milano-Bicocca

SYSBIO/ISBE.IT Centre of Systems Biology
Milan, Italy

daniela.besozzi@unimib.it

Paolo Cazzaniga
Department of Human and Social Sciences

University of Bergamo
Bergamo, Italy

SYSBIO/ISBE.IT Centre of Systems Biology
Milan, Italy

paolo.cazzaniga@unibg.it

Marco Antoniotti
Department of Informatics,

Systems and Communication
Milan Center for Neuroscience
University of Milano-Bicocca

Milan, Italy
marco.antoniotti@unimib.it

Marco S. Nobile
Department of Industrial Engineering and

Innovation Sciences
Eindhoven University of Technology

Eindhoven, The Netherlands
SYSBIO/ISBE.IT Centre of Systems Biology

Milan, Italy
m.s.nobile@tue.nl

Abstract—Nowadays, understanding the topology of biological
neural networks and sampling their activity is possible thanks
to various laboratory protocols that provide a large amount of
experimental data, thus paving the way to accurate modeling and
simulation. Neuromorphic systems were developed to simulate the
dynamics of biological neural networks by means of electronic
circuits, offering an efficient alternative to classic simulations
based on systems of differential equations, from both the points
of view of the energy consumed and the overall computational
effort. Spikey is a configurable neuromorphic chip based on
the Leaky Integrate-And-Fire model, which gives the user the
possibility to model an arbitrary neural topology and simulate
the temporal evolution of membrane potentials. To accurately
reproduce the behavior of a specific biological network, a detailed
parameterization of all neurons in the neuromorphic chip is
necessary. Determining such parameters is a hard, error-prone,
and generally time consuming task. In this work, we propose a
novel methodology for the automatic calibration of neuromorphic
chips that exploits a given neural activity as target. Our results
show that, in the case of small networks with a low complexity,
the method can estimate a vector of parameters capable of
reproducing the target activity. Conversely, in the case of more
complex networks, the simulations with Spikey can be highly
affected by noise, which causes small variations in the simulations
outcome even when identical networks are simulated, hindering
the convergence to optimal parameterizations.

Index Terms—Spikey, neuromorphic chip, neural networks,
PyNN, Fuzzy Self-Tuning PSO, swarm intelligence, global op-
timization, modeling and simulation

I. INTRODUCTION

Neuromorphic Chips (NC) are devices designed to mimic
neuro-biological architectures by means of electric analog
circuits. The idea behind these systems is to represent efficient
alternatives to the computational simulation of neural systems

from both the points of view of speed and power consumption.
NCs have been applied in different contexts [1], ranging
from integrate and fire spiking circuits used in neuromorphic
vision sensors, to large-scale neural systems realizing fast
and parallel computation, or from real-time large-scale neural
emulation, to bidirectional brain–machine interfaces. Other
implementations of neuromorphic hardware focused on the
realization of machine learning techniques, as in the work
presented in [2], where a device with artificial synapses was
introduced to implement unsupervised learning.

Among the existing implementations [3], the Spikey chip
[4] is a peculiar reconfigurable neuromorphic system, able to
simulate the temporal evolution of the membrane potentials
of a network consisting of up to 384 neurons, governed by
a conductance-based Leaky Integrate-And-Fire (LIF) model
[5]. All measurable quantities in Spikey’s circuitry have cor-
responding biological equivalents. For example, a neuron’s
membrane potential is modeled by the voltage over a capacitor
that, in turn, represents a model of the capacitance of the cell
membrane. Thanks to this approach, the dynamics of potentials
evolve continuously in time. Each neuron can receive input
signals from up to 256 synapses, whose connection topology
and weights can be arbitrarily controlled by the user.

Although Spikey can only provide support for small neural
networks, it could (in principle) be used to replicate the
emergent phenomena observed in some specific neural region
of model animals, like insects. Once the topology is defined—
for instance, by replicating the connections observed by means
of confocal imaging [6] or immunohistochemistry [7], or by
fetching the topological information from dedicate databases
[8]—the ultimate spiking behavior of the NC is determined

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

TABLE I
PARAMETERS OF SPIKEY’S NEURONS.

Parameter name Parameter code Parameter interval Notes
Leak conductance g_leak [20.0, 60.0] Individually configurable for each neuron
Absolute refractory period tau_refrac [0.0,∞] Individually configurable for each neuron
Resting potential v_rest [−80.0,−55.0] Shared among neurons in the network
Reset potential v_reset [−80.0,−55.0] Shared among neurons in the network
Threshold potential v_thresh [−80.0,−55.0] Shared among neurons in the network
Inhibitory reversal potential e_rev_I [−80.0,−55.0] Shared among neurons in the network

by its parameterization, that is, the vector of values controlling
conductances, refractory periods, weights, and so forth. In this
work, we investigate the possibility of automatically calibrat-
ing such parameters with respect to an expected behavior, e.g.,
the electrophysiological data recorded in vivo.

Due to the inherent complexity of neural networks, such
parameterization cannot be manually fine-tuned. In order to
create a completely automatic methodology, Spikey needs to
be coupled to an optimization algorithm able to realize the
calibration of the NC parameters, such that the difference
between the simulated and the target spiking activities is
reduced to zero. This non-convex and non-linear minimiza-
tion problem can be tackled by means of population-based
bio-inspired global optimization meta-heuristics. Among the
existing algorithms, we selected Fuzzy Self-Tuning Particle
Swarm Optimization (FST-PSO) [9]. FST-PSO extends the
classic PSO algorithm [10], which is based on a population
of individuals (the particles) moving inside a bounded high-
dimensional search space. Particles move as the result of a
social attraction (towards the best particle in the swarm), a
cognitive attraction (each particle tends to stay close to the best
position it found so far), and a small amount of inertial weight.
FST-PSO leverages fuzzy logic reasoning to autonomously and
dynamically adjust PSO’s hyper-parameters (e.g., the strength
of the social and cognitive attractions), and adapt the swarm
behavior to the problem under investigation.

Our results on the automatic calibration of Spikey by FST-
PSO show that our method is effective on relatively small test
cases, allowing a perfect fit with respect to the target spiking
data. However, the automatic calibration becomes unfeasible
for complex networks, due to the intrinsic stochasticity of
the simulated spiking activity of Spikey. This randomness
in neurons’ potentials—mainly due to hardware production
variability and electronic noise (including thermal noise)—
implies that two fitness evaluations using the same parameter-
ization might yield different values, misleading the trajectory
of particles. A similar issue was previously highlighted in
[11]. We argue that the inconsistent results we obtained are
due to a fitness function that was not designed to handle
the unpredictable stochastic fluctuations that lead to Spikey’s
variable responses.

The paper is structured as follows. We introduce Spikey
and the FST-PSO, together with the fitness function used for
the optimization, in Section II. In Section III we report some
results of automatic calibration on three networks of increasing

complexity. We conclude the paper in Section IV with some
discussions about the limitations of Spikey and our approach,
and provide future directions of this work.

II. MATERIALS AND METHODS

In this section we present an overview of Spikey’s character-
istics, briefly describing how the device can be programmed,
configured and controlled. Then, we introduce the FST-PSO
optimization algorithm, used to perform the calibration of
Spikey, and the novel fitness function introduced in this work.

A. The neuromorphic chip Spikey

Spikey [4] is a re-configurable NC developed by the Elec-
tronic Vision(s) group at Universität Heidelberg, designed to
model and simulate an arbitrary topology of 384 intercon-
nected neurons. At the core of Spikey there is a 180 nm CMOS
with die size equal to 5 mm × 5 mm, which contains the
analog circuitry actually performing the simulation. Although
the communication with the host computer is established by
digital circuits, the simulation is completely analog without
any additional level of abstraction or discretization of the
signal.

Spikey is based on the LIF model with conductance-based
synapses [12] and can follow the temporal evolution of all
neurons, keeping track of their spiking activity. Specifically,
as outcome of a simulation Spikey returns to the host a vector
containing the spiking time instants of each neuron involved
in the neural network. The detailed temporal trace of the
membrane potential can also be recorded, but only for a single
selected neuron. This limitation is due to the small amount of
RAM available on the system (512 MB).

The 384 neurons are organized into two arrays of 192 neu-
rons each; each neuron can be connected up to 256 synapses,
whose weights are defined by the user using 4 bits registers
[13]. A synapse with a weight equal to 0 is assumed to be
turned off by the system. The main advantage provided by
Spikey is its high speed when simulating the neural network;
as a matter of fact, thanks to its analog circuitry, Spikey is
104 times faster than the biological neural networks [4].

Spikey uses an extension of simple LIF neurons, by intro-
ducing the concept of refractory period: as soon as the neuron
fires, it cannot produce other spikes during the refractory
interval. This LIF neuron model consists in 6 parameters
(listed in Table I) that can be set in the Spikey network
[4]. To be more precise, each neuron of the network has 2
parameters (leak conductance and refractory period), while

the other 4 parameters (resting, reset, threshold and inhibitory
reversal potentials) pertain to the entire network. In addition,
as mentioned earlier, each synapse stores a configurable 4-
bit weight. Spikey supports in hardware a long-term learn-
ing mechanism known as Spike-Timing-Dependent Plasticity
(STDP) [14], a biologically inspired process in which the
connection strengths (in this case, the weights) are adjusted
according to the relative timing between a neuron’s input and
the output spikings. Specifically, all inputs that cause a post-
synaptic neuron reaction get strengthened, whereas inputs that
do not cause post-synaptic activity are weakened and will
contribute, with a lower strength, in future simulations.

The neural connection topology in the Spikey chip can be
arbitrarily reconfigured by the user. Technically, this process is
performed by the Spikey chip by means of a FPGA. In order to
simplify the control of the FPGA, and the re-configuration of
the neural networks, Spikey can be programmed using PyNN
[15], a simulator-independent Python library for building neu-
ral network models. PyNN is an agnostic language imple-
mented to program the neuromorphic systems and software
simulators with a high level of abstraction. PyNN provides
both an object-oriented interface and a procedural interface.
In what follows, we briefly describe only the object-oriented
API, which was used in all tests presented in this work.

The most important PyNN classes are Population and
Projection, which are fundamental to define the network
topology:
• Population represents a (uniform) group of cells of

the same type;
• Projection is a set of connections between pre- and

post-synaptic populations.
In principle, the PyNN library provides several models of
neurons, but only the LIF model can be used when working
with Spikey, relying on synapses with exponentially decaying
or alpha-shaped conductances (IF_facets_hardware1).
Two different stimuli sources can be exploited to provide
an input to the network, and thus activating the simulation:
SpikeSourcePoisson and SpikeSourceArray. These
sources generate a sequence of spikes according to a Poisson
process or at user-defined times, respectively. From a technical
standpoint, Spikey considers both sources as actual neurons,
so that a population of sources can be created and propagated
through the neuron populations downstream.

Differently from classic in silico simulations of neural
networks—typically based on numerical integrators developed
to solve the corresponding systems of coupled differential
equations—when specific hardware is employed for the sim-
ulation of such networks, as in the case of analog circuits,
noise can affect the outcome. There are two main types of
noise that can affect Spikey: fixed-pattern noise, and temporal
noise. The former is due to physical imperfections on the chip
that were generated during the fabrication process; this noise
can be recognized and mitigated as it remains identical over
time. Temporal noise, on the contrary, is a form of stochasticity
introduced by many factors, including electronic and thermal
disturbances, which cause Spikey to generate quantitatively

different results at each simulation. We will show in Section
III how temporal noise can represent a limiting factor for the
effective calibration of NCs.

As described above, Spikey can record the spiking times of
all neurons in parallel, producing collective traces of neurons’
spiking activity. A spike is detected and annotated when the
neuron’s membrane potential crosses the user-defined firing
threshold. The spiking traces are the only information that
can be leveraged to perform the calibration on this type
of neuromorphic systems. In order to automatically identify
the optimal parameters that precisely reproduce any desired
spiking behavior, we exploited here FST-PSO, as described in
the next section.

B. Fuzzy Self-Tuning Particle Swarm Optimization

The calibration problem of NCs can be restated as an
optimization problem. Specifically, the goal is to minimize a
fitness function defined as the distance between a target neural
spiking activity—e.g., collected by means of microelectrodes
during in vivo intracellular recordings [16]—and the activity
of the network simulated by using a putative parameterization.

More precisely, given a candidate solution x, the fitness
function is defined as follows. We denote by T the total time
of the simulation, J the number of neurons in the network, and
ωjσ = (t1, . . . , tM), ωjτ = (t1, . . . , tN) the vectors of spiking
times of the j-th neuron sampled during the simulation and in
laboratory experiments, respectively (please note that M can
be different from N). Then, the fitness is defined as:

f(x) =
J−1∑
j=0

∣∣φ(ωjσ)− φ(ωjτ)∣∣ , (1)

where φ is the area of a curve that increases by 1 whenever
the j-th neuron spikes:

φ(ωj) =

|ωj |−1∑
k=1

k · (tk+1 − tk). (2)

The fitness function defined in Equation 1 represents a cumu-
lative difference between the area of the two curves φ(ωjσ)
and φ(ωjτ), calculated on both the target and the simulation,
for all neurons in the network. Please note that if ωjτ = ωjσ ,
then, for all j = 0, . . . , J − 1, the two areas are identical and
the fitness value of x is equal to zero. Every difference in the
spiking time, or in the number of spikes, increments the final
fitness value.

In this work we aimed at realizing the calibration of NCs,
with respect to a desired behavior, without the need for any
user intervention. Specifically, the algorithm used to minimize
Equation 1 is FST-PSO [9], a self-tuning variant of the global
optimization meta-heuristic PSO [17]. FST-PSO is a settings-
free method in which particles automatically determine the
optimal functioning settings (i.e., inertia weight, cognitive and
social factors, minimum and maximum velocities) by leverag-
ing a fuzzy rule-based system that dynamically adjusts such
hyper-parameters for each particle during the optimization
process. In addition, FST-PSO automatically calculates the

size P of the swarm according to the number of dimensions
D of the search space, using the formula P = b10 + 2

√
Dc.

The search space, in which the swarm can move, is bounded
to avoid the exploration of unfeasible parameterizations. In
this work, the limits are determined by the physical limita-
tions of Spikey (see Table I), but they can be adapted to
the characteristics of arbitrary NCs. When a particle goes
outside the boundaries of the search space along one of its
components (i.e., a putative parameterization not supported
by the NC chip), FST-PSO adopts a damping strategy: the
particle is relocated inside the search space with a stochastic
displacement, and the velocity component is changed in the
opposite direction for that component. During each iteration,
the position of the best particle g of the swarm is updated. At
the end of the process—in this work, after 100 iterations—
the last value of g is returned as the optimal solution of the
problem under investigation.

The optimization method was implemented using Python
2.7 and the following libraries: PyNN 0.6, FST-PSO 1.6,
numpy 1.14.3, pexpect 4.5, scipy 1.1, and miniful 0.4. In all
the experiments shown in Section III, the optimization was
repeated 30 times to collect statistical information and analyze
the average behavior. Since we aim at determining all missing
parameters of a model, including the synaptic weights, the
STDP functionality of Spikey was disabled.

III. RESULTS

We performed the calibration of the parameters of neural
networks characterized by an increasing complexity. Besides
the connection topology, in the figures of the networks we
show the parameters to be estimated and their nominal values.
For each network, we ran a simulation of the spiking activity
that was used as in silico target for the calibration. The
input stimuli, fed to each network, was an irregularly spaced
sequence of spiking impulses.

A. Network A - Two sequential neurons

The first analyzed network is a simple system with two
sequential neurons and D = 6 parameters (Network A, Figure
1). Figure 4 shows the result of the first test on Network A, by
comparing the best solution found (bottom panel) and the tar-
get spiking activity (top panel). Each dot in the plots represent
a spike produced by one of the two neurons in the network
(denoted by green and blue colors, respectively). In the case
of Network A we correctly estimated the 6 parameters, being
able to converge to an optimal solution with respect to the
target spiking activity. Thus, from a strictly phenomenological
point of view, the Spikey chip is correctly reproducing the
expected behavior of the target neural network.

Fig. 1. Network A: a simple system with 2 sequential neurons and D = 6
parameters.

Figure 5 (left) shows the convergence plot of FST-PSO: the
x-axis represents the number of iterations of the algorithm,
while the y-axis represents the average fitness of the best in-
dividuals calculated over the 30 repetitions of the optimization
process. The plot highlights the rapid convergence to optimal
solutions with respect to the fitness function, and with a very
limited standard deviation in the results.

The six box-plots reported in Figure 5 (right) show the
distributions of the optimal parameters identified over 30 runs,
and provide a different perspective on the previous result. The
red solid lines denote the nominal values used to generate
the target data, while the black dashed line represent the
best fitting solution (that was used to generate Figure 4).
These boxplots highlight that different executions of FST-PSO
converged to different parameterizations that are all equivalent
from the point of view of the spiking activity, and are hence
characterized by a similar fitness value. As a matter of fact, the
only information stored by Spikey is the time when a neuron
spikes: the NC discards all the data concerning the exact
dynamics of membrane potentials. Two different solutions can
yield spikes characterized by very different nature (e.g., having
different amplitudes, decays, slopes, width of half-spike am-
plitude) but happening in the same moment. This circumstance
leads to different optimal solutions characterized by the same
fitness value. The only information available are these vectors
of spiking times, which are used in Equation 1 to assess
the fitness, meaning that our approach cannot discriminate
between phenomenologically equivalent behaviors.

B. Network B - Ring network

We then performed the calibration of a feedback ring
network with five neurons and D = 12 parameters (Network
B, Figure 2). Figure 6 shows that also in this case FST-
PSO identified a parameterization allowing to reproduce the
expected behavior (as confirmed by the convergence plot in
Figure 7, left), by fitting all targets with the exception of some
exceeding spiking activity mainly at the end of the simulation.
By inspecting the distribution of the 12 parameters (Figure 7,
right), we observe that some values are very different with
respect to the nominal values, while some others show a high
sensitivity. One example is the parameter corresponding to
the synaptic weight of neuron 1. This neuron is upstream
of the whole network: it receives the initial stimulus and
ultimately governs the dynamics of the whole network. Thus,
this parameter has the highest impact on the fitness value, and
must be calibrated with a high precision to enable a correct
spiking activity.

C. Network C - Starfish network

Finally, we calibrated a topology proposed in [18], corre-
sponding to a simplified model of the starfish nervous system,
consisting in five neurons and D = 17 parameters (Network
C). The central nervous system of the starfish is organized as a
nerve ring around its mouth, with radial nerves running along
the arms. Although lacking a centralized brain, this system is
able to control and coordinate the movements of each arm, and

Fig. 2. Network B: a feedback network with 5 neurons and D = 12 parameters.

Fig. 3. Network C: the starfish network with 5 neurons and D = 17 param-
eters. Solid and dashed arcs represent excitatory and inhibitory connections,
respectively.

it is considered as one of the earliest and most simple example
of nervous system in animals. The purpose of this test was
to investigate the performance of FST-PSO in inferring the
weights of inhibitory synapses. Figure 3 shows the topology
of this neural network, where the excitatory and inhibitory
connections between the neurons are denoted by solid and
dashed lines, respectively.

In this tests, FST-PSO was not able to identify any solution
that fits with the target data, as shown in Figure 8. As a
matter of fact, the target and the simulated spiking sequences
differ, since the best solution found is characterized by a
slightly different activity (e.g., neuron 4 spikes two times in
the simulation during the interval 0–50 ms, while only a single
spike was present in the target).

We investigated this circumstance in order to determine
what was preventing the convergence to an optimal solution.
By checking the convergence plots of all runs (data not
shown), we observed that the best solutions found throughout
the 30 runs were actually excellent from the point of view of
the fitness value. In particular, we noticed that these solutions
were characterized by fitness values much lower than those
obtained for Networks A and B, and that many of them were
not improved by FST-PSO throughout the optimization.

To better understand the results obtained for the calibration
of Network C, we performed a simulation using each one
of the best solutions found during the 30 repetitions of the
experiment. We then re-calculated the fitness values of these
solutions using the newly simulated traces, obtaining very dif-
ferent values with respect to the fitness values returned at the
end of the optimization process with FST-PSO. Specifically,
the new fitness values were much higher, thus denoting a very
poor fitting with respect to the target traces. To confirm this
finding, we repeated 1000 times the same simulation using one
of the best solutions found, to analyze the distribution of the
spiking events. In Figure 9, the traces of the spiking events
show that the spikes are scattered in time, and the presence
of many lighter areas confirm that different simulations can
yield radically different outcomes, corresponding to different
fitness values (points are alpha blended, so that darker areas
correspond to a higher probability of a spiking event at that
specific time point). This problem is caused by the fact
that the same parameterization can lead to simulations with
different spiking activities, due to the presence of temporal
noise in analog circuits, as also discussed in [11]. One striking
example is the trace for neuron 3: every simulation basically
produces a different outcome, affecting the fitness values at
each repetition.

The stochasticity of Spikey’s simulation introduces sudden,
unpredictable and misleading modifications of the spiking
activity which, in turn, affects the fitness value calculated for
the same solution. As a consequence, the best particle found
by FST-PSO—characterized by an excellent fitness value, yet
not necessarily reflecting the real quality of the correspond-
ing parameterizations—was actually driving the optimization
process of the swarm in a region of the fitness landscape
characterized by low quality, ultimately yielding a poor final
parameterizations of the NC.

IV. CONCLUSION

In this paper we investigated the automatic calibration
of spiking neuromorphic chips, by means of a settings-
free variant of PSO—called FST-PSO—exploiting a fitness
function specifically defined for this problem. The automatic
calibration method presented in this work has been tested on
the Spikey NC, taking into account three neural networks

0

1
Ne

ur
on

 ID

0 1000 2000 3000 4000 5000
Time (ms)

0

1

Ne
ur

on
 ID

Fig. 4. Comparison of the target trace (top panel) and the trace simulated using the best fitting individual (bottom panel), in the case of Network A.

0 20 40 60 80 100
Iteration number

0

10000

20000

30000

40000

50000

60000

70000

80000

Fi
tn

es
s

80

75

70

65

60

55

In
hi

bi
to

ry
 re

ve
rs

al
 p

ot
en

tia
l (

m
V)

e_rev_I

20

25

30

35

40

45

50

55

60

Le
ak

 C
on

du
ct

an
ce

 (u
S)

g_leak 1

20

25

30

35

40

45

50

55

60

Le
ak

 C
on

du
ct

an
ce

 (u
S)

g_leak 2

0

2

4

6

8

10

12

14

W
ei

gh
t

weight 1

0

2

4

6

8

10

12

14

W
ei

gh
t

weight 2

2000

3000

4000

5000

6000

7000

8000

Fi
tn

es
s

Fitness

Fig. 5. Calibration of Network A. Left: convergence plot of FST-PSO. The mean and the standard deviation of the 30 runs are denoted by the black solid
line and the red filled area, respectively. Right: distribution of the optimal parameters. The red solid lines denote the nominal values used to generate the
target. The black dashed line denote the best parameterization found.

0
1
2
3
4

Ne
ur

on
 ID

0 1000 2000 3000 4000 5000
Time (ms)

0
1
2
3
4

Ne
ur

on
 ID

Fig. 6. Comparison of the target trace (top panel) and the trace simulated using the best fitting individual, in the case of Network B.

of increasing complexity, having up to 17 parameters to be
estimated. Our results show that in the case of simple neural
networks, FST-PSO can identify a parameterization capable of
reproducing the expected behavior of the network. However,

when the complexity of the neural network increases, and
both excitatory and inhibitory connections are considered, our
approach failed in identifying an appropriate parameterization.

We speculate that this is due to some specific features of

0 20 40 60 80 100
Iteration number

200000

400000

600000

800000

1000000

1200000

1400000
Fi

tn
es

s

80

75

70

65

60

55

In
hi

bi
to

ry
 re

ve
rs

al
 p

ot
en

tia
l (

m
V)

e_rev_I

20

25

30

35

40

45

50

55

60

Le
ak

 C
on

du
ct

an
ce

 (u
S)

g_leak 1

20

25

30

35

40

45

50

55

60

Le
ak

 C
on

du
ct

an
ce

 (u
S)

g_leak 2

20

25

30

35

40

45

50

55

60

Le
ak

 C
on

du
ct

an
ce

 (u
S)

g_leak 3

20

25

30

35

40

45

50

55

60

Le
ak

 C
on

du
ct

an
ce

 (u
S)

g_leak 4

20

25

30

35

40

45

50

55

60

Le
ak

 C
on

du
ct

an
ce

 (u
S)

g_leak 5

0

2

4

6

8

10

12

14

W
ei

gh
t

weight 1

0

2

4

6

8

10

12

14

W
ei

gh
t

weight 2

0

2

4

6

8

10

12

14

W
ei

gh
t

weight 3

0

2

4

6

8

10

12

14

W
ei

gh
t

weight 4

0

2

4

6

8

10

12

14

W
ei

gh
t

weight 5

0

2

4

6

8

10

12

14

W
ei

gh
t

weight 6

Fig. 7. Calibration of a Network B. Left: convergence plot of FST-PSO. The mean and the standard deviation of the 30 runs are denoted by the black solid
line and the red filled area, respectively. Right: distribution of the optimal parameters. The red solid lines denote the nominal values used to generate the
target. The black dashed line denote the best parameterization found.

0
1
2
3
4

Ne
ur

on
 ID

0 50 100 150 200 250 300
Time (ms)

0
1
2
3
4

Ne
ur

on
 ID

Fig. 8. Comparison of the target trace (top panel) and the trace simulated using the best fitting individual (bottom panel), in the case of Network C.

the NC. In particular, Spikey’s stochasticity implies that two
independent simulations of the same model, performed using
the same parameterization, yield different spiking traces. As
a consequence, if a candidate parameterization of the network
under investigation generates, just by accident, even one
simulation corresponding to a spiking activity that perfectly
fits with the target behaviour, then, thanks to its very good
fitness value, that parameterization will be considered as an
optimal solution, possibly driving the exploration carried out
by the swarm towards unsuitable areas of the search space.

To overcome this issue, we will test the feasibility of the
automatic calibration of Spikey by using a different fitness
function, able to deal with the stochasticity of the system.
However, it should be kept in mind that Spikey’s simulation
produces a peculiar trace composed of a list of spiking
events that are temporally misaligned, and whose number can
differ across multiple simulations. Due to the nature of this
data, it would be unrealistic, for instance, to perform a large
number of simulations and calculate an “average” dynamics

able to mitigate the stochastic fluctuations and outliers. As
an alternative, we could partition the traces in small time
intervals to bin the spikes, in order to collect statistical infor-
mation about the neuron’s activities. By using this approach,
we could determine whether the putative parameterization
actually yields a spiking event in that time interval with
a high probability, and use this information to implement
an expectation maximization algorithm. So doing, FST-PSO
could be used to maximize the likelihood of experimental data,
given the putative parameterization. We expect this approach
to be robust with respect to Spikey’s stochastic behavior.

The proposed improvements in the optimization process
would allow the investigation of larger networks representing
biologically meaningful topologies, as the sensory networks
of model insects [4], [19].

REFERENCES

[1] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. Van Schaik,
R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger,

N
eu

ro
n

0
N

eu
ro

n
1

N
eu

ro
n

2
N

eu
ro

n
3

0 50 100 150 200 250 300 350
Time (ms)

N
eu

ro
n

4

Fig. 9. 1000 simulated traces of the spiking activity of the five neurons in the starfish network. All simulations were performed using the same parameterization.
A darker color corresponds to a higher probability of a spiking event. The scattering and misalignment of points highlight the stochasticity of Spikey’s simulation.

S. Renaud et al., “Neuromorphic silicon neuron circuits,” Frontiers in
Neuroscience, vol. 5, p. 73, 2011.

[2] E. Covi, S. Brivio, A. Serb, T. Prodromakis, M. Fanciulli, and S. Spiga,
“Analog memristive synapse in spiking networks implementing unsu-
pervised learning,” Frontiers in Neuroscience, vol. 10, p. 482, 2016.

[3] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784,
pp. 607–617, 2019.

[4] T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller, M. A. Petrovici,
M. Schmuker, D. Brüderle, J. Schemmel, K. Meier, “Six networks on a
universal neuromorphic computing substrate,” Frontiers in Neuroscience,
vol. 7, no. 11, pp. 1–17, 2013.

[5] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge University Press, 2002.

[6] T. Mishima and R. Kanzaki, “Physiological and morphological char-
acterization of olfactory descending interneurons of the male silkworm
moth, Bombyx mori,” Journal of Comparative Physiology A, vol. 184,
no. 2, pp. 143–160, 1999.

[7] I. Nishikawa, M. Nakaumura, Y. Igarashi, T. Kazawa, H. Ikeno, and
R. Kanzaki, “Neural network model of the lateral accessory lobe and
ventral protocerebrum of Bombyx mori to generate the flip-flop activity,”
BMC Neuroscience, vol. 9, no. 1, p. P23, 2008.

[8] T. Kazawa, H. Ikeno, and R. Kanzaki, “Development and application of
a neuroinformatics environment for neuroscience and neuroethology,”
Neural Networks, vol. 21, no. 8, pp. 1047–1055, 2008.

[9] M. S. Nobile, P. Cazzaniga, D. Besozzi, R. Colombo, G. Mauri, G.
Pasi, “Fuzzy Self-Tuning PSO: A settings-free algorithm for global
optimization,” Swarm and Evolutionary Computation, vol. 39, pp. 70–
85, 2018.

[10] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm Intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[11] T. Wunderlich, A. F. Kungl, E. Müller, A. Hartel, Y. Stradmann, S. A.

Aamir, A. Grübl, A. Heimbrecht, K. Schreiber, D. Stöckel et al.,
“Demonstrating advantages of neuromorphic computation: a pilot study,”
Frontiers in Neuroscience, vol. 13, p. 260, 2019.

[12] J. Schemmel, D. Brüderle, K. Meier, B. Ostendorf, “Modeling Synaptic
Plasticity within Networks of Highly Accelerated I&F Neurons,” in
Proceedings of the 2007 International Symposium on Circuits and
Systems (ISCAS). New Orleans, LA, USA: IEEE Press., 2007, pp.
3367–3370.

[13] T. Pfeil, T. C. Potjans, S. Schrader, W. Potjans, J. Schemmel, M.
Diesmann, K. Meier, “Is a 4-bit synaptic weight resolution enough?–
constraints on enabling spike-timing dependent plasticity in neuromor-
phic hardware,” Frontiers in Neuroscience, vol. 6, no. 90, pp. 1–19,
2012.

[14] J. Schemmel, A. Grubl, K. Meier, and E. Mueller, “Implementing
synaptic plasticity in a VLSI spiking neural network model,” in The 2006
IEEE International Joint Conference on Neural Network Proceedings.
IEEE, 2006, pp. 1–6.

[15] A. P. Davison, D. Brüderle, J.M. Eppler, J. Kremkow, E. Muller, D.
Pecevski, L. Perrinet, P. Yger, “PyNN: a common interface for neuronal
network simulators,” Frontiers in Neuroinformatics, vol. 2, no. 11, pp.
1–10, 2009.

[16] S. Namiki and R. Kanzaki, “Reconstructing the population activity of
olfactory output neurons that innervate identifiable processing units,”
Frontiers in Neural Circuits, vol. 2, p. 1, 2008.

[17] J. Kennedy, R. Eberhart, “Particle swarm optimization,” in Proceedings
IEEE International Conference on Neural Networks, vol. 4, 1995, pp.
1942–1948.

[18] R. Suzuki, I. Katsuno, and K. Matano, “Dynamics of “neuron ring”,”
Kybernetik, vol. 8, no. 1, pp. 39–45, 1971.

[19] S. Namiki, S. S. Haupt, T. Kazawa, A. Takashima, H. Ikeno, and
R. Kanzaki, “Reconstruction of virtual neural circuits in an insect brain,”
Frontiers in Neuroscience, vol. 3, p. 28, 2009.

