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Abstract—Glaucoma is caused by damaged optic nerves, and
can lead to permanent vision loss. The cup-to-disk ratio (CDR)
is a key criterion for glaucoma diagnosis, therefore an accurate
automatic segmentation of the optic disc (OD) and optic cup
(OC) in retinal fundus images has become a major research
topic. However, with deeper deep learning models being used to
complete a fundus segmentation, the segmentation results remain
acceptable only on certain datasets. In this research, a lightweight
deep-learning encoder—decoder architecture, which adopts polar
coordinate transformation and histogram equalization to sim-
plify the learning complexity, is proposed for the simultaneous
segmentation of OD and OC. The proposed model employs an
encoder—decoder architecture consisting of a feature extraction
module and a multi-output module to both simplify the model
and to adjust the result through different outputs and multilabel
loss functions. Experiment results demonstrate that the proposed
approach outperforms other deep network models on OD and OC
segmentation over the datasets REFUGE, MESSIDOR, and RIM-
ONE, which contain images captured from cameras with various
specifications. In addition, better results on glaucoma screening
through CDR calculation were obtained on the REFUGE dataset
with the proposed method.

Index Terms—Simplification, deep learning, optic disc segmen-
tation, optic cup segmentation, glaucoma screening.

I. INTRODUCTION

Studies have indicated that the number of glaucoma patients
worldwide will increase to 111.8 million by 2040, and it is
therefore important to guide the screening and treatment of
glaucoma and the design of related public health strategies
[1]. Because the initial symptoms of glaucoma are not obvious,
patients often do not experience pain or vision loss. Glaucoma
may be noticed only when the disease progresses to a signifi-
cant loss of peripheral vision or complete blindness. Therefore,
glaucoma is one of the main causes of irreversible blindness.
Early detection and timely treatment are keys to preventing
patients from vision loss, and effective diagnostic methods
should therefore be developed. In terms of diagnosis, the cup-
to-disk ratio (CDR) is usually used to determine the presence
of glaucoma. Fig. 1 shows a retinal fundus image. The large
circle in the middle is called the optic disc (OD). The small
circle inside the OD is called the optic cup (OC). The CDR
is ratio of the OC area to the OD area. In general, the CDR
of a normal person is approximately 0.3 and does not exceed
0.6, whereas the CDR of a glaucoma patient exceeds 0.6. This
also means that the higher the CDR is, the more severe the
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Fig. 1. Structure of a retinal fundus image: green ellipse, optic disc (OD);
blue circle, optic cup (OC); and vertical CDR, ratio of vertical cup distance
(VCD) to vertical disk distance (VDD).

impairment in the optic nerve. An image segmentation task
can be applied to the OC and OD in a fundus image to obtain
the CDR and help assess the risk of glaucoma.

Many studies have applied deep learning to fundus image
segmentation. However, a single dataset or a dataset with
too few images is used, making it difficult to verify the
generalizability to different datasets, which is a major concern.
The spatial resolution of retinal fundus images is usually quite
high, and the input size of the model directly affects the
model size. Therefore, many methods reduce the image size.
Simplifying the deep network model becomes an important
key to protecting a resized image from a distortion affecting
the CDR determination. However, an underfitting easily occurs
if the number of layers in the deep network is arbitrarily
reduced to simplify the network. Therefore, improving the
structure of each layer or block in a deep network can reduce
the use of parameters and simplify the network. For example,
MobileNet [2] and ShuffleNet t [3] apply object detection on
mobile devices, and ESPNet [4] constructs an ESP module
to achieve a lightweight segmentation network. A lightweight
feature extraction module can thus be constructed to maintain
the original size of the input image and avoid improper
proportions.

In the past, manual feature extraction was mostly used for
a fundus image diagnosis, but its insufficient discrimination
made the results subject to pathological areas and low con-
trast. However, with the rapid development of deep learning,
many computer vision applications achieve a good resolution.
For example, convolutional neural networks (CNNs) perform



better in image classification (VGG16) [5] and segmentation
(FCN) ) [6]. For retinal images, Gulshan et al. demonstrated
that deep learning systems have a high sensitivity and speci-
ficity for detecting inducible diabetic retinopathy [7]. Good re-
sults have also been achieved for fundus vascular segmentation
[8]. Using retinal fundus images, a method has been proposed
that reuses the features and reduces the required number of
parameters to improve the segmentation, particularly the effect
of OC segmentation [9].

Our goal is to achieve a higher generalizability in terms
of glaucoma determination using ophthalmoscopes based on
the premise of constructing a lightweight deep model. In this
study, we propose a preprocessing method and a lightweight
deep learning network. The main contributions are as follows:

1) For the preprocessing, we applied a polar coordinate
transformation and histogram equalization to enhance
the image features which effectively reduces the learning
complexity.

2) For the network architecture, we use the encoder-
decoder architecture of DeepLabV3+, a linear bottleneck
of MobileNetV2, and an inverted residual block to
reduce the parameters and achieve a light weight. A
multi-output approach is employed to strengthen the OC
and OD segmentation.

3) The output module used in the network separately seg-
ments the OD and OC, combining them for a clearer
correlation for a multilabel segmentation. Through a
preprocessing assessment, we tested the generalizability
of the preprocessing on the REFUGE [10], MESSIDOR,
and RIM-ONE [11] datasets. The results show that our
method, U-Net, and M-Net exhibit significant improve-
ments in the segmentation of OD and OC.

4) In the segmentation of the OD and OC, the CDR
was calculated and applied to the REFUGE challenge
dataset. Our method achieved a better effect with an
AUC value of 0.94. In addition, the occupied parameters
reached 6.71 MB, and the floating point operations
(FLOPs) performed per second reached approximately
1.4 MB, thereby achieving quickness and a light weight
under the effective segmentation levels.

The remainder of this paper is organized as follows: Section
II reviews past fundus OD and OC segmentation techniques.
Details of our method and its components are described
in Section III. To test the effectiveness of our method, we
planned and conducted experiments in two parts, as presented
in Section IV. Some concluding remarks are finally given in
Section V.

II. RELATED STUDIES

Prior studies have described numerous methods for seg-
menting OD and OC in retinal fundus images. The existing
methods of automatic OD and OC segmentation can be
roughly divided into four categories: shape-based and tem-
plate matching, active contour and deformable based models,
machine learning, and deep learning.

Shape-based and template matching models were the earli-
est to be applied to OC and OD segmentation. Such methods
regard the OD as a circle [12] or ellipse [13], and use a Hough
transformation or ellipse fitting to approximate the OD shape.
However, the segmentation lacks stability owing to changes
in image color, nonuniform intensity, prominent parts such
as exudates present in the abnormality, and the influence of
surrounding blood vessels inside the OD.

An active contour method (ACM) is widely applied to
OC and OD segmentation. This method can convert the
segmentation problem into an energy minimization problem,
in which different energies are derived to reflect features
such as the intensity, texture, and boundary smoothness of
an image. [14] pioneered the use of ACM in the detection of
contours based on image gradients . Since then, numerous
researchers have applied different variants of ACM to OD
and OC segmentation. For example, [15], proposed a gradient
vector flow-based ACM to segment the OD.

Machine learning mainly relies on various artificial or
image processing methods for feature extraction. The extracted
features are trained as representatives of the image. A special
preprocessing is usually required to assist in the feature
display. Such methods are usually effective for a single dataset,
and cannot be applied to various datasets. In [16], pixels and
local neighborhood features extracted from the ROIs of the
retinal fundus image are used to classify the OC and retina
for each pixel through a support vector machine (SVM). In
[17], an unsupervised method is used to segment the OC in the
fundus image. Superpixel classification is regarded as a low-
rank representation (LRR) problem, and the best parameters
are adaptively selected to generate a graph of the final result.

Convolutional neural network (CNN) is an active research
topic with wide uses in computer vision applications. Through
CNNs, more complex features can be learned and extracted
from the input images. The initial method focused on a single
region for segmentation. For example, a full VGG16 CNN is
used for OD segmentation [18], CNNs with large pixel blocks
are applied [19], with classification and postprocessing used
for each pixel block to achieve OC segmentation. However,
with the development of segmentation technology, the use of
an improved U-Net to segment the OD and OC was introduced
[20], although OD and OC are segmented separately in order.
In addition, a deep ensemble network for glaucoma detection
was proposed [21]. Various network modules can be used to
learn different levels of fundus images, such as the entire
fundus image and the OD region. A segmentation-guided
network is used to segment the OD to enhance the effect
of glaucoma detection. In [22], a training architecture of M-
Net based on polar coordinate transformation and multilabel
concept is proposed. A multilabel concept was used to consider
the simultaneous segmentation of OD and OC. A polar coor-
dinate transformation was employed to process fundus images
from another perspective. This method is also presently the
best segmentation method available. Sun et al. [23] argued
that a deep object detection network can simultaneously frame
the boundary box and locate the OD and OC, and used a
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Fig. 2. Preprocessing flowchart. The original fundus image is cropped through
the ROI (OC and OD), and is then processed using histogram equalization
and a polar coordinate transformation to obtain the input image of the deep
network model.

boundary box to estimate the vertical ellipse to achieve a rough
segmentation. In [9], the DenseNet architecture is applied to
reduce the parameters through reuse, and the generalizability
of the model is tested on different datasets.

III. PROPOSED METHOD

In this section, we introduce the preprocessing of the fundus
images and the architecture of the deep network applied.
We employ ROI extraction, histogram equalization, and po-
lar coordinate transformation for preprocessing, as shown in
Fig. 2. In terms of deep network construction, we applied
the encoder-decoder architecture of DeepLabV3+ and the
lightweight concept of MobileNetV2 to construct a lightweight
deep network for the segmenting of fundus images.

A. Image Preprocessing

In general, the OC and OD regions in the fundus image
account for a small proportion. The shapes of the OC and
OD are close to a circle or ellipse, and the OC region does
not exceed the OD region in size. Also, besides the slightly
different colors in different segmented regions, the curvature
of the blood vessels need to be considered to help judge the
OC and OD. For the OC and OD regions of proportion, an
existing automatic OC and OD positioning method is first
adopted to briefly extract the OC and OD regions. Regarding
the slightly different colors in different segmented regions, we
applied histogram equalization to the three RGB channels in
the image, and merged the three channels into a color image.

g:oder

ASPP

- 1x1 Sep Conv

3 X 3 Sep Conv
Rate 6

3 X 3 Sep Conv
Rate 12

3 X 3 Sep Conv
Rate 18

-

Concatenation

Feature Extract

k Module

Decoder

Image Pooling

E

1 x 1 Conv

R
-

o /

Fig. 3. Architecture of the deep learning network. With the encoder-decoder
architecture as the backbone, the deep learning network includes feature
extraction, atrous spatial pyramid pooling (ASPP), and multi-output modules,
and generates a multilabel feature map that contains the OC and OD regions.
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In terms of approximating the shapes of the OC and OD,
we used the center of the OC to establish a polar coordinate
transformation.

B. Deep Network Architecture

A lightweight deep segmentation network is introduced in
three steps in this section.

1) Encoder-decoder network architecture: In our study, we
used the encoder-decoder architecture of DeepLabV3+ as the
backbone of the deep network [24], as shown in Fig. 3.
Based on the DeepLabV3+ architecture, we constructed a
feature extraction module as the main body of the encoder,
and then obtained the feature information of different scales
through ASPP, and finally integrated all feature outputs with a
1 x 1 convolution. To make the model lightweight, ASPP and
DeepLabV3+ in the encoder also uses a depthwise separable
convolution instead of a standard convolution. In our case,
the number of parameter calculations is significantly reduced,
making the model lighter and faster, while still producing
good results. The feature extraction module in the encoder
uses the linear bottleneck of MobileNetV2 as the convolution
method, which can mitigate the feature degradation problem
of MobileNet and help our model produce better results.

The composition of the decoder is similar to that of
DeepLabV3+. First, the features of the encoder are bilinearly
upsampled by 4-fold. The feature extraction model is then
concatenated to achieve the corresponding low-level features
with the same spatial resolution. Finally, the decoder com-
pletes a simple module through the 4-fold bilinear upsampling
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Fig. 4. Feature extraction module constructed using inverted residual blocks.
Fig. 4 (A) shows the overall structure of the feature extraction module. Four
inverted residual blocks, shown in (B), are superimposed as feature extraction
blocks. Here, n represents the number of repeat times, and c represents the
output channel. The first bottleneck of each block uses stride s to decide
whether to reduce the spatial resolution, and the remaining bottlenecks are
set, such as stride = 1. The amplification factor ¢ is based on the input of
each block.

layer However, to achieve a better segmentation, we combined
the original decoder and output module to supervise the
learning in a multi-output manner and generate the OD and
OC segmentation results.

2) Feature extraction module: In this module, to adapt to
large-scale medical images, we used AveragePooling to reduce
the image spatial resolution to the original 1/4 and reduce
the dimensions of the two-stride convolution to extract the
important features of the original image. A concatenation is
then applied for the shrunken image and important features,
reducing the burden from a large number of parameters
and increasing the richness of the features. Two features of
MobileNetV2, which possesses an inverted residual structure
of a linear bottleneck, are then used to simplify the model
size and stabilize the richness of the feature extraction. The
use of the linear bottleneck component is improved based
on the depthwise separable convolution, reducing the num-
ber of parameters. Finally, we stacked four inverted residual
structures with linear bottlenecks to form the main blocks for
extracting the feature information, as shown in Fig. 4 (A). The
output of the first structure is used as a low-level feature to
assist the decoder, which facilitates the OC and OD boundary
segmentation.

3) Output module: Due to the OD region is contained in the
OC region, two independent binary classifiers are applied for
the multilabel classification of the OD and OC, which is closer
to the real state and renders good results in M-Net. However,
in addition to using the multilabel method as the main basis for
segmentation, we added a separate segmentation of OD and
OC to assist the supervision before multilabel segmentation,
thus reducing the confusion between the OD and OC, as shown
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Fig. 5. Output module. Three different output results were obtained from
1 x 1 convolutions of three sigmoid activation functions. However, the left
and right convolutions in the figure can generate the final result graph only
after the features of OD and OC are merged through concatenations and 1 x 1
convolutions.

in Fig. 5. In addition, the output layers that separately segment
the OD and OC only discriminate between regions and non-
regions for each pixel value, and thus the OD and OC in the
grayscale map of a single channel were used to regulate the
final output segmentation. Finally, we used a Dice coefficient
as the loss function. The loss weights of the OD and OC output
layers were 0.3, whereas that of the output layer combining
OD and OC was 0.4.

IV. EXPERIMENTS

In the experiemnts, the input image size was fixed at
400 x 400. Because the experimental process mainly involved
multilabel segmentation, the output of the deep learning net-
work was a two-channel probability map of the OC and
OD. Each pixel value represents a probability. A threshold
value of 0.5 was used as the basis for dichotomization to
generate a mask map. Segmentation results were generated
using an ellipse fitting to facilitate the analysis of the CDR.
To evaluate the segmentation performance of the methods, we
compared the evaluation indicators such as a Dice coefficient
(F-measurement), Jaccard (overlapping), accuracy, sensitivity,
and specificity, as well as the actual segmentation graphs. We
compared two well-known deep learning models applied to
the fundus images, i.e., U-Net [25] and M-Net [22], using our
method. First, the REFUGE training set was used for training,
and the REFUGE verification set, RIM-ONE, and MESSIDOR
were used for testing. The fundus images that had undergone
a different preprocessing were used as the input. Finally, the
existing methods used in RIM-ONE and MESSIDOR were
compared.

For the evaluation of model, three types of preprocessed
fundus images were used as the training inputs, including the



TABLE I
COMPARISON OF DIFFERNET METHODS UNDER DIFFERENT PREPROCESSING BASED ON THE REFUGE DATASET

Model Optic Disc Optic Cup
DC(F) JC(O) Acc SEN SPC DC(F) JC(O) Acc SEN SPC
U-Net(Original) 0.887 0.803 0.817 0.324 0.994 | 0.822 0.719  0.797  0.622  0.993
U-Net(PT) 0.924 0.861 0.870 0.378 0.990 | 0.937 0.884 0906 0909 0919
U-Net(HistPT) 0.963 0.929 0933 0.553 0989 | 0.956 0918 0939 0.838 0.989
M-Net(Original) 0.934 0.880 0.888 0.457 0989 | 0.852 0.751 0.816  0.627 0.992
M-Net(PT) 0.954 0915 0922 0.556 0994 | 0.825 0.716  0.789  0.603 0.995
M-Net(HistPT) 0.964 0932 0936 0.526 0.995 | 0.967 0.937 0953 0.936 0.960
Proposed(Original) | 0.948 0.902 0908 0437 0.997 0.926 0.866  0.901 0.769  0.983
Proposed(PT) 0.942 0.892 0.899 0413 0.997 0.933 0.875  0.907 0.761 0.987
Proposed(HistPT) 0.984 0.969 0971 0.775 0.988 | 0.965 0933 0950 0.885 0.977
TABLE 11
COMPARISON OF DIFFERNET METHODS UNDER DIFFERENT PREPROCESSING BASED ON THE MESSIDOR DATASET
Model Optic Disc Optic Cup
DC(F) JC(O) Acc SEN SPC DC(F) JC(O) Acc SEN SPC
U-Net(Original) 0.540 0426 0594 0991 0.456 | 0.435 0.317 0.845 0.988 0.474
U-Net(PT) 0.552 0435 0847 0914 0.804 | 0.290 0.191 0921 0970 0.307
U-Net(HistPT) 0.843 0.751 0942 0988 0.788 | 0.537 0.391 0931 0.997 0410
M-Net(Original) 0.566 0433  0.691 0.993 0.443 0.277 0.202 0955 0.963 0.504
M-Net(PT) 0.605 0.474 0.805 0.950 0.685 0.689 0.554 0976 0977 0.889
M-Net(HistPT) 0.858 0.773 0950 0.966 0.903 | 0.702 0.566 0972 0989 0.690
Proposed(Original) | 0.377 0.241 0.470 1 0.241 0.582 0.438 0940 0.999 0.445
Proposed(PT) 0.341 0.212  0.382 1 0.212 | 0.566 0.428 0931 0.997 0.446
Proposed(HistPT) 0.886 0.805 0963 0.984 0.872 | 0.717 0.580 0972 0.991 0.688
TABLE III
COMPARISON OF DIFFERNET METHODS UNDER DIFFERENT PREPROCESSING BASED ON THE DATASET
Model Optic Disc Optic Cup
DC(F) JC(O) Acc SEN SPC DC(F) JC(O) Acc SEN SPC
U-Net(Original) 0.560 0.538 0.554 0.171 0986 | 0.348 0.327 0.410 0.335 402
U-Net(PT) 0.976 0.954 0954 0.504 0969 | 0.881 0.814 0.827 0.713 0910
U-Net(HistPT) 0.949 0.903 0906 0308 0.998 | 0.951 0.910 0.921 0.670  0.994
M-Net(Original) 0.877 0.846  0.849 0.249  0.906 0.06 0.04 0.168 0.141  0.490
M-Net(PT) 0.967 0943 0945 0.626 0982 | 0.636 0.485 0.549 0.247  0.989
M-Net(HistPT) 0.979 0.959 0960 0.520 0.995 | 0.971 0.945 0.951 0.799  0.982
Proposed(Original) | 0.962 0.927 0929 0328 0.999 | 0.592 0.428 0.502  0.212 1
Proposed(PT) 0.973 0.948 0950 0.407 0.997 0.399 0.249  0.3468 0.166 1
Proposed(HistPT) 0.976 0953 0954 0431 0998 | 0.956 0.918 0.928 0.690 0.992

original image (Original), polar transformed image (PT), and
histogram equalized and polar transformed image (HistPT).
Segmentation was applied using our method, U-Net, and
M-Net. The segmentation results were compared, as shown
in Tables I-III. Inspired by M-Net, we also used a polar
coordinate transformation to balance the proportions of the
OC, OD, and a background to avoid a model overfitting.
However, one of our main contributions is to add histogram
equalization to uniformize the pixel values in the image to
obtain an image with a more prominent contour, which helps
improve the extraction and segmentation of the model and
achieve a better generalizability.

We observed from Tables I-III that the images processed
through a polar coordinate transformation and histogram
equalization obtained better segmentation results. The OC seg-
mentation tested on the MESSIDOR and RIM-ONE datasets
had a significant effect, indicating that a polar coordinate
transformation can clearly describe the segmentation task,
whereas histogram equalization can give the model a clearer

outline and reduce the influence of chromatic aberrations.
However, we found from Tables II and III that our method
failed to easily complete the segmentation task when a polar
coordinate transformation and histogram equalization were
not employed. This indicates the need to clearly define the
segmentation requirements while simplifying the deep network
model. Fig. 6 shows an example of an actual segmentation of
different models on different datasets. Each dataset was repre-
sented by two fundus images. The inputs of all deep models
were preprocessed fundus images. The glaucoma and healthy
fundus images were selected from the REFUGE and RIM-
ONE datasets. On the MESSIDOR and REFUGE datasets, our
method completely presented the OC segmentation compared
to M-Net and U-Net, although our method was more likely
to have a smaller OD segmentation range than that of the
GT. In the test on the RIM-ONE dataset, we selected more
challenging images. Our method performed better in the first
image, whereas all methods failed in the segmentation of the
second image. Therefore, in the future, we can try a different



TABLE IV
PERFORMANCE OF DIFFERENT MODELS ON DIFFERENT DATASETS

Model Params FLOPS

U-Net 10.13M 20297877
M-Net 8.54M 17081123
Proposed  6.71M 13510970

preprocessing or develop a strong deep network to strengthen
the generalizability of the current model.

A0 e e o
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Fig. 6. Examples of OC segmentation. A fundus image, ground truth (GT),
our network, M-Net, and U-Net are presented from left to right. Three different
fundus image datasets are used. The yellow and red regions in GT are OD
and OC, respectively. The results of OD and OC segmentation are expressed
in black and gray, respectively.

We evaluated the size and speed of the models based on
the number of parameters (Params) and the number of FLOPs
applied per second. We observed from Table IV that U-
Net took up the most space but had the worst segmentation
effect. However, our model occupied the least amount of space
and exhibited the fastest calculation speed. For the diagnosis
of glaucoma, the diagnostic capability of our model was
evaluated based on the actual CDR of the REFUGE dataset and
information regarding the presence or absence of glaucoma. U-
Net and M-Net were compared with our method. The images
processed by U-Net and M-Net and images preprocessed by
our method were used as inputs. First, we conducted an
ellipse fitting for the segmented image generated by the model
to facilitate our CDR calculation. We then trained a simple
linear model based on the actual CDR and the information
on the presence or absence of glaucoma, and judged whether
glaucoma was present based on the calculated CDR.

Finally, the AUROC value of the CDR obtained by our
method was 0.94, which was closer to the result of the real
dataset. We observed from Fig. 7 that U-Net witnessed an
increase of 0.18 in AUROC after preprocessing, and M-Net
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Fig. 7. AUROC evaluation for CDRs generated by different models on the
REFUGE test set

witnessed an increase of 0.87. This confirms that this prepro-
cessing method can improve the segmentation and diagnostic
capability of other deep models.

V. CONCLUSION

In this study, we developed a deep learning method to simul-
taneously segment the OD and OC in a retinal fundus image.
With the encoder-decoder architecture of DeepLabV3+ and the
lightweight concept of MobileNetV2, we simplified the deep
learning model to reduce the burden of high-resolution medical
image input and enhance the features of the images through
polar coordinate transformation and histogram equalization
for better generalization. The results showed that our method
performs well on different datasets in experiments. Our deep
network architecture strucks a good balance between reducing
the model parameter usage and improving the segmentation ef-
fect. Furthermore, our method can be applied to the REFUGE
dataset through a CDR calculation for the glaucoma diagnosis.

REFERENCES

[1] Y.-C. Tham, X. Li, T. Y. Wong, H. A. Quigley, T. Aung, and C.-Y.
Cheng, “Global prevalence of glaucoma and projections of glaucoma
burden through 2040: a systematic review and meta-analysis,” Ophthal-
mology, vol. 121, no. 11, pp. 2081-2090, 2014.

[2] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[3] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848-6856.

[4] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi,
“Espnet: Efficient spatial pyramid of dilated convolutions for semantic
segmentation,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 552-568.

[5] K. Simonyan and A. Zisserman, ‘“Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431-3440.



[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu,
A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros
et al., “Development and validation of a deep learning algorithm for
detection of diabetic retinopathy in retinal fundus photographs,” Jama,
vol. 316, no. 22, pp. 2402-2410, 2016.

H. Fu, Y. Xu, D. W. K. Wong, and J. Liu, “Retinal vessel segmentation
via deep learning network and fully-connected conditional random
fields,” in 2016 IEEE 13th international symposium on biomedical
imaging (ISBI). 1EEE, 2016, pp. 698-701.

B. Al-Bander, B. Williams, W. Al-Nuaimy, M. Al-Taee, H. Pratt, and
Y. Zheng, “Dense fully convolutional segmentation of the optic disc and
cup in colour fundus for glaucoma diagnosis,” Symmetry, vol. 10, no. 4,
p. 87, 2018.

J. I. Orlando, H. Fu, J. B. Breda, K. van Keer, D. R. Bathula, A. Diaz-
Pinto, R. Fang, P-A. Heng, J. Kim, J. Lee et al, “Refuge challenge:
A unified framework for evaluating automated methods for glaucoma
assessment from fundus photographs,” Medical image analysis, vol. 59,
p. 101570, 2020.

F. Fumero, S. Alay6n, J. L. Sanchez, J. Sigut, and M. Gonzalez-
Hernandez, “Rim-one: An open retinal image database for optic nerve
evaluation,” in 2011 24th international symposium on computer-based
medical systems (CBMS). IEEE, 2011, pp. 1-6.

A. Aquino, M. E. Gegilindez-Arias, and D. Marin, “Detecting the optic
disc boundary in digital fundus images using morphological, edge
detection, and feature extraction techniques,” IEEE transactions on
medical imaging, vol. 29, no. 11, pp. 1860-1869, 2010.

A. Giachetti, L. Ballerini, and E. Trucco, “Accurate and reliable segmen-
tation of the optic disc in digital fundus images,” Journal of Medical
Imaging, vol. 1, no. 2, p. 024001, 2014.

J. Lowell, A. Hunter, D. Steel, A. Basu, R. Ryder, E. Fletcher, and
L. Kennedy, “Optic nerve head segmentation,” IEEE Transactions on
medical Imaging, vol. 23, no. 2, pp. 256264, 2004.

M. C. V. S. Mary, E. B. Rajsingh, J. K. K. Jacob, D. Anandhi, U. Amato,
and S. E. Selvan, “An empirical study on optic disc segmentation using
an active contour model,” Biomedical Signal Processing and Control,
vol. 18, pp. 19-29, 2015.

D. W. K. Wong, J. Liu, N. M. Tan, F. Yin, B.-H. Lee, and T. Y. Wong,
“Learning-based approach for the automatic detection of the optic disc
in digital retinal fundus photographs,” in 2010 Annual International
Conference of the IEEE Engineering in Medicine and Biology. 1EEE,
2010, pp. 5355-5358.

Y. Xu, L. Duan, S. Lin, X. Chen, D. W. K. Wong, T. Y. Wong, and
J. Liu, “Optic cup segmentation for glaucoma detection using low-
rank superpixel representation,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, 2014,
pp. 788-795.

K.-K. Maninis, J. Pont-Tuset, P. Arbeldez, and L. Van Gool, “Deep
retinal image understanding,” in International conference on medical
image computing and computer-assisted intervention. Springer, 2016,
pp. 140-148.

Y. Guo, B. Zou, Z. Chen, Q. He, Q. Liu, and R. Zhao, “Optic cup seg-
mentation using large pixel patch based cnns,” in Proc. the Ophthalmic
Medical Image Analysis Third International Workshop (OMIA 2016),
2016, pp. 129-136.

A. Sevastopolsky, “Optic disc and cup segmentation methods for
glaucoma detection with modification of u-net convolutional neural
network,” Pattern Recognition and Image Analysis, vol. 27, no. 3, pp.
618-624, 2017.

H. Fu, J. Cheng, Y. Xu, C. Zhang, D. W. K. Wong, J. Liu, and X. Cao,
“Disc-aware ensemble network for glaucoma screening from fundus
image,” IEEE transactions on medical imaging, vol. 37, no. 11, pp.
2493-2501, 2018.

H. Fu, J. Cheng, Y. Xu, D. W. K. Wong, J. Liu, and X. Cao, “Joint
optic disc and cup segmentation based on multi-label deep network and
polar transformation,” IEEE transactions on medical imaging, vol. 37,
no. 7, pp. 1597-1605, 2018.

X. Sun, Y. Xu, M. Tan, H. Fu, W. Zhao, T. You, and J. Liu, “Localizing
optic disc and cup for glaucoma screening via deep object detection
networks,” in Computational Pathology and Ophthalmic Medical Image
Analysis. Springer, 2018, pp. 236-244.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 801-818.

[25] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234-241.





