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Abstract—State-of-the-art sound event detection (SED) meth-
ods usually employ a series of convolutional neural networks
(CNNs) to extract useful features from the input audio signal,
and then recurrent neural networks (RNNs) to model longer
temporal context in the extracted features. The number of the
channels of the CNNs and size of the weight matrices of the
RNNs have a direct effect on the total amount of parameters of
the SED method, which is to a couple of millions. Additionally,
the usually long sequences that are used as an input to an
SED method along with the employment of an RNN, introduce
implications like increased training time, difficulty at gradient
flow, and impeding the parallelization of the SED method. To
tackle all these problems, we propose the replacement of the
CNNs with depthwise separable convolutions and the replacement
of the RNNs with dilated convolutions. We compare the proposed
method to a baseline convolutional neural network on a SED task,
and achieve a reduction of the amount of parameters by 85%
and average training time per epoch by 78%, and an increase
the average frame-wise F1 score and reduction of the average
error rate by 4.6% and 3.8%, respectively.

Index Terms—sound event detection, depthwise separable con-
volution, dilated convolution

I. INTRODUCTION

Sound event detection (SED) is the task of identifying
onsets and offsets of target class activities in general audio
signals [1]. A typical SED scenario involves a method which
takes as an input an audio signal, and outputs temporal activity
for target classes like “car passing by”, “footsteps”, “people
talking”, “gunshot”, etc [1], [2]. The time resolution of the
activity of classes can vary among different methods and
datasets, but typically is used 0.02 sec [1]–[4]. Also, activities
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of classes can overlap (polyphonic SED) or not (monophonic
SED). SED can be employed in a wide range of applications,
like wildlife monitoring and bird activity detection [5], [6],
home monitoring [7], [8], autonomous vehicles [9], [10], and
surveillance [11], [12].

Current deep learning-based SED methods can be viewed
as a composition of three functions. The first function is
a feature extractor, usually implemented by convolutional
neural network (CNN) blocks (i.e. a CNN followed by a
non-linearity, and normalization and sub-sampling processes),
which provides frequency shift invariant features of the input
audio signal [1]. The second function, implemented by a
recurrent neural network (RNN), models long temporal context
and inter- and intra-class patterns in the output of the feature
extractor (i.e. the first function) [2]. Finally, the third function,
which is an affine transform followed by a sigmoid non-
linearity (in the case of polyphonic detection), performs the
classification. In [1] is described a widely adopted method that
conforms to the above mentioned scheme, consisting of three
CNN blocks followed by an RNN and a classifier. This method
is termed as convolutional recurrent neural networks (CRNN)
and has been used in a variety of audio processing tasks, like
music emotion recognition [13], sound event detection and
localization [14], bird activity detection [5], [6], and SED [1].

The typical amount of parameters of the CRNN is around
3.5 M, and the sequence length of the input audio and the
output predictions is 1024 frames. Because an RNN is used,
the CRNN method cannot be parallelized (i.e. split between
different processing units, e.g. GPUs). The 1024 time-frame
length of the output sequence can be considered long enough
to create computational problems at the calculation of the
gradient, due to the RNN (e.g. gated recurrent units, GRU,
or long short-term memory, LSTM). Reduction of the number
of parameters of an SED model would allow the method to
be fit for systems with restricted resources (e.g. embedded
systems) and the training time would decrease (resulting in
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faster experimentation and optimization). Also, removing the
RNN would allow the method to be split between different
processing units, would have more efficient training, and the
amount of parameters could be further reduced.

In this paper, we propose the replacement of the CNNs
and the RNN. In particular, we propose the employment of
depthwise separable convolutions [15]–[18] instead of typical
CNNs, resulting in a considerable decrease of the parame-
ters for the learned feature extractor. We also propose the
replacement of the RNN with dilated convolutions [19]–[21].
This allows modeling long temporal context, but reduces the
amount of parameters, eliminates the gradient problems due to
the usually long employed sequences (e.g. 1024-frame long),
and allows for parallelization of the model [22], [23].

Similar approaches have been proposed in [24], [25] and in
the code of the YAMNET system, available online1. Specifi-
cally, in [24] is proposed a method using a series of dilated
convolutions as a feature extractor, instead of typical CNNs.
The output of the last dilated convolution is given as an input
to an RNN, which does not lift any of the shortcomings of
using RNNs in SED. In [25] is proposed a system for sound
event tagging and based on the MobileNet [26], using one 1D
typical CNN layer, followed by 13 layers of depthwise sepa-
rable convolutions. The output of the last depthwise separable
convolution layer is sub-sampled and used as an input to a
classifier for sound event tagging. YAMNET is also based on
the MobileNet [26], using depthwise separable convolutions.
The amount of parameters of the YAMNET amounts to 3.7M.
In both [25] and YAMNET there was not a specific module
for taking into account the modeling of the longer temporal
context in the input audio (e.g. like an RNN or a dilated
convolution).

To evaluate the impact of our proposed changes, we employ
a typical method for SED that is based on stacked CNNs and
RNNs [1], and a freely available SED dataset, the TUTSED
Synthetic 2016 [27]. Our results show that with our proposed
changes we reduce the amount of parameters by 85% and the
average time per epoch need for training by 78% (measured
on the same GPU), while we increase the frame-wise F1 score
by 4.6% and decrease the error rate by 3.8%. The rest of the
paper is as follows. In Section II we briefly present the baseline
approach and in Section III is our proposed method. Section IV
explains the evaluation set-up of our method and the obtained
results are presented in Section V. Section VI concludes the
paper and proposes future research directions.

II. BASELINE APPROACH

The baseline approach accepts as an input a sequence of
T audio feature vectors X ∈ RT×N , with each vector having
N features, and associated target output corresponding to the
activities of C classes Y ∈ {0, 1}T×C . X is given as an input
to a learnable feature extractor fcnn, consisting of cascaded 2D
CNN blocks. Each block has a 2D CNN followed by a non-
linearity, a normalization process, and a feature sub-sampling

1https://github.com/tensorflow/models/tree/master/research/audioset/
yamnet

Fig. 1: A typical process for a CNN. Each of the Ko kernels,
of size Ki×Kh×Kw, is convolved with Ki input matrices of
T ×N size. The output is Ko different matrices of T ′ ×N ′
size. Bias is omitted for clarity.

process. The output of fcnn is given as an input to a temporal
pattern identification module frnn, which consists of a GRU
RNN. frnn is followed by a classifier fcls, which is an affine
transform followed by a sigmoid non-linearity. The output of
fcls for each of the T feature vectors is the predicted activities
for each of the C classes Ŷ ∈ [0, 1]T×C . During inference
process, the activities Ŷ are further binarized using a threshold
of 0.5.

A. Learnable feature extractor based on CNNs

The learnable feature extractor of the baseline approach
consists of three CNN blocks, each block having a typical
2D CNN followed by a rectified linear unit (ReLU), a batch
normalization process, and max-pooling operation across the
dimension of features. A typical 2D CNN consist of Ko
kernels K ∈ RKi×Kh×Kw and bias vectors b ∈ RKi , where
Ki and Ko are the number of input and output channels
of the CNN, and Kh and Kw are the height and width of
the kernel of each channel. Each kernel K is applied to the
input Φ ∈ RKi×Φh×Φw of the 2D CNN to obtain the output
H ∈ RKo×Φ′

h×Φ′
w of the 2D CNN, as

Hko,φ′
h−Kh,φ′

w−Kw =(Kko ∗Φ)(ki, φh − kh, φw − kw)

=

Ki∑
ki

Kh∑
kh

Kw∑
kw

Φki,φh−kh,φw−kwKko,kh,kw ,

(1)

where ∗ is the convolution operator with unit stride and zero
padding. The above application of K onto Φ leads to learning
and extracting spatial and cross-channel information from the
input features Φ [16], and has a computational complexity
of O(Ko ·Ki ·Kh ·Kw ·Φh ·Φw) [16]–[18]. Additionally, the
amount of learnable parameters of the 2D CNN (omitting bias)
is Ki ·Ko ·Kh ·Kw. Figure 1 illustrates the above operation.

In each CNN block of the feature extractor, the output of the
2D CNN is followed by ReLU, batch normalization, and max-
pooling operations. The output of the max-pooling operation
is given as an input to the next CNN block. The output of the
third CNN block H3 ∈ RK3

o×Φ3
h×Φ3

w , with K3
o to be the output

channels of the third CNN (denoted with the superscript 3),
is reshaped to Hcnn ∈ RΦcnn

h ×Φcnn
w , where Φcnnh = Φ3

h and
Φcnnw = K3

o · Φ3
w. Hcnn is given as an input to the GRU of

the frnn.



B. Gated recurrent unit for long temporal context identifica-
tion

The output features Hcnn of fcnn are likely to include
multi-scale contextual information, encoding long temporal
patterns and inter- and intra-class activity [2]. To exploit this
information, the baseline approach utilizes frnn, which is a
GRU that gets as an input the Hcnn. The input and output
dimensionality of frnn the same and equal to Φcnnw .

In particular, the GRU of frnn takes as an input the
output of the last CNN block of the baseline approach Hcnn

and processes each row φcnnh according to the equations
mentioned in the original paper [28]. The output of frnn,
Hrnn ∈ [−1, 1]Φ

cnn
h ×Φcnn

w is given as an input to the classifier
fcls.

C. Classifier, loss, and optimization

The classifier fcls gets as an input the output of frnn,
Hrnn. fcls consists of a learnable affine transform with shared
weights through time, followed by a sigmoid non-linearity. The
output of fcls is the output of the CRNN method, which is

Ŷ = fcls(H
rnn). (2)

fcnn, frnn, and fcls are jointly optimized by minimizing the
cross-entropy loss between Ŷ and Y.

III. PROPOSED APPROACH

In our method we replace the fcnn and frnn with different
types of convolutions. We replace the fcnn with depthwise
separable convolutions, which result in smaller amount of
parameters and increased performance [18], [26], [29]–[31].
Additionally, we replace the frnn with dilated convolutions,
which have smaller amount of parameters, are based on CNNs,
and can model long temporal context [19]–[21].

Specifically, our method also accepts as an input X ∈
RT×N and the associated annotations for the activities of
classes Y ∈ {0, 1}T×C . X is given as an input to a learnable
feature extractor fdws, consisting of cascaded 2D depthwise
separable CNN (DWS-CNN) blocks. Each block has a 2D
CNN based on depthwise separable convolution followed by
a non-linearity, a normalization process, and a feature sub-
sampling process. The output of fdws is given as an input to
a temporal pattern identification module fdil, which consists
of a 2D CNN based on dilated convolution (DIL-CNN). fdil
is followed by a classifier fcls, which is the same classifier as
in the baseline approach. The output of fcls for each of the
T feature vectors is the predicted activities for each of the C
classes Ŷ ∈ [0, 1]T×C . Similarly to the baseline, during the
inference process, the activities Ŷ are further binarized using
a threshold of 0.5.

A. Learnable feature extractor based on depthwise separable
convolutions

Based on [15] and for our fdws, we employ the factorization
of the spatial and cross-channel learning process described by
Eq (1). We replace the 2D CNNs of the CRNN method with
2D DWS-CNNs, closely following the DWS-CNNs presented

(a) The first step of depthwise separable convolution. Learning spatial
information, using Ki different kernels Ks, applied to each Xi.

(b) The second step of depthwise separable convolution. Learning cross-
channel information using Ko different kernels Kz .

Fig. 2: The process of depthwise separable convolution. Bias
is omitted for clarity.

for the MobileNets model [26] and the hyper-parameters used
in the CRNN architecture [1]. Instead of using Φ in a convolu-
tion with a single kernel K in order to learn spatial and cross-
channel information, we apply, in series, two convolutions
(i.e. the output of the first is the input to the second) using
two different kernels. This factorization technique is termed as
depthwise separable convolution, has been adopted to a variety
of architectures for image processing (like the XCeption,
GoogleLeNet, Inception, and MobileNets models), and has
been proven to increase the performance while reducing the
amount of parameters [18], [26], [29]–[31].

Firstly, we apply Ki kernels Ks ∈ RKh×Kw to each Φki in
order learn the spatial relationships of features in X as

Dki,t−Kh,n−Kw =(Ks
ki
∗Xki)(t−Kh, n−Kw)

=

Kh∑
kh

Kw∑
kw

Xki,t−kh,n−kwKs
ki,kh,kw

, (3)

where Dki ∈ RΦ′
h×Φ′

w . Then, we utilize Ko kernels kz
ko
∈

RKi , with K = {kz
1,k

z
2, . . . ,k

z
Ko
}, and we apply them D =

{D1, . . . ,DKi}, in order learn the cross-channel relationships,
as

Hko,φ′
h,φ

′
w

=

Ki∑
ki

Dki,φ′
h,φ

′
w
Kz
ko,ki . (4)

The resulting computational complexity and amount of pa-
rameters (omitting bias), for both processes in Eq. (3) and (4),
are O(Kh · Kw · Ki · Φh · Φw + Ki · Ko · Φ′h · Φ′w) and
Ki ·Kh ·Kw +Ki ·Ko, respectively. Thus, the computational
complexity [26] and amount of parameters are both reduced
by K−1

o + (Kh · Kw)−1 times. The process of depthwise
convolution is illustrated in Figure 2, with the first step in
Figure 2a and the second in Figure 2b.



(a) Calculation of H′
k′o,ψ

′
h
,ψ′

w
(b) Calculation of H′

ko,ψ
′
h
,ψ′

w+1

Fig. 3: Illustration of the process described in Eq. (5) using
ξh = ξw = 2 and calculating two consecutive elements
of H′k′o,ψ′

h
. Squares coloured with cyan signify the elements

participating at the calculations for H′k′o,ψ′
h,ψ

′
w

, and coloured
with grey are the elements for H′k′o,ψ′

h,ψ
′
w−1.

According to the baseline approach, we use three blocks of
DWS-CNNs, where each block consists of a DWS-CNN, fol-
lowed by a rectified linear unit (ReLU), a batch normalization
process, and a max pooling operation across the dimension of
features Φw. H3 is the output of the third DWS-CNN block,
which is given as an input to fdil.

B. Dilated convolutions

Contrary to the baseline approach, we employ fdil in order
to exploit the long temporal patterns in H3. fdil is based on
2D dilated convolutions, which are capable to aggregate and
learn multi-scale information and have been used previously
in image processing tasks [19]–[21].

A dilated 2D CNN (DIL-CNN) consists of K ′o kernels
K′ ∈ RK′

i×K
′
h×K

′
w and bias vectors b′ ∈ RK′

o . Similarly to the
typical CNN described in Section III-A, K ′i and K ′o are the
input and output channels of the DIL-CNN, and K ′h and K ′w
are the height and width of the kernel for each channel. Each
K′ is applied to the input of DIL-CNN Ψ ∈ RK′

i×Ψh×Ψw to
obtain the output H′ ∈ RK′

o×Ψ′
h×Ψ′

w of the DIL-CNN as

H′k′o,ψ′
h−k

′
h,ψ

′
w−k′w = (K′k′o ∗Ψ)(k′i , ψh − ξh · k′h, ψw − ξw · k′w)

=

K′
i∑

k′i

K′
h∑

k′h

K′
w∑

k′w

Ψki′ ,ψh−ξh·kh,ψw−ξw·k′wK′k′o,k′h,k′w
,

(5)

where ξh, ξw ∈ N? are the dilation rates for the K ′h and K ′w
dimensions of K′. It should be denoted that for ξh = ξw = 1,
Eq. (5) boils down to Eq. (1), i.e. a typical convolution with
no dilation.

The dilation rates, ξh and ξw, multiply the index that is
used for accessing elements from Ψ. This allows a scaled
aggregation of contextual information at the output of the op-
eration [21]. Practically, this means that the resulting features
computed by using DIL-CNN (i.e. H′) are calculated from a
bigger area, resulting into modelling longer temporal context.
The growth of the area that H′ is calculated from, is equal

ξh · ξw. The process described by Eq. (5) is illustrated in
Figure 3.

We use DIL-CNN to replace the recurrent neural networks
that efficiently model long temporal context and inter- and
intra-class activities for SED. Specifically, our fdil has K ′i =
Ko, takes as an input the output of fdws, HL, and outputs H′,
as

H′ = fdil(H
L), and (6)

Hdil = BNorm(ReLU(H′)). (7)

Finally, Hdil is reshaped to Ψ′h × (Ko ·Ψ′w) and given as an
input to the classifier of our method, which is the fcls of the
baseline approach.

IV. EVALUATION SETUP

To assess the performance of each of the proposed replace-
ments and their combination, we employ a freely available
SED dataset and we compare the performance of the CRNN
and each of our proposed replacements. The code for all the
models and the evaluation process described in this paper, is
freely available online2.

A. Baseline system and models

We employ four different models, Modelbase, Modeldw,
Modeldil, and Modeldnd. Modelbase is our main baseline and
consists of three CNN blocks, followed by a GRU, and a
linear layer acting as a classifier. Each CNN block consists
of a CNN with 256 channels, square kernel shape of {5, 5},
stride of {1, 1}, and padding of {2, 2}, followed by a ReLU,
a batch normalization, a max pooling, and a dropout of 0.25
probability. The max pooling operations have kernels and
stride of {1, 5}, {1, 4}, and {1, 2}. The GRU has 256 input
and output features, and the classifier has 256 input and 16
output features.

For our second model, Modeldws, we replace the CNN
blocks at CRNN with fdws, so we can assess the benefit of
using DWS-CNNs instead of typical 2D CNNs. To minimize
the factors that will have an impact to possible differences
between our proposed method and the employed baseline, for
our fdws we adopted the same kernel shapes, strides, and
padding for the Ks kernels, as in the Modelbase. That is,
all Ko, Kh, and Kw of fdws have the same values as the
corresponding ones in Modelbase. The same stands true for
stride and padding, and all hyper-parameters of max-pooling
operations.

At the third model, Modeldil, we replace the GRU in
Modelbase with the fdil, so we can assess the benefit of using
DIL-CNN instead of an RNN. Since there are no previous
studies using DIL-CNNs as a replacement for RNNs and
for SED, we opt to keep the same amount of channels at
the DWS-CNNs and perform a grid search on K ′h, K ′w,
and ξh. Specifically, we employ four different kernel shapes
(K ′h,K

′
w) ∈ {(3, 3), (5, 5), (7, 7)}. We denote the different

shapes of kernels with an exponent, e.g. Model3dil for the model

2https://github.com/dr-costas/dnd-sed



having an fdil with a kernel of shape of {3, 3}, or Model7dnd for
the model having fdws and an fdil of kernel with shape {7, 7}.
Because we want to assess the effect of using a different time-
resolution for capturing inter- and intra-event patterns with the
DIL-CNN, we use ξw = 1 and ξh ∈ {1, 10, 50, 100}. That is,
we apply dilation only on the time dimension and not on the
dimension of features. Though, to keep the time dimension
intact (i.e. to have Ψ′h = T ), we use zero padding at the
time dimension. Specifically, we use a padding equal to ξh
for kernel shape of (3, 3), a padding equal to 2 · ξh for (5, 5)
kernel, 3 · ξh for the (7, 7) kernel, and 5 · ξh for the (11, 11)
kernel. We use no padding at the feature dimension for the
fdil. Must be noted that when ξh = 1 then fdil is a typical
2D CNN and, thus, we also assess the effect of replacing the
RNN with a typical 2D CNN. We also denote the employed
dilation in the exponent, e.g. Model3|50

dil or Model7|1dnd.
Finally, the Modeldnd is our complete proposed method,

where we replace both the typical CNN blocks and the GRU
from the Modelbase, with the fdws and fdil, respectively. For
complete assessment of our proposed method, we follow the
same grid search on on K ′h, K ′w, and ξh, as we perform for
Modeldil.

B. Dataset and metrics

We use the TUT-SED Synthetic 2016 dataset, which is
freely available online3 and has been employed in multiple
previous work on SED [1], [2], [32]. TUT-SED Synthetic
consists of 100 mixtures of around eight minutes length with
isolated sound events from 16 classes, namely alarms & sirens,
baby crying, bird singing, bus, cat meowing, crowd applause,
crowd cheering, dog barking, footsteps, glass smash, gun shot,
horse walk, mixer, motorcycle, rain, and thunder. The mixtures
are split to training, validation, and testing split by 60%, 20%,
and 20%, respectively. The maximum polyphony of the dataset
is 5. From each mixture we extract multiple sequences of
T = 1024 vectors, having N = 40 log-mel band energies and
using a hamming window of ≈ 0.02 sec, with 50% overlap.
As the evaluation metrics we use F1 score and error rate (ER),
similarly to the original paper of CRNN and previous work on
SED [1], [2], [32]. Both of the metrics are calculate on a per-
frame basis (i.e. for every t = 1, 2, . . . , T ). Additionally, we
keep a record of the training time per epoch for each model and
for all repetitions of the optimization process, by measuring
the elapsed time between the start and the end of each epoch.

C. Training and testing procedures

We optimize the parameters of all models (under all sets
of hyper-parameters) using the training split of the employed
dataset, the Adam optimizer with values for hyper-parameters
(i.e. β1, β2, and ε) as proposed in the original paper [33], a
batch size of 16, and cross-entropy loss. After one full iteration
over the training split (i.e. one epoch), we employ the same
loss and measure its value on the validation split. We stop the
optimization process if the loss on the validation split does

3http://www.cs.tut.fi/sgn/arg/taslp2017-crnn-sed/tut-sed-synthetic-2016

not improve for 30 consecutive epochs and we keep the values
of the parameters of the model from the epoch yielding the
lowest validation loss. Finally, we assess the performance of
each model using the testing split and the employed metrics
(i.e. F1 and ER).

In order to have an objective assessment of the impact of
our proposed method, we repeat 10 times the optimization for
every model, following the above described process. Then,
we calculate the average and standard deviation of the above
mentioned metrics, i.e., F1 score and error rate (ER). In
addition to this, we report the number of parameters (NP )
and the necessary mean training time per epoch (ET ), i.e., a
full iteration throughout the whole training split. All presented
experiments performed on an NVIDIA Pascal V100 GPU.

V. RESULTS AND DISCUSSION

In Table I are the results from all conducted experiments,
organized in two groups. The first one is termed as SED
performance and regards the performance of each model and
set of hyper-parameters for the SED task (i.e. F1 and ER). The
second group, termed as computational performance, considers
the number of parameters and average time necessary for
training (NP and ET ), for each model and each set of hyper-
parameters. The STD of F1 and ER is in the range of 0 to
0.02 and omitted for clarity.

The baseline CRNN system, i.e. Modelbase, seems to per-
form better in classification only from Model7|100

dnd . In every
other case, Modelbase yields worse classification performance.
This indicates that our proposed changes can, in general, result
to better classification performance when compared to the
baseline system. Regarding the computational performance,
can be seen that there are specific sets of hyper-parameters
that result to models with more parameters from Modelbase.
Specifically, Model3dil and Model5dil with all ξh, have more
parameters than Modelbase. This increase in NP , though, is
not attributed on the difference of the amount of parameters
between fdil of Modeldil and the GRU of Modelbase, but
on the amount of parameters that the classifier has. In the
case of Modelbase, the output of the GRU had dimensions of
1024 × 256. The classifier has shared weights through time,
thus the amount of its input features is 256. But, in the case of
Model3dil and Model5dil, the dimensionality of the input to the
classifier, i.e. Hdil, is 256× 1024×Ψ′w, where Ψ′w is inverse
proportional to the size of the kernel of fdil. After reshaping
Hdil to 1024× (256 ·Ψ′w), the amount of input features to the
classifier is Ko · Ψ′w, which is considerably bigger than the
Modelbase case, i.e. 1024×256. Finally, Modelbase needs more
time (on average) per epoch compared to any other model
and set of hyper-parameters in Table I. This clearly indicates
that all of the proposed changes have a positive impact on the
needed time per epoch, even in the case where NP is bigger.

Comparing the impact of each of the changes (i.e. Modeldws
versus Modeldil), we can see that adopting DWS-CNN can
significantly increase the SED performance, yielding better
F1 and ER compared to Modelbase and Modeldil (except
Model5|10

dil ). Additionally, Modeldws yields the lowest ER in



TABLE I: Quantitative results from evaluating the effect of using depth-wise separable (Modeldwd) or dilated (Modeldil), or
both (Modeldnd) convolutions as modifications to the baseline CRNN architecture (Modelbase). Average (mean) values of the
F1 score (F 1, higher the better) and the error rate (ER, lower the better) are reported over the ten repetitions. The number
of parameters is denoted by NP and the average (and standard deviation, STD) time, in seconds, required for an epoch by
ET (±STD). N/A denotes a non applicable parameterization. Bold faced elements denote the best reported performance for
classification and computational performance.

SED Performance Computational Performance (mean±STD)
Model∗ DWS ξh (K′h,K

′
w,) F 1 ER NP ET

base × N/A N/A 0.5z 0.54 3.68M 49.4 (±11.8)

dil

× 1 (3× 3) 0.60 0.54 3.81M 14.1 (±0.06)
× 10 (3× 3) 0.61 0.53 3.81M 14.1 (±0.11)
× 50 (3× 3) 0.62 0.51 3.81M 14.1 (±0.07)
× 100 3× 3) 0.61 0.53 3.81M 14.5 (±0.08)
× 1 (5× 5) 0.60 0.54 3.81M 20.7 (±0.09)
× 10 (5× 5) 0.63 0.51 3.81M 18.2 (±0.25)
× 50 (5× 5) 0.60 0.52 3.81M 18.5 (±0.07)
× 100 (5× 5) 0.58 0.56 3.81M 18.5 (±0.08)
× 1 (7× 7) 0.60 0.54 3.64M 12.2 (±0.06)
× 10 (7× 7) 0.62 0.52 3.64M 12.2 (±0.07)
× 50 (7× 7) 0.61 0.52 3.64M 12.4 (±0.07)
× 100 (7× 7) 0.58 0.57 3.64M 12.4 (±0.07)

dws X N/A (3× 3) 0.62 0.50 0.62M 46.9 (±4.81)

dnd

X 1 (3× 3) 0.59 0.54 0.74M 13.0 (±0.06)
X 10 (3× 3) 0.62 0.51 0.74M 13.0 (±0.06)
X 50 (3× 3) 0.61 0.53 0.74M 13.0 (±0.10)
X 100 (3× 3) 0.60 0.53 0.74M 13.4 (±0.08)
X 1 (5× 5) 0.59 0.55 0.74M 20.1 (±3.63)
X 10 (5× 5) 0.62 0.52 0.74M 17.0 (±0.24)
X 50 (5× 5) 0.62 0.52 0.74M 17.4 (±0.01)
X 100 (5× 5) 0.58 0.56 0.74M 17.4 (±0.01)
X 1 (7× 7) 0.60 0.54 0.58M 11.4 (±4.45)
X 10 (7× 7) 0.63 0.50 0.58M 11.1 (±0.06)
X 50 (7× 7) 0.61 0.53 0.58M 11.2 (±0.17)
X 100 (7× 7) 0.58 0.57 0.58M 11.3 (±0.11)

total, but not the highest F1. Furthermore, Modeldws has NP =
0.62 M, significantly less than any Modeldil and the Modelbase.
The decrease in the amount of parameters and the increase in
the performance when using the fdws is in accordance with
previous studies that adopted DWS-CNN [18], [26], [29]–[31].
Focusing on the Modeldil, can be observed that the usage of
dilation increases the classification performance. Specifically,
in all kernel shapes, the ξh = 1 (i.e. no dilation) yields the
lowest F1 and highest ER. Also, it is apparent that for ξh ≥ 50
the classification performance decreases.

Finally, when both fdws and fdil are combined (i.e.
Modeldnd) it seems that there is a drop in the performance
(compared to Modeldws) for the (3, 3) and (5, 5) kernel shapes
and for all ξh. But, for the case of Model7|10

dnd , there is the
highest F1 score and by 0.02 second ER. Additionally, the
specific Model7|10

dnd model needs the less average time per
epoch and belongs to the group of models with the less
parameters.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the adoption of depthwise
separable and dilated convolutions based 2D CNNs, as a
replacement of usual 2D CNNs and RNN layers in typical SED
methods. To evaluate our proposed changes, we conducted a
series of experiments, assessing each replacement in separate
and also their combination. We used a widely adopted method
and a freely available SED dataset. Our results showed that
when both DWS-CNN and DIL-CNN are used, instead of
usual CNNs and RNNs, respectively, the resulting method has
considerably better classification performance, the amount of
parameters decreases by 80%, and the average needed time
(for training) per epoch decreases by 72

Although we conducted a grid search of the hyper-
parameters, the proposed method is likely not fine tuned for
the task of SED. Further study is needed in order to fine tune
the hyper-parameters and yield the maximum classification
performance for the task of SED.
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