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Abstract—An ever increasing volume of data is nowadays
becoming available in a streaming manner in many application
areas, such as, in critical infrastructure systems, finance and
banking, security and crime and web analytics. To meet this new
demand, predictive models need to be built online where learning
occurs on-the-fly. Online learning poses important challenges
that affect the deployment of online classification systems to
real-life problems. In this paper we investigate learning from
limited labelled, nonstationary and imbalanced data in online
classification. We propose a learning method that synergistically
combines siamese neural networks and active learning. The
proposed method uses a multi-sliding window approach to store
data, and maintains separate and balanced queues for each class.
Our study shows that the proposed method is robust to data
nonstationarity and imbalance, and significantly outperforms
baselines and state-of-the-art algorithms in terms of both learning
speed and performance. Importantly, it is effective even when
only 1% of the labels of the arriving instances are available.

Index Terms—online active learning, siamese neural networks,
nonstationary environments, concept drift, class imbalance.

I. INTRODUCTION

Traditionally, predictive models are built from historical data
consisting of examples annotated with class labels (i.e. the
ground truth). This paper is concerned with online learning,
with a focus on the following key challenges:
• One-by-one online learning: We focus on online learn-

ing i.e. as data is arriving in a streaming fashion. Contrary
to the majority of online learning work, we focus on one-
by-one learning, where only a single instance (rather than
a batch) is observed at each time step.

• Limited labelled data: Acquiring labels at every step is
expensive / impractical. A potential solution that makes
such an assumption, may not be practical in real appli-
cations. In this paper, we consider limited labelled data.

• Nonstationary data: This paper focuses on online learn-
ing where the distribution of data is unknown. It is
also concerned with cases where the data distribution is
nonstationary; i.e., it evolves or “drifts” over time.

• Imbalanced data: Class imbalance, in conjunction with
the aforementioned challenges, causes one-by-one online
learning to become significantly more challenging.

The contributions of this paper are as follows. We provide
new insights into learning from limited labelled, nonstationary

and imbalanced in one-by-one online classification, a largely
unexplored area. We propose a novel learning approach for
one-by-one online learning which utilises active learning and
siamese neural networks. Active learning is a paradigm in
which the classifier selectively queries an oracle (typically, a
human expert) to provide class labels according to an allocated
budget [1]. Several industrial large-scale classification systems,
such as, Google’s method for labeling malicious advertise-
ments, have been realised through active learning [2].

Siamese networks enable learning when only a few exam-
ples per class are available, commonly referred to as few-shot
learning, and have recently achieved state-of-the-art results in
image recognition [3]. To our knowledge, this is the first time
that an approach is developed, which synergistically brings
together siamese networks and one-by-one active learning. The
proposed synergy enables the effective learning from limited
labelled data in nonstationary and imbalanced settings.

The organisation of this paper is as follows. Section II
provides the background material necessary to understand
the contributions made in the paper. Section III provides a
review of related work. The proposed learning approach is
presented in Section IV. Our experimental setup is described
in Section V while the experimental results are presented
and discussed in Section VI. Lastly, concluding remarks and
directions for future work are provided in Section VII.

II. BACKGROUND

In online learning we consider a data generating process
that provides at each time step t a sequence of examples or
instances St = {(xti, yti)}Mi=1 from an unknown probability
distribution pt(x, y), where xt ∈ Rd is a d-dimensional input
vector belonging to input space X ⊂ Rd, yt ∈ [1,K] is the
class label, K ≥ 2 is the number of classes and M is the
number of instances arriving at each step.

When the observed sequence St consists only of a single
instance (i.e. M = 1), it is termed one-by-one online learning,
otherwise it is termed batch-by-batch online learning [4].
The design of batch-by-batch algorithms differs significantly
from that of one-by-one algorithms as they are designed
to process chunks of data, possibly by utilising an offline
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learning algorithm [5]. Therefore, the majority of batch-by-
batch algorithms are typically not suitable for one-by-one tasks
[5]. This work focuses on one-by-one online learning, which
is important for real-time monitoring and control.

Active learning is concerned with strategies to selectively
query for labels from an oracle (typically, a human expert)
according to a set of available resources [1]. Typically, the
available resources are modelled by an allocated budget B ∈
[0, 1] where it is expressed as a fraction of the number of
arriving examples e.g. B = 0.1 means that 10% of the arriving
instances can be labelled [6]. A budget spending mechanism
must ensure that the labelling spending b ∈ [0, 1] does not
exceed the allocated budget.

In one-by-one online classification, a classifier is built that
receives a new example xt at time t and makes a prediction ŷt

based on a concept h : X → Y such that ŷt = h(xt). A given
active learning strategy α : X → {0, 1} determines if the
true label yt is required, which is assumed that the oracle will
provide. The classifier is evaluated using a loss function and is
then trained, i.e., its parameters are updated accordingly based
on the loss incurred. This process is repeated at each step and,
depending on the application, new examples do not necessarily
arrive at regular and pre-defined intervals. If learning occurs on
the most recent single instance (or batch) only, without taking
into account previously labelled data, it is termed incremental
(or one-pass) learning [4]. Specifically, the cost J at time t is
calculated using the loss function l as follows J = l(yt, ŷt).

Learning in nonstationary environments is a major chal-
lenge in some applications. Nonstationarity is caused by
concept drift, which represents a change in the joint prob-
ability. Drift can be characterised by type, severity, speed,
predictability, frequency and recurrence [7]. Hence, in practise,
it is very difficult to characterise concept drift. Our focus is on
learning the concept drift without its explicit characterisation
and detection. Class imbalance [8] is another challenge that
occurs when at least one data class is under-represented
compared to others, thus constituting a minority class.

III. RELATED WORK

Algorithms that are capable of learning from imbalanced
and nonstationary data in one-by-one online classification typ-
ically fall into two categories: (i) resampling algorithms (e.g.
QBR [9], OOB [10]) and (ii) cost-sensitive learning algorithms
(e.g. CSOGD [11]). These have been shown to perform well
provided that the data label becomes available at each time
step. This may be a key limitation in some applications since
acquiring data labels is expensive or impractical to do at every
single time step. This work focuses on active learning to
address this problem. We provide a description of existing
active learning strategies and budget spending mechanisms.

A. Active learning strategies

The most common active learning strategy is uncertainty
sampling, where the learner queries the most uncertain in-
stances, which are typically found around the decision bound-
ary. One way to measure uncertainty is to query the instance

whose best labelling is the least confident [1]. The majority
of active learning work assumes the availability of all train-
ing examples (offline active learning) [12] while some work
considers batch-by-batch online active learning [13].

Recently the community started focusing on one-by-one
active learning [6]. The arriving xt is queried if it satisfies:

p(y∗|xt) < θ, (1)

where y∗ = argmaxy p(y|xt) and θ is a threshold which is
typically fixed. This is known as a fixed uncertainty strategy

In [6] the authors introduce a randomised variable uncer-
tainty strategy. A fixed uncertainty strategy may fail if the
threshold is set incorrectly, or if the classifier learns enough
so that the uncertainty remains above the fixed threshold most
of the time. The threshold is modified as follows:

θ =

{
θ(1− s) if p(y∗|xt) < θrdm

θ(1 + s) if p(y∗|xt) ≥ θrdm
(2)

where s is a step size parameter, θrdm = θ ∗ η ∼ N(1, δ)
and δ is another parameter. Randomisation ensures that the
probability of labelling an instance is not zero. This strategy
has been shown to work very well.

Uncertainty sampling has been criticised as being prone to
outliers [1] and, for this reason, density sampling has been
proposed. Its central idea is that informative queries are not
only those that are uncertain, but those which lie in high
density regions. As with uncertainty sampling, the majority
of work is on offline active learning where the set of all
unlabelled instances U is already available. In [14] the instance
queried for labelling is selected by its average similarity to
other instances in U as follows:

argmax
x

1

U

U∑
u=1

sim(x, xu), (3)

where sim is the cosine similarity. Density sampling has also
been applied in batch-by-batch online active learning where,
using the Mahalanobis distance, an informative instance is the
one which is similar to other unlabelled instances in the most
recent batch [15]. In our work, we use density sampling in
one-by-one active learning. The interested reader is directed
towards [1] for a survey on active learning strategies.

B. Budget spending mechanisms

A budget spending mechanism must ensure that the label
spending b ∈ [0, 1] does not exceed the allocated budget B ∈
[0, 1] over infinite time. The most common approach is to
count the exact labelling spending [6]. The labelling expenses
at any time t is given by:

bt =
ut

t
, (4)

where ut is the number of instances queried until time t. The
drawback of this mechanism is that the contribution of every
next label will diminish over infinite time.
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Fig. 1. Overview of the proposed method which uses a multi-sliding window
approach to data storage, a siamese neural network (NN) and active learning
to enable online learning from limited, nonstationary and imbalanced data.

One way to solve the aforementioned problem is to count
the exact labelling spending over a sliding window w:

bt =
utw
w
, (5)

where utw is the number of instances queried within the sliding
window. This, however, defies the requirements of incremental
learning. The authors in [6] propose to approximate the
number of instances queried within the sliding window:

ûtw = λût−1w + a(xt), (6)

where λ = w−1
w . The authors prove that b̂ is an unbiased

estimate of b.

IV. PROPOSED APPROACH

The overview of the proposed learning approach is shown
in Fig. 1. The learning approach uses a multi-sliding window
approach to store data, denoted by Q in the figure. A data
preparation phase is in place before feeding the data to a
siamese neural network. For each arriving example xt, the
siamese network makes a prediction ŷt. Notice that, only
if the active learning strategy decides to send a query, the
new example is stored in the Q and the siamese network
is then trained. A detailed description of each component is
provided below, followed by a discussion on the advantages
and limitations of the proposed approach.

A. Detailed Description

Data storage: Our approach assumes the initial availability
of E examples per class. Importantly, to avoid a potential
deployment issue, we restrict E to be a very small number,
e.g., up to five. We argue that for the vast majority of
applications this assumption is realistic.

The initial labelled examples and those which will be
queried by the active learning strategy will be stored using
a multi-sliding window approach. Each sliding window is
implemented as a queue and at any time t, we maintain a
collection of K queues for each class:

Qt = {qtc}Kc=1, (7)

where K ≥ 2 is the number of classes. All queues have the
same capacity and each queue is defined as follows:

qtc = {xci}Ei=1, (8)
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Fig. 2. A siamese neural network (NN)

where for any two xci, xcj ∈ qtc such that j > i, xcj arrived
more recently in time. The multi-sliding window approach
is depicted by Q in the figure. Notice that we have set the
capacity of each queue to |qtc| = E. The advantage of this is
two-fold. Firstly, the number of examples required for storage
is small and secondly, the queues will always remain balanced
thus avoiding any bias towards majority classes.

Siamese network & training: At the heart of the proposed
approach lies a siamese neural network [16]. A siamese net-
work consists of two identical neural networks (the ‘twins’) as
shown in Fig. 2. The central idea is to learn a function (denoted
by e on the figure) that maps an input pattern into a target
space (the ‘embedding’) in such a way that a simple distance in
the target space approximates the neighbourhood relationships
in the input space. For this reason, siamese networks have been
shown to significantly outperform traditional models such as
k-nearest neighbour (k-NN) algorithms in high-dimensional
spaces e.g. for image recognition [3]. We use the L1 or
Manhattan distance as in [3].

d(x1, x2) =||e(x1)− e(x2)||1
=
∑
i

|e(x1)i − e(x2)i| (9)

where the embeddings are of equal size |e(x1)| = |e(x2)|.
This is then given to a single sigmoidal output unit. Ideally,

the siamese network h : X × X → Y will learn to output
ŷ = 1 for any pair of inputs that belongs to the same class
and ŷ = 0 if the pair of inputs is of different class. There
exists a process which transforms the examples in Qt into the
training pairs Qt

train (described in the next section). The cost
function used is then as follows:

J =
1

|Qt
train|

∑
(x1,x2)∈Qt

train

l(yt, h(x1, x2)) (10)

where the loss function l used is the binary cross-entropy.
Data preparation: Given the data in Qt at time t, we

generate all possible combinations Ct
2 of size two. Three

subsets of Ct
2 are then generated as follows.

The first one (Qid) contains all pairs in which the two
examples are identical and, hence, belong to the same class.
The second one (Qsame) contains all (non-identical) pairs in
which the two examples belong to the same class. The two are



then joined (Qt
id same) to indicate the positive pairs. These are

defined as follows:

Qt
id = {(xc1,i1 , xc2,i2) ∈ Ct

2|c1 = c2, i1 = i2} (11)
Qt

same = {(xc1,i1 , xc2,i2) ∈ Ct
2|c1 = c2, i1 6= i2} (12)

Qt
id same = Qt

id ∪Qt
same (13)

It is essential that Qt
same is not empty; in other words, the

approach expects that the initial labelled set consists of at
least two examples per class i.e. E ≥ 2.

The third subset (Qdiff ) contains all pairs in which the two
examples belong to different queues:

Qt
diff = {(xc1,i1 , xc2,i2) ∈ Ct

2|c1 6= c2} (14)

Importantly, resizing is performed to ensure balance be-
tween positive and negative pairs. The training set is thus
formed as follows:

Qt
train = Qt

id same ∪Qt
diff (15)

Class prediction: The siamese network predicts the class
of each arriving instance xt by taking into consideration all
examples in the queues Qt. For each queue, we find the
average similarity of xt to its elements. We then choose the
queue with the highest average similarity as follows:

argmax
c∈[1,K]

1

|E|

E∑
i=1

p(y|xt, xtci) (16)

Active learning strategy: One of the advantages of this
approach is that it is highly flexible with respect to the active
learning strategy as it does not rely upon any specific strategy.
Since the proposed approach is intended to address one-by-one
online classification tasks, however, it is expected that a one-
by-one active learning strategy will be used.

This work uses a randomised variable similarity strategy,
inspired from the randomised variable uncertainty strategy.
In fact, the equation is the same as the one described in
Eq. 2, although, the selection criterion is not p(y∗|xt) but the
maximum similarity in the predicted class:

max
i
p(y|xt, xtci) (17)

where c is the class selected using Eq. 16. The budget spending
mechanism used is the one shown in Eq. 6. The pseucode of
the proposed learning approach is presented in Algorithm 1.

B. Discussion

Class imbalance. The proposed approach is robust to class
imbalance. This is the result of three mechanisms ‘embedded’
in the approach. Firstly, the use of separate and balanced
queues alleviates the problem as propagating past examples
in the most recent training set can be viewed as a form of
oversampling. This concept has been applied in [9] for binary
one-by-one online classification tasks. This work extends this
to a multi-sliding window approach. Secondly, the data prepa-
ration phase creates |Qt

train| training pairs, as opposed to the
K×E examples in the Qt. Depending on the values of K and

Algorithm 1 Proposed learning method
Input:
a: active learning strategy
B: labelling budget

1: Q0: initial labelled examples
2: h0: siamese network
3: b0 = 0: budget expenses
4: for each time step t do
5: receive example xt ∈ Rd

6: predict class using Eq.16
7: ht = ht−1

8: Qt = Qt−1

9: if bt−1 < B then . expenses within budget
10: calculate query criterion value using Eq.17
11: if a(xt, v) == True then . label request
12: receive true label yt

13: append xt to relevant queue in Qt

14: prepare training pairs Qt
train using Eq. 15

15: calculate cost J using Eq. 10
16: update classifier ht = ht−1.train()

17: update budget expenses bt using Eq. 6

E, the number of training pairs can be considerably larger thus
constituting another form of oversampling. Thirdly, we always
balance the number of positive and negative pairs. As we will
demonstrate in our experimental work, the learning approach
can perform well even in extreme imbalanced scenarios.

Concept drift. As it will be illustrated, the learning ap-
proach is robust to drift too. As the examples are carried over
a series of time steps, this allows the classifier to ‘remember’
old concepts. The classifier needs to also be able to ‘forget’
old concepts. This is achieved by the algorithm’s memory-
based nature i.e. by bounding the length of queues, these are
behaving like sliding windows.

Fixed memory. The proposed learning algorithm is not
incremental. An incremental learning algorithm would receive
instance xt, its active learning strategy would decide if training
will be performed, and then would discard xt. The proposed
algorithm, despite not being incremental, always uses a fixed
amount of memory that contains K ×E examples. Addition-
ally, the storage requirements are low since the number of
examples per class is kept to a minimum; e.g. |qtc| = E ∈
{2, 3, 4, 5} Most importantly, however, we will demonstrate
that an incremental learning algorithm performs significantly
worse compared to algorithms that utilise the examples in Qt.

V. EXPERIMENTAL SETUP

A. Data

Synthetic datasets provide us with the flexibility to control
various parameters of the approach; e.g., the severity of class
imbalance, when to introduce concept drift and the drift
characteristics. Synthetic datasets enable us to stress test the
proposed approach. We will use the following datasets.
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Fig. 3. The circles10 dataset which consists of ten classes.

sea4 [17]: It has two features x1, x2 ∈ [0, 10] and four
classes. The decision boundaries are as follows:

0 ≤ x1 + x2 < θ1 −→ class 1

θ1 ≤ x1 + x2 < θ2 −→ class 2

θ2 ≤ x1 + x2 < θ3 −→ class 3

θ3 ≤ x1 + x2 ≤ 10 −→ class 4

(18)

We choose the thresholds as follows θ1 = 3.0, θ2 = 5.0
and θ3 = 7.0. When concept drift occurs, the thresholds are
changed abruptly to θ1 = 2.0, θ2 = 6.0 and θ3 = 8.0. Data
normalisation is afterwards applied so that x1, x2 ∈ [0, 1].

Initially, the dataset is balanced i.e. the probability of an
arriving instance belonging to any class is p(y) = 0.25. Also,
we conducted experiments in a multi-minority scenario where
the probability of an arriving instance belonging to a specific
class is p(y) = 0.97, while for the other three is p(y) = 0.01.
Notice that this constitutes a case of severe imbalance as our
aim is to stress test our learning approach.

circles10 [18]: It has two features x1, x2 ∈ [0, 15] and ten
classes as shown in Fig. 3a. Each class function is a circle
given by (x1 − x1c)2 + (x2 − x2c)2 = r2c where (x1c, x2c) is
its centre and rc its radius. Data normalisation is applied so
that x1, x2 ∈ [0, 1].

The same dataset under concept drift is presented in Fig. 3b.
The radius of the three vertical circles on the left (pink,
brown, cyan) and the green circle has been changed, while
all the remaining circles have been drifted by +1 in both
dimensions. Concept drift affects all the classes simultaneously
and immediately (abruptly) in our experiments.

Initially, the dataset is balanced i.e. the probability of an
arriving instance belonging to any class is p(y) = 0.1. We also
conducted experiments in a multi-minority scenario where the
probability of an arriving instance belonging to a specific class
(pink circle) is p(y) = 0.955, while for the rest is p(y) =
0.005. This constitutes a case of extreme imbalance, which
creates significant problems for most learning algorithms.

Lastly, the circles10 is more challenging than sea4, not only
because it has a larger number of classes, but also because the
data is noisy. We can observe from Fig. 3a the overlap between
some circles, in other words, examples with the same inputs
may not have the same class label.

B. Compared methods
For fairness, all the approaches share the same base classi-

fier, which is a fully-connected neural network of three hidden
32-neuron layers with parameters as follows: He Normal [19]
weight initialisation, learning rate of 0.01, the Rectified Adam
[20] optimisation algorithm, LeakyReLU [21] as the activation
function of the hidden neurons and mini-batch size of 64.
Note that the classifier is only trained once per time step (i.e.
num epochs = 1) as, in practise, this would allow learning
in high-speed data applications. For the siamese network, the
sigmoid activation and the binary cross-entropy loss function
are used, while for a fully-connected network, the softmax
activation and the categorical cross-entropy loss function. The
following algorithms are compared in our study:

incremental: The state-of-the-art incremental learning algo-
rithm [6] which initially proposed the active learning strategy
in Eq. 2 and the budget spending mechanism in Eq. 6. We
use the following parameters as recommended by [6]: step
size parameter s = 0.01, randomisation threshold δ = 1.0 and
sliding window w = 300.

ActiQ: It uses the proposed learning approach but instead of
a siamese network, it uses the fully-connected neural network
described earlier. It is similar to the previous one but it is not
incremental as it makes use of older examples in Q. In all
experiments E = 5.

ActiSiamese: This is the proposed approach as discussed
in Section IV and its pseudocode is given in Algorithm 1.

To make this comparison as fair as possible, in addition to
the fact that all approaches share the same active learning
strategy and base classifier, we do not allow any offline
learning. In other words, learning starts at time t = 0 for all
compared methods, even if the ActiQ and ActiSiamese have
access to the initial labelled set of E examples.

C. Performance metrics
Classifiers are typically evaluated using the overall accuracy

metric. When class imbalance exists, however, this metric
becomes problematic as it is biased towards the majority
class(es) [8]. Hence, it is necessary to use a metric which
is not sensitive to imbalance. The geometric mean is such a
metric which is defined as follows [22]:

G-mean = K

√√√√ K∏
c=1

Rc, (19)

where Rc is the recall for class c.

D. Evaluation method
To evaluate predictive sequential learning algorithms, we

adopt the prequential error with fading factors method. It has
been proven that for learning algorithms in stationary data
this method converges to the Bayes error [23]. This method
does not require a holdout set and the predictive model is
always tested on unseen data. We have set the fading factor to
θ = 0.99. In all simulations we plot the prequential G-mean
in every step averaged over 30 repetitions, including the error
bars displaying the standard error around the mean.



SL 1.0 0.5 0.25 0.1 0.05 0.01
Budget

0.0

0.2

0.4

0.6

0.8

1.0
G

-m
ea

n

ActiSiamese
ActiQ
incremental

(a) sea4

SL 1.0 0.5 0.25 0.1 0.05 0.01
Budget

0.0

0.2

0.4

0.6

0.8

1.0

G
-m

ea
n

ActiSiamese
ActiQ
incremental

(b) circles10
Fig. 4. Role of the budget in the final performance (E = 5)

0 1000 2000 3000 4000 5000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

G
-m

ea
n

ActiSiamese
ActiQ
incremental

(a) sea4

0 1000 2000 3000 4000 5000
Time Step

0.0

0.2

0.4

0.6

0.8

1.0

G
-m

ea
n

ActiSiamese
ActiQ
incremental

(b) circles10
Fig. 5. Comparative study in stationary settings (B = 0.05)

VI. EXPERIMENTAL RESULTS

A. Role of the budget

The first experimental series examines how various bud-
get values affect the final performance (i.e. the prequential
G-mean at the final time step of a simulation). Figs 4a and 4b
show the results for sea4 and circles10 respectively. SL refers
to fully supervised online learning. The general trend is that
as the budget is reduced, the final performance declines. The
difference lies in how rapidly or slowly this decline occurs.

When the budget is B = 0.01, the ActiQ and incremental
obtain a score of G-mean = 0. The ActiSiamese approach
significantly outperforms the rest. In fact, by having access
to 1% of the labels, the proposed approach sacrifices only
0.5% of its performance. We consider this to be a significant
advantage of the proposed approach as it can potentially enable
the realistic deployment of an online classifier.

For greater values of budget (B > 0.01) the ActiSiamese and
ActiQ obtain almost identical final performance scores. As we
will discuss in the next section, however, their learning speed
is significantly different. The incremental approach almost
always performs significantly worse. We do acknowledge, of
course, that this approach does not store or use any older
examples, contrary to the other two.

B. Stationary data

The previous experiments only consider the algorithms’
final performance. This section examines another important
characteristic, that is, their learning speed. We focus on the
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interesting case of B = 0.05 as ActiQ and ActiSiamese appear
to achieve a similar final performance. Figs. 5a and 5b show
a comparison for B = 0.05 in the sea4 and circles10 dataset
respectively. Despite the fact that the two approaches obtain
a similar final G-mean score, it can be observed that the
ActiQ requires about 4000 and 5000 time steps respectively
to equalise the ActiSiamese’s performance. This is another
major advantage of the proposed learning approach since in
online learning, speed is a crucial performance measure. If a
proposed solution is slow, it may be practically useless even
if it eventually achieves the correct result.

C. Imbalanced data

Fig. 6a depicts the learning curves for imbalanced data for
sea4. The ActiSiamese approach significantly outperforms the
rest as it is robust to imbalance. The ActiQ’s performance is
severely affected by the imbalance. The incremental obtains a
score of G-mean = 0 as it fails to do well on the minority
classes, and hence it is not visible in the figure. This is
similar for circles10 in Fig. 6b where the ActiSiamese is only
hindered until about t = 1300. In both figures, the ActiQ’s
final performance is significantly worse even after 5000 time
steps, something that wasn’t the case in Figs. 5a and 5b.

D. Nonstationary data

Fig. 7a depicts the performance in nonstationary data for
sea4, specifically, when drift occurs abruptly at t = 2500. The
ActiSiamese approach is unable to fully recover, however, it
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does fully recover in Fig. 7b in the circles10 dataset. Interest-
ingly, the proposed ActiQ approach slightly outperforms the
ActiSiamese by time t = 5000. This preliminary study reveals
that there may be evidence to suggest that ActiSiamese has a
more difficult time to ‘forget’ old concepts than ActiQ.

E. Imbalanced and nonstationary data

Fig. 8a depicts the performance when data is both imbal-
anced and nonstationary for the sea4 dataset. After the concept
drift, the ActiSiamese approach cannot fully recover from it
but performs better than ActiQ. In Fig. 8b, the ActiQ performs
better than the ActiSiamese after the drift. The ActiSiamese’s
poor performance under these conditions is attributed to its
inability to fully recover from the drift, thus reinforcing our
previous finding that ActiSiamese may have a more difficult
time to ‘forget’ old concepts. Moreover, these results indicate
that when imbalance and drift co-exist and are both severe,
this still remains an open and challenging problem.

VII. CONCLUSION AND FUTURE WORK

We have proposed an online learning approach that com-
bines active learning and siamese networks to address the
challenges of limited labelled, nonstationary and imbalanced
data. The proposed approach significantly outperforms strong
baselines and state-of-the-art algorithms in terms of both learn-
ing speed and performance and has been shown to be effective
even when only 1% of the labels of the arriving instances
is available, something which is not unrealistic in deployed
settings. For future work, we will enrich our study with real-
world datasets. The problem of learning from nonstationary
and imbalanced data still remains open. We have shown that
when imbalance and drift co-exist and are both severe, all
compared algorithms are severely affected. We plan to make
the proposed algorithms more robust to these conditions.
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