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Abstract—Stream learning is essential when there is lim-
ited memory, time and computational power. However, existing
streaming methods are mostly designed for classification with
only a few exceptions for regression problems. Although being
fast, the performance of these online regression methods is
inadequate due to their dependence on merely linear models.
Besides, only a few stream methods are based on meta-learning
that aims at facilitating the dynamic choice of the right model.
Nevertheless, these approaches are restricted to recommend
learners on a window and not on the instance level. In this
paper, we present a novel approach, named Online Meta-Forest,
that incrementally induces an ensemble of meta-learners that
selects the best set of predictors for each test example. Each
meta-learner has the ability to find a non-linear mapping of the
input space to the set of induced models. We conduct a series of
experiments demonstrating that Online Meta-Forest outperforms
related methods on 16 out of 25 evaluated benchmark and
domain datasets in transportation.

Index Terms—Learning from Data Streams, Adaptive Learn-
ing, Meta-Learning, Regression Streams, Data Streams, Online
Bagging, Ensemble Learning

I. INTRODUCTION

Classical batch learning considers inducing models from
fixed sets of training data, where these models are then
deployed in the test environment. This learning paradigm is
justified under the assumption of independent and identically
distributed (i.i.d) samples. In online learning, on the other
hand, the data is not available as a whole at any point in time
of the learning process, but it is only observed one example
at a time.

Learning from data streams poses challenges [2] such as the
infeasibility of storing all the data, since the data stream may
be infinite. Each instance of the stream can be observed and
processed only once and is then discarded. Furthermore, the
data-generating processes are subject to change, which is also
known as concept drift [23], [17]. These limitations demand
highly adaptive systems that fundamentally overcome these
challenges where their batch counterparts would fail [11].

Many stream learning methods have been proposed in the
last decades to overcome these challenges as described in
the survey paper [17]. Most of them (e.g., [27]) focus on
classification problems, but only a few can be applied to re-
gression problems [24]. AMRules [1], [13] and FIMTDD [21]
are two such examples, which are rule-based and tree-based
approaches respectively. They have proven their practicality in
terms of runtime and often achieving a good generalization
performance. This, however, comes with the limitation of

restricting the rules’ consequents and leaf nodes to employ
linear functions. Therefore, the prediction of both methods
are often not satisfactory when the underlying problem are
complex non-linear functions. Gomes et al.,[18] propose a
random forest of FIMTDD that is learned by applying online
bagging on regression streams.

Ever since meta-learning [5] was introduced for data streams
in [34], i.e., choosing the right learner from hypothesis spaces
of different complexities in the adaptive stetting, algorithm
selection has attracted a lot research. MetaStream [32] and
BLAST [36] are two such examples. Besides being tailored
to classification, the former’s meta-learning scheme is not
suitable for anytime prediction since the algorithm recom-
mendation occurs on a window level. The latter, BLAST,
does indeed recommend a learner on instance level using the
past performance of the base-learners, as opposed to using
the instance’s features. As a result, BLAST’s performance is
upper-bounded by the performance of the best seen model
induced so far.

To overcome the aforementioned issues, in this work, we
propose a new incremental meta-learning approach, called
Online Meta-Forest (OMF), for regression data streams based
on the Meta-Decision Tree (MDT) by [33]. It incrementally
induces an ensemble of tree-structured meta-learners that
recommend the best set of predictors for each test example.
To summarize, the contributions of this paper are threefold:

1) We develop a novel incremental meta-learner on regres-
sion data streams that recommends at the instance-level.
Moreover, the induced meta-learner is able to find a non-
linear mapping of the input space to the set of induced
models.

2) We provide the guarantees of the online Meta-Tree to
recommend the highest-performing model.

3) The experiments demonstrate strong results of Online
Meta-Forest on 24 benchmark and real-world datasets.

Over the remainder of this paper, we present the related
work in Section II and the details of OMF in Section III, and
show empirical evaluation in Section IV before concluding in
Section V.

II. RELATED WORK

In the realm of learning from data streams, two main
properties for a learner become important: being incremental
and adaptive, since they allow for one-pass learning that
maintains a good performance even when changes happen.
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Hoeffding trees [10] and adaptive Hoeffding trees [3] belong to
the pioneering works that adhere to the steaming requirements
and achieve good results for classification on data steams;
these approaches exploit statistical guarantees provided by
the Hoeffding bound [19]. Similarly, AMRules and FIMTDD
apply the same guarantees for the variance reduction as a
splitting criterion when learning from regression streams.

Apart from inducing single models, ensemble learning aims
at inducing a set of several base learners to solve a specific
problem. The idea behind most of ensemble methods is to
minimize the generalization error by exploiting the bias-
variance trade-off, by reducing the variance component while
keeping the bias term unchanged (true when all base learners
are chosen from the same hypothesis class). Since training
the set of learners on the same data would lead to clones of
the same model, different ensemble methods focus on how
to diversify the ensemble and how to aggregate the deci-
sions taken by the different learners into a single prediction.
Hence, the process of ensemble learning can be split into
two phases: base model generation and model integration.
Bagging [6] generates a diverse set of learners by applying
bootstrapping on the learning process. To this end, each base
model is learned on a replica D′ of the training data D that
is sampled with replacement such that |D′| = |D|. Sampling
with replacement does not simply carry over to the streaming
setting, because the size of the data stream is not known
in advance. Oza and Russell [29] show that sampling with
replacement allows each training instance to be selected with
probability 1 − (1 − 1/|D|)|D|, which also means that the
probability for each replica to contain k copies of an instance is(|D|
k

)
( 1
|D| )

k(1− 1
|D| )

|D|−k. Hence, k tends to follow a Poisson
distribution Pois(λ = 1) when |D| → ∞, i.e., P(k) = 1

e·k! .
Oza-Bagging exploits this fact in order to apply bagging in the
online setting. This is achieved by taking each newly observed
instance (xi, yi) in the stream k

(t)
i ∼ Pois(λ) times for each

base learner Bi. Adaptive Random Forest (ARF-Reg) [18]
proposes an ensemble version of FIMTDD by applying online
bagging for the induction of the ensemble’s memebers.

As a higher level of learning, meta-learning deals with
learning from the learner’s performance and behaviour; it has
been defined and introduced in different ways in the last two
decades [25]. Meta-learning is defined by Brazdil [5] as the
type of learning that considers both the declarative and the
procedural bias, which are introduced by the hypothesis space
the preference relation on the hypothesis space, respectively.
In [25], the authors find the common denominators that
characterize meta-learning (i) the ability to adapt with more
experience, (ii) the exploitation of the data’s meta-knowledge
and (iii) the consideration of meta-knowledge from multiple
domains. Todorovski and Džeroski [33] propose and introduce
the meta-decision tree (MDT) as a structure that defines a
hierarchical algorithm recommender that selects a learner to
be used for an instance reaching a leaf node of the decision
tree. MDTs are induced by applying stacking that uses the base
learners’ confidences as landmarkers and are proposed only for

the classification setting. Recently Khiari et al. [22] introduced
MetaBags, which applies bagging in order to induce meta-
decision trees for regression, with the objective of reducing
the error when selecting a learner over the others. In order to
make generalizations about the learning process of different
data sets, the meta-learning system needs to describe these data
sets adequately. These characteristics are called meta-features,
and include, for example, statistical and information-theoretic
measures of the data. Another method of characterizing the
data, which we shall employ here, is landmarking. More on
this can be found in [31].

BLAST [36] is a state-of-the-art meta learning approach that
incrementally trains and updates a heterogeneous ensemble
of base learners while learning on data streams. BLAST is
tailored to classification problems where each learner is up-
or down-weighted by a fading factor with respect to its error
on the most recent examples; this strategy is also known as
the Online Performance Estimation. For a new observation,
the selection strategy activates the base learner that has the
best online performance. Prior works of BLAST can be seen
in the work [35].

MetaStream [32] is an ensemble meta-learning method that
selects the set of best learners from a pool of regression algo-
rithms that are then used as predictors for a freshly incoming
batch of examples. This approach splits up the learning into
two levels: (i) the base level where regression models are
induced from the arriving data, and (ii) the meta level where
meta-instances are generated from each batch/window of in-
stances on which a meta-learner is learned. The way in which
the learning at the meta level is achieved, in MetaStream,
makes it unsuitable for the test-then-train evaluation, which is
why we had to exclude it from our performance comparison
in Section 3 of the main text.

In this paper, the authors provide a detailed experimental
analysis of their method by applying it to data sets from public
transportation and the energy sector.

III. ONLINE META-FOREST

Online Meta-Forest is an online approach that enjoys the
strength of both learning paradigms ensemble and meta-
learning and puts them into practice for the learning from
regression streams. It spawns a forest of a specific type of
decision trees, namely a Meta-Decision Tree (MDT) [33], that
was invented for meta-learning. An MDT resembles a decision
tree with the exception that for each instance reaching a leaf
node, that leaf node selects a base learner to be employed for
prediction. Each MDT is associated with two sets: (i) the set
of meta-feature generators F that extends the set of features
on which the tree builds its splitting criteria and (ii) the set
of base learners B from which leaf nodes employ models for
predictions; MDT is formally defined in Definition 2.

In the following, we will first introduce the concept of
meta-feature generators and base learners and their online
updates. Then we introduce the online induction version of
MDT. Finally, we turn the online MDT into a Meta-Forest by
applying the ensemble technique bagging.



A. Meta-Feature Generators and Base Learners

Meta-feature generators, F = {Fi|i ∈ {1, ...,M}}, play the
role of enriching each instance with information that could be
(i) domain specific such as statistical and information-theoretic
measures of each attribute, or (ii) model-based features, where
each feature is derived from incrementally trained models, see
Definition 1. Knowledge about the density around an instance,
as a meta-feature, can be, for example, acquired by knowing
the number of examples in its neighborhood and the distance
to the closest example by querying a k-NN classifier. Upon
observing the regression instance (xt, yt) ∈ X d × R, where
X d is the input space and the output space is R, the set of
its meta-features {f1, . . . , fM} =

⋃M
i=1 Fi(xt) is generated,

so that the extended instance takes the form (at, yt) :=
(xt1, . . . , xtd, f1, . . . , fM , yt), i.e., the original attributes, the
meta-features and the label. Therefore, F contains supervised
learners whose induction’s and model’s characteristics helps
defining a set of meta-features.

Definition 1. Model-Based Meta-Feature Generator: A meta-
feature generator Fi ∈ F is the function F : X d×M→ R that
assigns to each query instance x the meta-feature fi, where
M is a hypothesis space. This function takes a learned model
Mi ∈ M induced either by the batch algorithm A from the
batch data {x} ⊂ X d, or is being induced and incremental
updated by an adaptive algorithm on the sequence x1,x2, . . . .
Hence, Fi(x,Mi) assigns fi to x by exploiting the character-
istic M around (x). For simplicity, we omit Mi in Fi(x,Mi).

Regression base learners, B = {Bi|i ∈ {1, ..., Q}}, are
instances of learners taken from different hypothesis classes
with different complexities and capacities. In principle, base
learners should be diverse experts under different assumptions
of the data distribution. In the studied streaming setting, the
data distributions could change over time such that certain base
learners will perform better at different times; this effect will
be perceived and learned by the MDT.

Models from both sets F and B are updated in a supervised
manner after observing each new training instance (xt, yt)
only once. Since these updates are performed incrementally,
there is no need to explicitly store and maintain the seen
examples. This is only possible when each learner can be
trained incrementally, otherwise, batch learners can be used
by learning on a sliding window as suggested in [8].

B. Online Meta-Decision Tree Induction

Building upon the concept of meta-decision trees, see Defi-
nition 2, the induction of the online MDT applies the recursive
variance reduction criterion for finding the right feature and
splitting threshold. Variance reduction (V R) considers the
decrease in variance (in the output) caused by splitting the set
of instances Zp at a leaf node p, into the two sets Zl and Zr
based on the attribute aq and one of the values it takes v; i.e.,
Zl = {(a, y) ∈ Zp|aq ≤ v}, Zr = {(a, y) ∈ Zp|aq > v}. The

variance reduction is defined as the difference of the variance
at p and the weighted variances after the split:

V Rv = V ar(Zp)−
|Zl|
|Zp|

V ar(Zl)−
|Zr|
|Zp|

V ar(Zr). (1)

where V ar(Z) is the output variance of the set Z, |Zp|, |Zl|,
and |Zr| are the number of samples in node p, its new left
and right leaf nodes, respectively. Decision trees and rules for
regression, such as FIMTDD and AMRules, select the splitting
attribute that maximises (1) on the target attribute.

Definition 2. Meta-Decision Tree (MDT): Ti = (Ri,Fi,Bi)
is an MDT, with Ri being the root node, Fi being the set of
meta-feature generators, Bi being the set of base learners. An
internal node takes the form nj = (Fnj , tnj , njl , njr ), where
tnj is the splitting point used for the meta-feature generated
by Fnj ∈ Fi, njl and njr are the left and the right child
nodes of nj . Each leaf node pj takes the form pj = (Bpj ),
where Bpj ∈ Bi is the base learner recommended by pj for
predictions. For a query instance x, the prediction is given as
Ti(x) = Ri(x), where

nj(x) =


njl(x), Fnj (x) ≤ tnj and nj is internal node
njr (x), Fnj (x) > tnj and nj is internal node
Bnj (x), nj is a leaf node.

s
An exact computation of the variance reduction caused

by each of the possible values of each attribute, can be
analytically computed in an incremental manner; this, how-
ever, requires a linear number of updates in the number of
observations for each attribute. Ikonomovska [20] proposes
the extended binary search tree (E-BST) as a data structure
that enables the approximate incremental computation of the
variance reduction for a set of potential splitting points. The
cost of updating this structure is logarithmic in the number of
candidate splits C, whereas, computing the variance reduction
is linear in C and is independent of the number of observed
instances. E-BST is based on the method presented in [16]
that facilitates an accurate computation of the information gain
while inducing Hoeffding trees [10].

Whether the split ati ≤ viq causes indeed the highest
variance reduction can, theoretically, be determined only af-
ter observing all the data, which is not an option when
learning from data streams. Concentration bounds, such as
the Hoeffding bound [19], play a central role in providing
statistical evidence of the performance of a parameter without
observing the whole population, which has been proven to be
effective for adaptive classification and regression problems,
see [10]. We employ the Hoeffding inequality to obtain an
early evidence that a given split leads to the guaranteed
largest variance reduction in comparison to other splits. To
this end, we find V R

(t)
best and V R

(t)
2best, the best and second

best achieved variance reductions up to the tth instance. At a

given reduction ratio R(t) =
V R

(t)
2best

V R
(t)
best

, the split is accepted and



Algorithm 1: UpdateMetaDecisionTree
Input: T : current meta-tree.
(xt, yt): new training example at time t.
kt weight of the current instance.
F = {Fi|i ∈ {1..M}}: incremental meta-features generators for T .
B = {Bi|i ∈ {1..Q}}: incremental base learners for T .
/* constants: δ: confidence level, */
/* τ: tie-breaking constant, γ: complexity constant */

1 Traverse tree T to leaf p that contains xt

2 np: number of examples seen by the leaf p
/* compute the meta-features */

3 {f1, . . . , fM} =
⋃M
i=1 Fi(xt)

4 for ai ∈ {xt1, . . . , xtd, f1, . . . , fM} do
/* use ai and kt to compute and store the candidate

values in an extended binary search tree (E-BST) */
/* for each candidate attribute ai, and each candidate

value viq, compute the incremental error of each
base learner for the samples in the current split */

5 np = np + kt
6 find aBest, vBest that have the largest variance reduction V RBest
7 find a2ndBest, v2ndBest that have the 2nd largest variance reduction

V R2ndBest

8 ε =

√
ln
(
1
δ

)
(R)2

2t

/* update the complexity term */
9 γnew = γ · exp(− 1

|T | )

10 X =
VR2ndbest
V Rbest

11 if ((X + ε+ γ) < 1 OR ε < τ) then
12 replace p by (pleft, pright) based on the attribute aBest and the

splitting value vBest
13 choose Bleft, Bright that have the lowest errors for the new leaves

pleft, pright

14 return T

performed (at time t), upon observing

R(t) + ε < 1, (2)

where ε =

√
ln( 1

δ )(R)2

2t , R = 1 (the width of the ratio’s
domain [0,1]), and δ is the confidence level. Fulfilling the
previous inequality means that the true ratio is less than
one, i.e., E[R(t)] < 1, with probability 1 − δ, since the
Hoeffding inequality tells us that the difference between the
observed ratio R(t) and the true ratio E[R(t)] is less than
ε. The aforementioned steps for the meta-tree induction are
summarized in Algorithm 1.

In order to avoid the excessive growth of the meta-tree
which leads to overfitting, we apply a penalty criterion that
controls the number of accepted splits in grown trees. To
this end, we add the complexity γ to the left side of the
inequality (2) (Line 11, Algorithm 1), where γ is weighted
by a factor that is negative exponential with the tree size, i.e.,
γnew = γ · exp(− 1

|T | ) (Line 9).
Once the splitting condition is fulfilled at a given leaf node

p, this node is split into two leaf nodes pleft and pright. At
each new leaf node, we select the base learner with the least
generalization error for the instances covered by that leaf, i.e.,

Bu = argmin
B∈B

∑
(x,y)∈Zu⊂Z

`(y,B(x)) , (3)

where ` be a loss function and Zu is the set of instances
reaching the tree node u and u ∈ {pleft, pright}. It is
important to note that the sum over the losses in (3) is also

attainable incrementally by a simple modification of the E-
BST structure.

In the following proposition, we show how a single meta-
tree is eventually recommending, for each query instance, the
base learner with the lowest generalization error.

Proposition 1. Let hMT be an induced meta-decision tree
that defines how a set of induced base learners B = {Bj}Qj=1

should be aggregated. These base learners are chosen from
a set of hypothesis spaces M = {Mj}Qj=1. Let ` be a loss
function and Ri be the ratio of performances between the best
and the second best base learner for a single example (xi, yi).
Let further P be the number of leaf nodes in hMT . For a
given δ > 0, hMT chooses the base learner with the lowest
generalization error with probability 1− δ when for each leaf
node lp, p = 1, . . . , P it holds that R̄+

√
ln( 1

δ )

2Np
< 1, where R̄

is the observed mean of Ri and Np is the number of samples
seen at leaf node lp.

Proof. We start by recalling the Hoeffding inequality. This
concentration bound quantifies the probability of the de-
viation between the sample mean Z̄ of N independent
realizations Z ∈ [a, b] and the expectation E[Z] to be

P
(∣∣Z̄ − E[Z]

∣∣ ≥ ε) ≤ 2e
−2N·ε2

(b−a)2 .
Let B(p)

best and B(p)
2best be the two best base learners selected

at the leaf node lp for future prediction after observing Np
samples:

B
(p)
best = argmin

Bj∈B

1

Np

Np∑
k=1

` (yk, Bj(xk))

B
(p)
2best = argmin

Bj∈B\{B(p)
best}

1

Np

Np∑
k=1

` (yk, Bj(xk)) .

Further, Ri is given by Ri =
`
(
yi,B

(p)
best(xi)

)
`
(
yi,B

(p)
2best(xi)

) . Since the

instances (x1, y1), . . . , (xNp , yNp) observed at the leaf lp
are jointly independent, the ratios R1, . . . , RNp ∈ [0, 1] are
also independent. Therefore, we have P

(∣∣E[R]− R̄
∣∣ ≥ ε) ≤

2e−2Np·ε
2

, which yields P
(
E[R]− R̄ < ε

)
> 1 − e−2Np·ε2 ,

and by setting δ = e−2Np·ε
2

, we yield that when R̄+
√

ln( 1
δ )

2Np
<

1, we can deduce that E[R] < 1 and, hence, hMT chooses the
best prediction with probability 1− δ at the leaf node lp.

From this, it can be directly concluded that the meta-tree
chooses the best learner with probability 1−δ as long as every
leaf fulfils R̄+

√
ln( 1

δ )

2Np
< 1.

C. From Online MDT to Online Meta-Forest

Ensemble learning tries to boost the performance of learning
methods through exploiting the bias-variance trade-off, by
reducing the variance component while keeping the bias term
unchanged (true when all base learners are chosen from the
same hypothesis class). This has a proven theoretical and
empirical effectiveness when applying bootstrap aggregating
(Bagging) [6] on decision trees to form Random Forests [7]. In



Algorithm 2: Online Meta-Forest
Input: (xt, yt): new training example at time t.
T = {Tj |j ∈ {1..L}}: set of meta-decision trees.
F(j) = {F (j)

i |i ∈ {1..M}}: incremental meta-features generators for Tj .
B(j) = {B(j)

i |i ∈ {1..Q}}: incremental base learners for Tj .
1 for j ∈ {1..L} do
2 draw weight k(j)t ∼ Poisson(1)

/* precompute the error estimators per meta-tree */

3 Z
(j)
t = α · Z(j)

t−1 + k
(j)
t /* normaliz. factor Z

(j)
t */

4 wSSE
(j)
t =

Z
(j)
t−1

Z
(j)
t

(α · wSSE(j)
t−1) +

k
(j)
t

Z
(j)
t

(yt − Tj(xt))
2

/* update the meta-features generators */
5 for i ∈ {1..M} do
6 update F (j)

i on (xt, yt), k(j)t times

/* update the base learners */
7 for i ∈ {1..Q} do
8 update B(j)

i on (xt, yt), k(j)t times

9 UpdateMetaDecisionTree(Tj , (xt, yt), k
(j)
t , F(j),B(j))

10 return T , F, B

a stream setting, maintaining bootstrapping poses a challenge
due to the inaccessibility of the whole data in advance. This
is achieved by incorporating each newly observed instance
(xi, yi) in the stream k

(t)
i ∼ Pois(λ) (Poisson distribution)

times for each learner in the ensemble, following [29]1.
Our approach extends the online MDT to a forest of meta-

trees T = {T1, ..., TL} to improve the generalization perfor-
mance. Each meta-tree Tj updates its structure and parameters
from an incrementally constructed bag of examples (replica
of the stream). To this end, upon observing the instance
(xt, yt), it is replicated k

(j)
t ∼ Pois(1) times. The copies

are used for the incremental learning of the tree’s meta-
feature generators F(j) and base learners B(j). An extended
version using the meta-features, of this instance, is formed as
(at, yt) := (xt1, . . . , xtd, f

(j)
1 , . . . , f

(j)
M , yt) which is then used

for the induction of the tree Tj .
Due to the dependence of the online MDT’s induction pro-

cess on the Hoeffding bound, the resulting trees are expected to
be non-sensitive to the variations between the replicas caused
by the online bagging. Hence, we also introduce the ratio
parameter r in Online Meta-Forest that governs the fraction
of the attributes considered for candidate splits. For simplicity,
we hide this ratio r in the Algorithm 2. For the meta tree Tj ,
its weight after observing the instance (xt, yt) is:

Z
(j)
t = α · Z(j)

t−1 + k
(j)
t ,

wSSE
(j)
t =

Z
(j)
t−1

Z
(j)
t

(α · wSSE(j)
t−1) +

k
(j)
t

Z
(j)
t

(yt − Tj(xt))
2

(4)

where Z
(j)
t is the normalization factor at time t, α ∈ [0, 1]

is a forgetting factor, and wSSE stands for weighted sum of
squared errors.

At prediction time, for a query instance x, the predic-
tion is simply given as the weighted sum of all trees, i.e.,∑
Tj∈T wSSE

(j)
t · Tj(x).

1They show k follows Pois(λ = 1) when |D| → ∞, i.e., P(k) = 1
e·k! .
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Fig. 1: Procedure of Online Meta-Forest

The functional steps of Online Meta-Forest are shown in
Algorithm 2. We illustrate in Figure 1 the general framework
of our proposed Online Meta-Forest to let readers have a deep
understanding to our methodology. At prediction time, the
prediction for a given query instance is given by the convex
combination of each recommended base learner’s prediction
using weights inversely proportional to the weights (4) of the
meta-trees.

D. Further Improvements

Instead of evaluating the variance reduction caused by
each potential splitting on each instance, one could force this
evaluation (starting from Line 6, Algorithm 1) to be carried
out in intervals of a predefined length W . A less crude solution
that we adopt is to infer a rough estimate of the next evaluation
point at which the first condition in Line 11 will be satisfied.
To this end, we infer the time for the next evaluation tnext from

ε =

√
ln( 1

δ )(R)2

2tnext
such that ε < 1−X+γ, under the assumption

of constant ratio of variance reduction. By accepting tnext
when tnext ∈ [t+W/5, t+ 5 ·W ], obvious valid splits can be
quickly realized, and the evaluation of non-significant splits
can be postponed.

Moreover, Hoeffding racing [26] is adapted in order to elim-
inate candidate splits that show no promising improvements
compared to the best two splits. Finally, different components
of OMF are subject to drift detection [15] and adaptation.

IV. EXPERIMENTS

For the purpose of assessing the performance of Online
Meta-Forest we conducted experiments using various datasets
from different sources, including UCI2 [12] and other reposito-
ries3. Additionally, we also used datasets on public transporta-
tion of two European capitals City1 and City2; these datasets
include scheduling times of buses, route information and the
number of passengers boarding and alighting buses at different
stops. We use these data to predict two types of demands: (i)

2http://archive.ics.uci.edu/ml/
3https://github.com/renatopp/arff-datasets/



Properties Source and Type
#ATT #INS RT ORI TYP CP

wine_red 11 1599 [3,8] UCI O R
wine_white 11 4898 [3,9] UCI O R
CASP 9 45730 [15,55] UCI O R
fried_delve 10 40768 [-2,31] dcc.fc.up.pt A R
CCPP 4 9568 [421,496] UCI O R
Concrete 8 1030 [2332,82599] UCI O R
2dplanes 10 40768 [-1000,1000] dcc.fc.up.pt O A
bank32nh 32 8192 [0,0.82 DELVE O S
City1[1]? 9 191276 [0,184] – P R
City1[1]• 9 191276 [0,160] – P R
City1[3]? 15 175167 [0,147] – P R
City1[3]• 15 175167 [0,160] – P R
City2[1]? 9 46256 [0,96] – P R
City2[1]• 9 46256 [0,69] – P R
City2[3]? 15 46244 [0,96] – P R
City2[3]• 15 46244 [0,69] – P R
City1City2[1]? 9 237532 [0,184] – P R
City1City2[1]• 9 237532 [0,160] – P R
City1City2[3]? 15 221411 [0,147] – P R
City1City2[3]• 15 221411 [0,160] – P R
City2City1[1]? 9 237532 [0,184] – P R
City2City1[1]• 9 237532 [0,160] – P R
City2City1[3]? 15 221411 [0,147] – P R
City2City1[3]• 15 221411 [0,160] – P R
bike_sharing 16 17380 [1,977] UCI O R

TABLE I: Datasets summary. Fields denote the following:
#ATT - number of Attributes, #INS - number of Instances, RT -
Range of the Target variable, ORI - Origin of data, TYP - Type
(Proprietary/Open) and CP - Collection Process (Real/Artificial).
The symbols ? and • indicate the boarding and alighting datasets,
respectively. For the transportation streams, the numbers [1] and [3]
represent the lag variable.

boarding: demand of passengers starting from given bus stop,
and (ii) alighting: demand of passengers willing to reach a
given bus stop. For predicting the demand at a specific time
and bus stop, we try out two different settings: (a) offline
demand when the trip is planned in the future (lag = 1, i.e.,
no information is available about the demand at the stops
previous to this one), and (b) real time demand when more
information is available such as the number of passengers at
previous stations (lag > 1). For the latter demand we use
lag = 3. In order to evaluate the ability to learn in non-
stationary environments, we create an additional stream that
simulates a change in the demand prediction task and mimics a
transfer learning scenario. To this end, we append the streams
of the two cities to impose the change. The characteristics of
the used data sets can be seen in Table I.

The question we consider in our evaluations is: How does
Online Meta-Forest perform compared to:

1) Base learners used in OMF;
2) State-of-the-art (SoA) meta-learners on data streams

(BLAST);
3) State-of-the-art adaptive regression learners (AMRules,

FIMTDD and ARF-Reg).
Furthermore, we take advantage of the data stream mod-

ule from the skmultiflow [28] package which enables us to
simulate a streaming context for batch data.

We employ the following learners as base learners of
our approach OMF: k-NearestNeighbor (k-NN), Hoeffd-
ingTree (HT), GradientBoosting (GRB), RandomForest (RF),
GaussianProcesses (GP), Support Vector Regression (SVR),

Bayesian Regression (BR); except for HT, all base learners are
batch learners and are used as proposed in [8] for combining
block-based and online methods. Base learners are used with
their default setting4. Block-based methods are maintained
using a sliding window of size 500 instances and trained after
intervals of 100 instances. In the following, we present the
meta-feature generators and the features created for a given
instance: (i) DecisionTree (DT): the prediction and the depth
reached by the instance, (ii) 3-NearestNeighbor (3-NN): the
prediction, the distance to the nearest neighbour, and the aver-
age distance of all three neighbours (iii) Lasso: the prediction,
(iv) StochasticGradienDescent (SGD): the prediction.

As for the parameterization of OMF, we set r = 0.3,
W = 200, and use an ensemble (forest) of size L = 5.
Since BLAST was only introduced for classification problems,
we reformulate the selection criterion by replacing the 0/1
loss with the mean squared error (MSE). For an impartial
comparison, we allow BLAST to use exactly the same set of
heterogeneous base learners that are utilized by OMF.

In order to show the advantage of OMF in comparison to
non-meta-approaches, we compare with AMRules, FIMTDD
and ARF-Reg that are offered by the stream mining framework
MOA5 [4]. These methods also depend on the Hoeffding
inequality, hence, for a fair comparison, we set the same
confidence level δ = 0.05 and tie-breaking constant τ = 0.005
for OMF, AMRules and FIMTDD. For ARF-Reg, we use the
parameters λ = 6, the ensemble size L = 5, and the number
of features m =

√
d + 1 with d being the total number of

features, as recommended in the original paper.
In all experiments, we apply the test-then-train procedure,

which employs each instance for testing the trained model
and then for updating it. The results presented in Table II
show the mean over five runs (with different random shuffling
of the streams) of the mean squared error (MSE) taken over
the whole stream. For an appropriate comparison, we grant
all learners a grace period of instances that are ignored for
evaluation. This period comprises the first 5% to 10% of
examples of the stream. Table II shows how OMF outperforms
all learners from all other three categories. (base and meta-
learners, and SoA methods). OMF ranks first on 16 out of the
25 datasets with an average rank of 1.66 and has a single tie
with BR and BLAST on the ’bank32nh’ data.

The last row in Table II shows the number of losses/wins
of all methods against OMF; these were computed using the
Wilcoxon signed-rank test over the paired performances of
the 5 iterations with confidence level α = 0.05. It is apparent
that OMF statistically wins almost all the time, except against
AMRules and BLAST, which lose against OMF in about
half of the experiments. OMF loses only twice against HT
and BLAST each. Overall, on average, OMF performs best
compared to all base learners and SoA methods.

Figure 2 presents a different type of performance evaluation
by plotting the MSE on a sliding window; Figures 2.a and

4as implemented in scikit-learn [30] and skmultiflow [28].
5https://moa.cms.waikato.ac.nz/



BR GP GRB HT KNN RF SVR BLAST AMR FIMTDD ARF-Reg OMF

wine_red 0.44(0.004) 18.18(0.06) 0.43(0.005) 0.54(0.006) 0.62(0.01) 0.44(0.004) 0.55(0.008) 0.43(0.003) 0.48(0.007) 1.03(0.029) 0.48(0.02) 0.42 (0.005)
wine_white 0.59(0.003) 31.01(0.04) 0.55(0.004) 0.6(0.005) 0.79(0.005) 0.58(0.004) 0.73(0.002) 0.55(0.004) 0.63(0.004) 1.04(0.03) 0.64(0.01) 0.53 (0.003)
CASP 28.17(0.07) 97.43(0.06) 26.66(0.07) 26.9(0.07) 44.1(0.08) 27.79(0.05) 44.18(0.05) 26.34(0.09) 30.63(1.835) 33.48(0.87) 82.18(51) 24.36 (0.07)
fried_delve 7.08(0.006) 4.06(0.01) 2.84(0.004) 7.47(0.112) 8.52(0.02) 5.47(0.02) 8.73(0.01) 2.84(0.004) 5.81(0.1) 7.01(0.07) 14.47(2) 2.78 (0.02)
CCPP 21.1(0.05) 170115(153) 18.7(0.06) 69.1(14.26) 27.1(0.14) 20.5(0.1) 289(0.5) 18.67(0.06) 19.3(0.19) 27(0.56) 33.96(5) 18.1 (0.12)
Concrete 111.4(1) 1325(7.6) 35.02 (1.03) 236.8(6.5) 107.6(1.2) 43.9(1.4) 276.8(2.5) 34.89 (1.03) 103.5(5.1) 348.8(9.5) 162.86(17) 35.6(0.62)
2dplanes 5.81(0.006) 3.81(0.003) 1.18(0.001) 1.61(0.02) 2.94(0.005) 1.46(0.002) 2.03(0.002) 1.18(0.001) 1.91(0.04) 2.58(0.05) 13.81(2) 1.17 (0.002)
bank32nh 0.0074 (0) 0.021(1e-4) 0.0085(1e-4) 0.0107(1e-4) 0.0091(1e-4) 0.0094(1e-4) 0.011(1e-4) 0.007 (0) 0.0087(2e-4) 0.022(0.001) 0.015(7e-4) 0.0074 (1e-4)
City11? 16.95(0.04) 19.5(0.05) 21.73(0.07) 16.55 (0.05) 20.13(0.05) 21.66(0.05) 18.09(0.04) 16.56(0.05) 16.65(0.05) 16.66(0.05) 16.66(0.07) 16.6(0.04)
City11• 20.38(0.05) 23.36(0.05) 25.94(0.05) 19.93 (0.05) 24.2(0.05) 26.03(0.06) 21.76(0.05) 19.94(0.05) 20.07(0.05) 20.14(0.05) 20.19(0.09) 20.03(0.05)
City13? 13.54(0.03) 17.21(0.04) 16.73(0.02) 13.41(0.04) 15.15(0.04) 16.34(0.04) 15.94(0.04) 13.46(0.02) 13.4(0.13) 13.88(0.07) 24.29(9.35) 13.12 (0.04)
City13• 18.47(0.02) 23.25(0.04) 22.98(0.05) 18.24(0.09) 20.68(0.06) 22.4(0.01) 21.6(0.04) 18.32(0.06) 18.36(0.1) 19.57(0.3) 20.15(0.15) 17.84 (0.04)
City21? 23.57(0.07) 31331(0.07) 27.87(0.17) 23.15 (0.04) 27.89(0.1) 29.2(0.12) 26.4(0.09) 23.16(0.04) 23.38(0.1) 23.66(0.18) 24.56(0.2) 23.17(0.08)
City21• 21.71(0.06) 29332(0.1) 25.5(0.1) 21.39 (0.07) 25.73(0.07) 26.9(0.1) 24.21(0.08) 21.3(0.07) 21.38(0.09) 22.73(0.15) 21.3(0.1) 21.31(0.08)
City23? 21.99(0.12) 33.1(0.15) 25.32(0.16) 21.88(0.15) 25.55(0.16) 25.99(0.12) 26.6(0.13) 21.86(0.13) 21.83(0.17) 23.58(0.4) 22.56(0.3) 21.55 (0.12)
City23• 20.32(0.08) 31.0(0.09) 22.61(0.08) 19.98(0.11) 23.62(0.11) 23.67(0.11) 24.15(0.09) 19.98(0.1) 20.15(0.09) 21.67(0.1) 20.27(0.13) 19.68 (0.09)
City1City21? 18.28(0.03) 21.87(0.04) 22.97(0.05) 18.1(0.04) 21.68(0.03) 23.15(0.03) 19.76(0.03) 17.96(0.04) 17.83 (0.07) 17.84(0.1) 17.96(0.24) 17.98(0.04)
City1City21• 20.64(0.03) 24.56(0.03) 25.86(0.03) 20.4(0.03) 24.5(0.04) 26.17(0.04) 22.25(0.03) 20.29 (0.04) 20.37(0.07) 20.89(0.24) 20.52(0.14) 20.33 (0.03)
City1City23? 15.35(0.02) 20.62(0.03) 18.55(0.03) 15.55(0.02) 17.39(0.03) 18.41(0.03) 18.23(0.03) 15.29(0.02) 15.26(0.11) 15.87(0.07) 420.4(337) 15.02 (0.02)
City1City23• 18.89(0.02) 24.95(0.04) 22.92(0.04) 18.89(0.07) 21.33(0.05) 22.68(0.02) 22.17(0.04) 18.78(0.05) 18.83(0.1) 20.11(0.3) 21.26(0.7) 18.35 (0.02)
City2City11? 18.06(0.01) 21.51(0.02) 22.77(0.11) 17.91(0.02) 21.43(0.02) 22.96(0.05) 19.5(0.01) 17.83(0.02) 17.87(0.04) 18.43(0.06) 17.96(0.03) 17.73 (0.01)
City2City11• 20.54(0.02) 24.3(0.03) 25.87(0.08) 20.3(0.03) 24.38(0.02) 26.13(0.05) 22.11(0.02) 20.27(0.03) 20.25(0.05) 20.83(0.08) 20.64(0.1) 20.18 (0.03)
City2City13? 15.06(0.02) 20.12(0.03) 18.27(0.03) 15.06(0.02) 17.03(0.02) 18.08(0.03) 17.87(0.03) 15(0.01) 14.67(0.03) 15.52(0.11) 15.62(0.1) 14.61 (0.01)
City2City13• 18.77(0.03) 24.66(0.01) 22.77(0.05) 18.53(0.02) 21.19(0.02) 22.59(0.06) 22.04(0.01) 18.57(0.02) 18.1 (0.04) 19.13(0.07) 19.24(0.06) 18.19(0.02)
bike_sharing 16806(28) 11684(24) 7031(15) 17233(230) 13679(72) 8394(35) 32190(54) 7031(15) 14555(318) 15971(483) 19670(200) 6707.59 (47)

∅ Rank 5.88 10.6 7.58 4.94 8.6 8.54 9.04 2.4 3.94 7.18 7.6 1.7

Loss/Win 24/0 25/0 21/0 21/2 25/0 25/0 25/0 15/2 13/0 23/0 18/0 N/A

TABLE II: Performance comparison of the algorithms in terms of MSE and the standard error in parentheses. Results with bold font highlight
the dataset-wise minimum achieved MSE, and underlined results in the case of ties. The symbols ? and • indicate the boarding and alighting
datasets, respectively. For the transportation streams, the numbers [1] and [3] represent the lag variable.

2.b show the progress of MSE while learning from two pure
streams of transportation data from the cities Cap1 and Cap2,
respectively. Figure 2.c compares the MSE of all learners on
the interesting problem of concept change where each learner
is confronted with data coming from City2 only after learning
the concept of City1. From this figure, it is clear that OMF
has the smallest error on the whole data stream, even when the
change occurs. Furthermore, OMF shows the smallest increase
of error at the center of the change after inspecting the first
185000 examples compared to the other methods. Methods
that have high error with performance curves above the plotted
region are represented with arrows pointing up.

Figure 3 depicts an overall runtime comparison between a
single MDT (i.e., OMF with L = 1) and BLAST in terms of
CPU-seconds against the size of the stream (the same streams
used for Table II), where both methods use the exact same
base learners. The time needed by our method resembles that
by BLAST, despite the overhead that has a sub-linear growth
in the stream’s length. This time overhead can be explained
by the time needed to induce a meta-tree and incrementally
evaluate its potential extensions. OMF shows its applicability
for high-speed learning on data streams. For instance, on the
stream with 221k instances, each instance requires less than
0.278 seconds for prediction and training.

Since statistical tests are often criticized, mainly due to the
multiple testing issue, we also compute the critical difference
(CD) for all methods including the base learners using the
Bonferroni-Dunn test [14] at the confidence level 0.05, as
suggested by [9]. Figure 4 shows with a CD of CD = 3.33.
On the one hand, all stream learning methods perform better
than their base learners counterparts. On the other hand, only
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Fig. 2: Performance comparison in terms of the moving mean
squared error on three transportation data streams. Methods that have
high error with performance curves above the plotted region are
represented with arrows pointing up.For the transportation streams,
the numbers [1] and [3] represent the lag variable.
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Fig. 3: Performance comparison in terms of the overall runtime (in
seconds) between BLAST and Online Meta-Forest (normalized for
ensemble). The x-axis depicts the size of the stream.
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Fig. 4: Comparison of all learners classifiers against each other
Bonferroni-Dunn test.

OMF and BLAST are significantly different from benchmark
stream learning methods like BR and FIMTDD (as indicated
by the second grouping marked with thick solid line).

V. CONCLUSION

In this paper, we tackle the problem of learning from
regression data streams. Our approach incorporates meta-
learning on the instance level in order to recommend for each
test instance the best set of predictors and their aggregation.
To this end, we develop an incremental induction mechanism
for meta-decision trees and prove guarantee bounds on their
generalization performance. We further show how a single
tree can be expanded into the Online Meta-Forest. Our wide-
ranging experiments, covering 24 datasets and several com-
petitive algorithms, provide the evidence that OMF performs
more accurately than SoA competitors on benchmark datasets
and the real-world problem of transportation demand. In the
future, we plan to incorporate the dynamic tuning of the
hyperparameters of both the base learners and the meat-feature
generators into the induction process.
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