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Abstract—This paper shows chaos-based reinforcement learn-
ing (RL) using a chaotic neural network (NN) functions not
only with Actor-Critic, but also with Q-learning. In chaos-based
RL that we have proposed, exploration is performed based on
internal dynamics in a chaotic NN and the dynamics is expected
to grow rational through learning. Q-learning is a very popular
RL method and widely used in several researches. We focused
on whether Q-learning can be adopted to chaos-based RL. Then
we demonstrated the agent can learn a goal task in a grid world
environment with chaos-based RL using Q-learning. It was also
shown that, as learning progresses, irregularity in the network
outputs originated from the internal chaotic dynamics decreases
and the agent can automatically switch from exploration mode to
exploitation mode. Moreover, it was confirmed that the agent can
adapt to changes in the environment and automatically resume
exploration.

Index Terms—Q-learning, exploration, chaotic neural network,
chaos-based reinforcement learning, reservoir network

I. INTRODUCTION

Deep Learning (DL) breakthroughs have shown a deeply
layered Neural Network (NN), which is trained with a large
amount of data, can surpass existing image recognition sys-
tems [1] [2] [3]. DL has also been applied in several engineer-
ing fields, and many studies have identified DL as a superior
approach to handcrafted systems. More recently, DL has been
applied to series data processing such as speech recognition
or natural language processing [4] [5] [6]. Therefore, recurrent
NNs (RNN), which have a recursive structure, have been fo-
cused on. The successes of DL suggest phenomenal ability of
parallel processing in the brain and difficulty in understanding
and handcrafting such a massively parallel system.

Reinforcement learning (RL) is a machine learning ap-
proach in which an agent learns without any direct teacher
[7]. In RL, an agent learns in a task environment by trial-
and-error or exploration driven by external random noise. For
a long time, End-to-End RL approach has been studied [8]
[9] [10]. In End-to-End RL, an agent learns the entire process
from raw input signals to action output based on RL in an NN
as a parallel learning system. Mnih et al. showed that an NN
can play Atari games successfully and sometimes beat human
experts with RL [11]. It was also shown that an RNN can
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learn tasks that require memory in which past information is
integrated through time with RL [12] [13] [14]. In End-to-
End RL, an NN automatically learns necessary functions as
a process to generate action outputs from raw input signals
through the interaction with the environment rather than given
data sets. This approach is expected as a key to realize artificial
general intelligence including higher functions.

In the general approach using RNN, the network requires
convergence dynamics to an appropriate state to extract and
memorize necessary features from the past inputs and to gen-
erate appropriate outputs. Differing from the RNN usage, the
biological brain is not driven only by inputs. We consider that
the state of the brain autonomously and rationally transitions
as internal dynamics. We expect that organizing such dynamics
in an artificial NN through learning must be a key to develop
a thinking machine.

Freeman investigated chaotic dynamics that emerges in
olfactory system of a rabbit [15]. In this research, it is found
that olfactory bulb and cortex have many chaotic attractors
that the system settles into when rabbits are held under the
influence of particular odorant stimulus. When the rabbit
establishes a new conditioned response to a new odorant,
reorganization of existing attractors is observed and a new
attractor corresponding to the new odorant is added after the
emergence of chaotic dynamics. Freeman insisted that the
chaos in the brain continually produces novel activity patterns
that are critical to develop new nerve cell assemblies. Osana
et al. demonstrated a numerical simulation of self-associative
memory with a chaotic NN model that shows the similar
phenomenon to the dynamics that is observed in biological
experiment [16]. Freeman suggested that the ability to create
activity patterns may underlie the brain’s ability to generate
insights and trials in trial-and-error problem solving [17].

In order to realize both convergence and transition internal
dynamics in a network, which look incompatible with each
other, we have investigated an approach of training an NN
that has chaotic dynamics. We have set up a hypothesis that
the exploration driven by disordered and autonomous state
transition in a chaotic NN could develop into rational transition
among multiple states through learning and the network could
acquire dynamics like thinking [18]. On the hypothesis, we



have proposed chaos-based RL in which exploration is driven
by chaotic dynamics in an NN and necessary functions are
acquired based on reward and punishment [19]. It has been
demonstrated that a fully connected RNN having chaotic
dynamics by introducing strong interconnection weights or
neural refractoriness can learn an easy goal task or avoiding
obstacle task with the Actor-Critic method that is a kind of RL
method [20] [21]. In chaos-based RL, it was confirmed that
internal chaotic dynamics initially drives exploration and the
network can establish ordered dynamics to carry out a task as
learning progress. Additionally, the network can automatically
resume exploration when the agent meets changes in the
environment. In other words, it was shown that the agent can
adapt to changes in the environment and automatically switch
between exploration and exploitation modes.

As well as Actor-Critic, Q-learning is a widely used popular
RL method as in Deep Q-network [11]. Q-learning is a simple
learning for discrete actions, and an agent learns action values
for the sets of state and action. In this paper, we demon-
strate that chaos-based RL can be performed with Q-learning
method. Additionally, we show that an agent can automatically
switch between exploration and exploitation modes with chaos
based Q-learning.

Here, we employ a reservoir network (RN) that has chaotic
dynamics instead of a fully connected RNN. RN was proposed
as an echo state network (ESN) by Jaeger [22] or a liquid state
machine by Maass [23], respectively. Its hidden layer is RNN
called reservoir whose recurrent connections are randomly and
sparsely connected. An RN can learn series data processing
easily and stably with modifying only output layer called
readout unit (RU). Hoerzer et al. showed that a chaotic RN
can learn through reward-modulated Hebbian learning. This
suggests that an RN can learn several tasks through exploration
driven by external random noise and a sequential reward [24].
We demonstrated that an RN can learn a working memory
task based on its internal chaotic dynamics and rewards,
and can switch between exploration and exploitation modes
automatically [25].

The remainder of this paper is organized as follows. We
introduce the chaos-based RL and the experimental method in
Section II. We present simulation results in Section III. Finally,
we conclude these results in Section IV.

II. METHOD
A. Network

In this study, we employed an echo state network (ESN).
Fig. 1 shows the network structure. This network consists of an
RNN called reservoir and an output layer called readout unit.
The reservoir has N, = 200 neurons. The network receives
N; = 121 inputs as a vector u; € RN and generates N, = 4
outputs as a vector z; € R™e. The outputs z; are fed back to
the reservoir neurons. Then the internal state vector at time ¢
is expressed as follows:

Ty = gWrCC’I”‘t_1 + Wi“ut + Wszt_1. (1)

Readout Units
out
Z;

Fig. 1. Echo State Network (ESN). An ESN has a special hidden layer called
“reservoir” whose neurons are randomly and sparsely connected and fixed.
The output layer is called “readout units”. The inputs are fed to reservoir and
readout units, and the network outputs are generated as linear combinations of
reservoir activity and network inputs. The network has a feedback pathway,
and outputs are fed back to the reservoir.

The initial internal state x, is set to zero vector. Wi ¢
RN=*Ni js the connection weight matrix from the input to
the reservoir. W ¢ RV=*No g the feedback weight matrix
from the network output to the reservoir. We¢ € RNVx*Nx g
the recurrent connection weight matrix in the reservoir. The
reservoir output vector r; is expressed as follows:

r; = tanh(x;) (2)

Win and W are given randomly from a uniform distribution
between —1 and 1 and their connection probability is 0.5.
WTee is generated randomly from a uniform distribution with
connection probability 0.1 and divided by its maximal absolute
eigenvalue p(W'e°) (Spectral Radius) so that it becomes a
matrix with a unit spectral radius. The normalized W™ is
scaled with ¢ = 1.4, and consequently, the spectral radius is
given by g. The fact is well known that the reservoir dynamics
is ordered with g < 1, whereas it is chaotic with ¢ > 1 and
the larger g is, the more irregular the chaotic activity is.

The network output z; is given with the reservoir outputs
7+ and the input u, as follows:

z = Wout ( Uy ) , (3)

T¢

where Weut ¢ RNoex(Ni+N:) i a fully connected weight
matrix from the input and reservoir to the readout units,
which is indicated as red arrows in Fig. 1. W°" is initialized
randomly from a uniform distribution between —0.01 and
0.01.

In the reservoir computing approach, the readout weight
Weut is only modified to learn generating appropriate outputs.
Note that, although the RN is a kind of RNN and is generally
used to process series data, we use the RN as a network that
has chaotic dynamics in this study. We use supervised learning
to modify W°', and then we define the loss function as
follows:

1
E(u, r; W) = S (Th - 2,)* “)



where T} is the training signal vector that is generated auto-
matically based on Q-learning. W°Ut is modified to minimize
the loss function with gradient decent as follows:

WO W — Vyyou B (ug, 7; W)
s )T (5)

— Wout _ n(l—vt _ Zt) <
Tt

where 7 = 0.01 is the learning rate that modulates the step
size of the weights update.

B. Task

Here, an agent learns to clear a simple goal task in grid
world environment. The outline of the task is shown in Fig. 2.
At the beginning of one episode, the agent is randomly placed
on one of the four start cells in 11 x 11 grid world. Then,
at each step, the network receives agent state input u; and
generates output vector of action values z; = [Q% »To 7Q?]T
whose elements are corresponding to four actions “go north”,
“go east”, “go south”, “go west”, respectively. When the agent
is at (¢,7) in the grid world, the input vector u; is given as
only one corresponding input to the agent location is 1 as
follows:

ut = [utl,u%’... 7uf7... ,ufl21]T
v 1 k=11(G-1)+ (6)

uy = )
0, otherwise

Action selection is not stochastic, but always completely
greedy. Then, an agent action at time ¢ is expressed as follows:

a; = arg max QJf (7)
a

In general RL, to find actually better actions, an agent some-
times explores with stochastic selection by taking an action
that is currently estimated not to be best. For example, in e-
greedy policy, the agent takes random action with probability
0 < ¢ < 1.0. Such exploration in RL is driven by random
numbers generated outside the learner agent. Meanwhile, in
chaos-based RL, exploration is driven by internal chaotic
dynamics in a chaotic NN. Therefore, the agent always acts
with the highest action value, without any stochastic action
selection.

The agent moves to the next cell in the direction according
to a;, the agent state changes from s; to s;;; and the agent
receives a reward r;41(s¢, a;). This one cycle of interaction
between an agent and an environment is referred to as 1 step.
When an agent moves to a wall cell or outside the grid world
by taking the action a;, the agent state does not change (i.e.
s¢+1 = S¢) and the agent receives 747 = —0.1. Meanwhile,
when the agent reaches the goal cell, it gets a reward 7,y =
1.0. When the agent reaches the goal or 200 steps are passed,
one episode ends and the agent is placed on one of the start
cells. Then the reservoir internal state x is set to zero vector
and new episode starts.

In this study, to examine whether the agent can adapt to
changes in the environment and automatically switch between

goal cell
B start cells

K wall

action Ql

Q4 QZ

i

Fig. 2. The 11 x 11 grid world environment. Each cell corresponds to the
state of the environment and can be referred by row column numbers (4, 7).
At the beginning of an episode, the agent is randomly placed at the “start
cell”. In one step, the agent can move one cell in four directions north, south,
east and west. The agent cannot be on the “wall” and outside the world. The
agent moves there and a punishment is given. If the agent reaches the “goal
cell”, the episode ends with a reward.

Q3

exploration and exploitation modes, action-output correspon-
dence is shifted on the middle of learning. More concretely,
the cross arrow in Fig. 2, which shows the correspondence
between action value and moving direction, rotates 90 degrees
in a counter-clockwise direction.

C. Q-learning

The agent network is trained by Q-learning. When the agent
takes the action a; at state s; and gets a reward r;y; at next
state s;41, the action value of a; is evaluated as follows:

Q(st,at) =141 + vmaaxQ(sHl,a) ¥

Based on this evaluated value, the action value function
Q(s¢,aq) is updated as follows:

Q(Staat)
— Q(st,a¢) + [rm + 7y max Q(st41,a) — Q(s4,ay)

= (1 = a)Q(st,ar) + aQ(sy, ar) ©)
where, 0 < a < 1.0 is the step-size parameter, which
influences the rate of learning. v is a discount rate that
determines the present value of discounted future rewards. In
this paper, the episode ends when the agent reaches the goal,
therefore, the ideal action value with which the agent reaches
the goal equals to 7,47 = 1.0. Employing this algorithm to
train the network in this study, the training signal for Q% is
given as follows:
T8 =11 + 'ymng‘tl+1 (10)
Training signals for outputs other than QQ%¢ are generated as
the errors are 0, and then, W°% is updated with (5). If the
agent moves according to the maximum action value selected
to generate the training signal of previous step in (10), the
learning procedure equals to the SARSA method.
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Fig. 3. Learning curve indicating the number of steps to the goal in each
training episode. Orange line is a moving average of the numbers. The
reduction of the number shows successful learning of the agent.

III. RESULT

Fig. 3 (a) shows the learning curve for 500 training episodes.
The horizontal axis indicates the number of episodes and the
vertical axis indicates the number of steps at each episode. As
seen in the figure, the number of steps reduced as the learning
episodes proceeded, and that shows the agent successfully
learned. This result suggests that a chaotic NN can learn
through Q-learning with exploration driven by its internal
chaotic dynamics.

1.0

Output

-1.0

Step

(a) episode 1

1.0

-1.0

(b) episode 500

Fig. 4. Network output change in one episode for the cases of before learning
(episode 1) and after learning (episode 500). Each color indicates an action
as Q1:blue, Q2:orange, Q3:green and Q*:red. Plotted points and dotted line
indicate the highest output at each step.

The action values that the agent network generates at the
episode 1 and 500 are shown in Fig. 4 and the frequency of
agent visits at the episode 1 and 500 are shown in Fig. 5.
As shown in Fig. 4 (a), for early episodes, the action values
chaotically fluctuate due to its chaotic internal dynamics in
the network as shown in Fig. 6, and the agent seems to take
actions almost randomly. Furthermore, as shown in Fig. 5 (a),
the chaotic network outputs realized wide exploration of the
agent in the grid world.

Meanwhile, as shown in Fig. 4 (b), the outputs became
ordered and generated outputs that are almost ideal action
values after learning. Fig. 5 (b) shows the route to the goal
that the agent moved along. The agent successfully moved
to the goal, however, we can see an unnecessary move at
(i,4) = (5,10) by which the agent needs 2 extra steps than
the optimal. This can be considered that the exploration was
finished because of the reduction of the chaoticity before the
agent had explored sufficiently in the environment.

To compare the results between random number exploration
and chaos exploration, we show the training result of the same
task by a feed forward NN trained with e-greedy Q-learning
(fixed at ¢ = 0.2) in Fig. 3 (b). Here, the network has a hidden
layer consisting of 200 neurons, whose activation function
is tanh function, and neurons in the output layer generate
outputs as linear combinations of hidden layer outputs. The
network is updated with back propagation algorithm (learning
rate n = 0.1) to reduce the loss function as in (4). The network
succeeded to learn the task. Comparing Fig. 3 (a) and (b),
a difference can be seen after reducing the number of steps
until around 200 episodes. That is, in (a), the number of steps
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Fig. 5. Frequency of agent visits before learning (episode 1) and after learning
(episode 500). In both cases, start position is (¢, 7) = (2,10) (indicated by
blue box).

changes by randomness of start positions in (a), meanwhile, in
(b), it fluctuates more hardly than (a). It can be considered that
as the learning progressed, the chaotic outputs became ordered
and the exploration automatically ended in case (a) in which
the exploration is driven by internal chaotic dynamics in a
chaotic NN. On the other hand, in case (b), the agent continued
to explore with e-greedy action selection until the end of the
final episode. When we adjust the ¢ value appropriately as
the learning progresses, the agent stops exploring. However,
the exploration in chaos based RL can be characterized by
this “automatic” reduction of exploration component through
learning.

Here, we wonder whether the reservoir plays the role as
only a random number generator. Then, we examine the task
learning with an agent network whose reservoir is replaced
with N, dimensional uniform random number vector from
—1 to 1. The learning curve is shown in Fig. 3 (c). Although
the number of steps reduced as the learning progressed, it was
reduced more slowly than the other cases (Fig. 3 (a) and (b))
and it had remained large and fluctuating. This result suggests
that the dynamics in the reservoir is chaotic dynamics that
reflects the influences of inputs from environment or learning

1 20 40 60 80 140
Step

100 120

Fig. 6. Outputs of the reservoir. These lines show the values of 7}, .-+ , 7}

at episode 1, respectively.

of the network rather than only random dynamics. To clarify
the difference of learning between the cases (a) and (c), the
training result of readout weights is shown in Fig. 7. As
can be seen in Fig. 7 (a), the weights from reservoir are
larger than the weights from inputs in the case of exploration
driven by internal chaotic dynamics in the reservoir. This result
suggests that the readout units learned to generate outputs
extracting the outputs from the reservoir. Meanwhile, in the
case of random vector, as shown in Fig. 7 (b), the weights
for the inputs vector u; are much larger than the weights
from random vector. The reason can be considered that there
is no correlation between the random numbers and the ideal
outputs. These results supports the hypothesis that the reservoir
is not only a generator of exploration component but also it
generates the chaotic dynamics reflecting the inputs and output
feedback, and we can speculate that such dynamics is useful
for switching from exploration mode to exploitation mode.

We tested whether the agent can resume exploration when
the rule is changed after the agent has learned under the
previous rule. Here, we changed the rule every 500 episode and
the result is shown in Fig. 8. The steps are rapidly increased
after each rule change point because the agent could not
reach the goal with the behavior that had been learned in
previous episodes. However, after that, the number of steps
decreased gradually. That shows that the agent successfully
learned the new rules after the rule changes. Fig. 9 (a) and
Fig. 10 (a) shows the network outputs and frequency of agent
visits, respectively, at the episode 501, which is the first rule
change point. When the agent received unknown feedback
from the environment, the outputs became irregular based on
the chaotic dynamics, and then the agent returns to exploration
mode. Fig. 9 (b) and Fig. 10 (b) show the results at the
final episode. The agent successfully learned after each rule
change. This result suggests that the established connection
weights, which were constructed to extract the input influence
in the reservoir, were modified to learn the new rule. On the
process of such reconstruction, the network dynamics became
chaotic and the agent can resume exploration. These results
suggest that the agent can adapt to changes in the environment
and automatically switch between exploration and exploitation
modes.
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Fig. 7. The weight values to the output layer. The horizontal axis indicates the
connection weight number and the vertical axis indicates the weight values.
Wight No.1 — 121 are connected from input vector u; and the others are
connected from the reservoir or the random number vector. The black dashed
line is drawn at No. 121. Each plot color indicates the output neuron which
the weights connect to. (a) The exploration is driven by internal dynamics
in the reservoir. (b) The reservoir is replaced with a random number vector.
Note that the scale of vertical axis in each figure is different.
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Fig. 8. Learning curve. This indicates the number of steps in each training
episode. Orange line is a moving average of the numbers. The reduction of
the step shows the successfully learning of the agent. The task rule is changed
at episode 501, 1001 and 1501.

IV. CONCLUSION

In previous studies, we have adopted Actor-Critic method
in chaos-based RL. In this paper, we demonstrated that a
chaotic NN learned a goal task in a grid world environment
without external random exploration noise and showed that
Q-learning algorithm can be adopted in chaos-based RL. It
is confirmed that irregular outputs originated from chaotic
reservoir became ordered as learning progressed, and the
dynamics automatically transited from exploration mode to
exploitation mode. Additionally, by comparing with the result

1.0

1.0
£
8 0.0
-1.0
1 3 5 7 9 11 13 15
Step

(b) episode 2000

Fig. 9. Network output change in one episode for the cases of immediately
after the first rule change (episode 501) and after learning fourth rule (episode
2000). Each color indicates an action as Q!:blue, Q?:orange, Q3:green and
Q*:red. Plotted points and dotted line indicate the highest output at each step.

of the network whose reservoir is replaced with random
number vector, we showed the dynamics in the reservoir
reflects the inputs and output feedback, rather than only a
random-like dynamics. Furthermore, it is shown that, when
the task rule is changed after learning, the outputs became
irregular based on the chaotic internal dynamics, and then the
agent return to exploration mode and succeeded to learn the
new rules.

The grid world goal task employed in this study does not
require memory function for the learner agent. We predict that
this frame also can be adopted to tasks that require memory
function because the ESN, which is used as a network having
chaotic dynamics in this study, actually has the ability to
process series data. Moreover, if the network is layered more
deeply, it is expected the agent can learn more complex tasks
[26] [27] [28].

We consider that the phenomenon of the exploration driven
by chaotic dynamics and the stabilization by learning agrees
with the knowledge found by Freeman in his research about
olfactory system of a rabbit. In addition, we predict that neural
network dynamics around the edge of chaos is appropriate
to realize transiting between chaotic and ordered states. We
will examine how the network chaoticity changes as learning
progresses and will investigate the relation between network
chaoticity and the balance of exploration and exploitation.
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