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Abstract—This paper investigates the spatial distribution of in-
formation effective for function learning in a spin-wave reservoir-
computing garnet chip. We map the neural weights of a readout
neuron virtually connected massively and densely to the reser-
voir chip. We find that the spatial weight distribution shows
wavefront-like lines, suggesting the importance of concurrent and
time-different interferences of the spin waves. We also estimate
the size of reservoir output electrodes required for the proper
information extraction. These results are significantly useful for
designing spin reservoir chips in the near future energy efficient
devices.

Index Terms—Neural hardware, physical reservoir computing,
spin wave, energy-efficient neural chip

I. INTRODUCTION

Reservoir computing dates back to the echo state network
[1], [2] and the liquid state machine [3], [4]. It shows high abil-
ity to cope with difficult tasks when equipped with sufficient
number of neurons with relatively small calculation costs even
for time-sequential problems. Many researchers reported their
analyses [5]–[7] including the utilization of the so-called edge
of chaos [8], [9], performance analyses in terms of embedding
dimension [10], nonlinearity in constructing elements such as
memristor [11] and its variability among the elements [12].

One of the most important features in reservoir computing
is the possibility that it is realizable directly based on physical
phenomena, resulting in physical reservoir computing [13].
Various ideas have been presented such as the use of water in
a bucket [14] and soft matter like silicon-rubber octopus feet
[15], [16] as well as optics [17]–[19], optoelectronics [20] and
electronics [21]. Other proposals use leading edge technologies
such as spin torque [22], skyrmions [23], nano-magnetic dots
[24] and spin waves [25], [26]. The good matching with
physical phenomena leads to the realization of“ devices with
no need of elaboration”to open a new paradigm of information
devices [27].

Reservoir is also highly compatible with wave and oscilla-
tion phenomena, resulting in proposals of coupled-oscillator
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based reservoir [28] and external-cavity laser based one [29].
In this aspect, reservoir has strong connections with vari-
ous areas of wave-based neural processing architecture such
as wave-based chip [30], carrier-wave computing [31] and
complex-valued neural networks [32]. This feature enhances
the connections to widely wave-based neural networks [33],
[34] such as lightwave neural networks [35]–[38].

In these years, system constructions and demonstrations
are also attracting many researchers, namely, distinction of
sinusoidal and rectangular waves [39], voice classification
[40], information traffic control in internet of things (IoT)
networks [41], and some others.

In this paper, we focus on the spin-wave reservoir comput-
ing using garnet films [25]. Spin-wave dynamics is explained
by the Landau-Lifshits motion equation. It has been revealed
to present very small energy consumption in its propagation in
comparison with other waves or currents, and suitable as the
basis of energy-saving devices in the near future [42]. Spin-
wave dynamics is very complicated due to its nonlinearity,
spatial anisotropy, hysteresis and dispersion. Such complexity
in the dynamics will realize ideal physical reservoir comput-
ing.

This paper analyzes where on the garnet film meaningful
information localizes spatially two-dimensionally by physical
numerical-calculation experiments. This analysis is a starting
point of the construction of design-method framework of spin-
wave-based reservoir chips and hardware.

II. CONSTRUCTION OF THE SPIN-WAVE RESERVOIR

Fig. 1(a) shows the total construction of a reservoir com-
puting neural system. Fig. 1(b) is a conceptual illustration
showing the basic structure of the garnet-film spin reservoir.
Physical details are given in literature [25], [26]. The dynamics
is explained simply as follows. Voltage signals applied at
input terminals trigger spin waves in the garnet film through
the magneto-electric (ME) coupling. The spin waves prop-
agate, interfere and bounce at the edges with nonlinearity,
anisotropy and hysteresis. These phenomena transform the
time-sequential input signals into complicated spatiotemporal
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Fig. 1. (a) General construction of a reservoir computing system in total and
(b) basic structure of the spin wave reservoir chip [25].

signals, which realize an effective reservoir. Note that, here in
the film, there are almost infinite number of spins working as
neurons, which is an ideal situation for reservoir computing.
Then the output electrodes pick up the generated wave signals
by the ME coupling.

The spin waveform in the garnet film depends on the input
voltage signal. In most cases, when we apply square wave
just like in the present case, we will observe clear spin-
wave generation at the rising and falling edges, showing
low frequency spin waves determined by the ferromagnetic
resonance (FMR). In contrast, if we apply a signal higher
than its FMR frequency continuously, then we will find a high
frequency waveform following the input signal. In this paper,
we employ square waveform inputs.

III. PHYSICAL NUMERICAL-CALCULATION EXPERIMENTS
AND RESULTS

A. General setup and dynamics of reservoir and neuron

Fig. 2 shows the dimension of the film chip as well as the
sizes and positions of the input electrodes A and B. We assume
a task of time-sequential exclusive OR (time-sequential XOR)
in this paper. XOR task is suitable for examining the basic
properties of the reservoir dynamics since it is the simplest
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Fig. 2. Dimension of the garnet film with partially absorptive boundary and
the positions of input terminals A and B.

linearly non-separable problem. For input terminals A and B,
we prepare“0”“0”,“0”“1”,“1”“0”and“1”“1”
time-sequential inputs as shown in Fig. 3, where the voltage
waveforms similar to those in our previous work [25]. Time
frame n corresponds to an n-th single symbol time.

The physical property to be modulated is the magnetocrys-
talline uniaxial anisotropy constant Ku in the film. In the
following physical-numerical experiments, we used MuMax3
simulator [43]. The spatial mesh size is 1 µm square, and the
time step is 0.01 ns.

We use the same parameters as those in literature [25], that
is, the film thickness is 100 nm, the mesh size in z-direction
50 nm, the damping constant α = 0.001 (garnet film) or
1 (damper), the saturation magnetization MS = 100 kA/m,
the exchange stiffness constant AEX = 3.6 × 10−12 J/m,
the z-direction uniaxial magnetic anisotropy constant for the
max input voltage KL

U (1 kJ/m3), that for zero input voltage
KH

U (10 kJ/m3) and the cubic magnetocrystalline anisotropy
constant KC = 0. These parameters are quite reasonable for
common garnets such as Tm3Fe5O12 and Y3Fe5O12. The
analysis temperature is 0 K only just for simplicity.

Fig. 4 shows the total construction of the reservoir neural
network. The output of the reservoir is fed to a readout neuron.
For the numerical analysis in this paper, we prepare about
220×220 very small and dense output electrodes virtually
pixel by pixel of the numerical mesh size. The reservoir output
x are simply preprocessed and fed to the readout neuron
through weights w. The neuron can be a linear weight-and-
sum. But, in this numerical experiment, it is assumed to have
an activation function f(u) = (1/(1 + exp(−u))) to generate
a neural output corresponding to the saturation nonlinearity in
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Fig. 3. Input teacher waveforms of (a)“ 0”“ 0”, (b)“ 0”“ 1”, (c)“ 1”“ 0”
and (d)“1”“1”for the time-sequential XOR learning. The hatch shows the
time region used for the learning and decision.

the electronics. The neuron has a bias term as well.
Note that the huge number of reservoir output electrodes

are prepared just only for the present numerical analysis. In
a practical case, we make much fewer, appropriately sized
electrodes. For this purpose, it has critical importance to
obtain physical and structural knowledge in the following
experimental analysis.

In this experiment, we observe the amplitude at position
r averaged over the time period from t = te to T (hatched
in Fig. 3) with a rectification and low-pass filtering (LPF)
preprocessing. That is,

x(r, n) =
1

T − te

∫ T

te(frame n)

Amp (x(t, r)) dt (1)

y(n) = f (w(r) · x(r, n)) (2)

where Amp(·) denotes amplitude extraction. This process is

System
output

Readout neuron

Spin wave reservoir

Fig. 4. System construction showing the connections between spin reservoir
output terminals and a readout neuron.

realized by a diode and a LPF very easily in reality. A neuron
bias w0 is also included in w by assuming x0 = −1. In (2),
n is an index for time frame as we explained in Fig. 3. In the
present task, every time-sequential signal is processed within
a single time frame almost independently though there exists
time-dependent processing within a time frame. We apply a
supervised learning employing the gradient descent method to
minimize the difference of neural output y(n) and the XOR
teacher signal ŷ(n)=1 or 0 with a mini batch process to realize
online adaptability.

We divide a total set of N data into N/Nmini subsets, each
of which consists of Nmini data corresponding to a mini batch.
A set of mini batch data updates the weights w to a new wnew

as

w(r)new = w(r) + ∆w(r) (3)

∆w(r) = − η

Nmini

Nmini∑
n=0

(y(n)− ŷ(n))f ′(w(r) · x)x(r) (4)

where η is a learning rate, y(n) is the neural output at time
frame n, and ŷ(n) is the teach signal. We iterate or continue
this update so that the neural system follows even a changing
environment. We call the single learning with all mini-batch
datasets one epoch. We set the time parameters in Fig. 3 as,
ts=3 ns, t0=4.5 ns, t1=6 ns, te=9 ns and T=16 ns.

B. Results of physical numerical-calculation experiments

Fig. 5 shows the spin waveforms of (a) x- and (b) y-
direction spin components, sx and sy observed at the center of
the garnet film when input signals of A:“ 0”and B:“ 1”are
fed. Spin waves are observed after the input triggers (t = 0)
with small time delays. Though the input signals are simple,
the observed waves are very complicated.

Fig. 6 shows the time evolution of the spatial weight
distribution w(r) according with the iteration of the learning
epoch. The weights are initialized at random (Fig. 6(a)).
Through the learning process, a spatial structure gradually
appears. The areas showing strong intensities (positive: red
areas, negative: blue areas) look like wave fronts. The positive
and negative areas are distributed separately at the central
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Fig. 5. Waveforms of (a) x- and (b) y-direction spin components, sx and sy , at the center of the film for input signals of (left) A:”0”and B:”1” and (right)
A:”1”and B: ”1”, respectively.

coincidently interfering part and at the non-central time-
differently interfering parts.

Fig. 7 is the learning curve. It shows a smooth convergence.
Fig. 8 presents the neuron output for the four pairs of input
signals (a) before and (b) after the learning. Before the
learning, the output is medium for all the input pairs. However,
after the learning, we find the output presents the XOR logic
successfully. Since the number of neurons are almost infinitely
large, there is very small variability in the output levels in both
the before and after learning outputs.

Fig. 9 shows the reservoir outputs in time average (t = 9 to
16 ns) for input signals of (a)“ 0”“ 0”, (b)“ 0”“ 1”, (c)
“ 1”“ 0”, (d)“ 1”“ 1”, respectively. They are somewhat
similar, but actually different. The readout neuron learned to
detect the difference.

For comparison, Fig. 10 shows the map of the effective
reservoir output, that is, the rectified and low-pass-filtered
reservoir outputs, time-averaged in t=9 – 16 ns, for inputs
“A:0”B:“ 0”and A:“ 1”B:“ 1”but subtracted by those
for inputsA:“ 1” B:“ 0” and A:“ 0” B:“ 1”, that is,

{(a)+(d)}−{(b)+(c)} in Fig. 9. This should be the effective
XOR information distributed on the garnet film. This distribu-
tion is very similar to the convergence result in Fig. 6, which
means that the neuron learned the time-sequential XOR feature
properly as we expect. Note that the learning in reservoir com-
puting deals with time-sequential signals. Within each time
frame, the learning process utilizes the time-sequential feature.
This fact results in the difference in the weight distribution
showing the concurrent and time-different interferences.

The high similarity between the weight distribution in Fig. 6
and the effective signal distribution in Fig. 10 represents the
fact that the reservoir neural network extracted useful features
successfully in the learning. We have confirmed that the spin-
wave reservoir provides the readout neuron with useful infor-
mation by utilizing the physical dynamics spatiotemporally.

In addition, we find that the reservoir output electrodes can
be several tens nm in its diameter to extract the features. This
is shown in the spatial distribution of the weights having about
several tens nm or larger spatial variations. We can also find
in the rough positive/negative distribution that several or a few
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Fig. 6. Neural weight distribution when the learning iteration is (a) 1,000 epochs, (b) 10,000 epochs, (c) 100,000 epochs and (d) 1,000,000 epochs, respectively.
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Fig. 7. Learning curve showing the root mean square error versus learning
epochs.

tens electrodes will be sufficient for picking up the features
well in the present task.

IV. CONCLUSION

This paper demonstrated that the spin-wave reservoir com-
puting solves the problem by utilizing its spatiotemporal physi-
cal dynamics. In particular, we observed the spatial distribution
of information effective for time-sequential XOR logic learn-
ing. We found that the weight distribution is very similar to
that of the signal difference between same-input and different-
input reservoir responses, which means that the neuron learned
the XOR feature properly. The information effective for the
function learning presents a wavefront-like pattern indicating
to concurrent and time-different interference. We also found
that the reservoir output electrodes can be several tens nm
in its diameter to extract the features. These results have high
significance in designing a spin-wave reservoir computing chip
for various adaptive information processing.
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