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Abstract-It is fundamental to detect seismic events reli­
ably and efficiently when processing continuous waveform data 
recorded by seismic stations. Recently, convolutional neural 
network (CNN) based detecting methods have been proposed 
for seismic events detection and obtained great success in this 
area, where the learning of seismic event detecting network of all 
seismic stations is considered as one learning task and numerous 
labeled data need to be collected for training the detecting 
network. However, they tend to ignore the differences between 
seismic stations caused by geographic position. Moreover, due to 
a few seismic activities and high cost of manual data labeling, in 
some areas, the labeled data for seismic event detecting tasks is in­
sufficient. Under this condition, these methods always encounter 
over-fitting problem leading to bad detection performance. In 
this paper, we propose a multi-task based framework based on 
convolutional neural network for accurate seismic event detection 
under the condition of insufficient labeled data. Specifically, we 
first cluster the seismic stations into several station clusters and 
treat the learning of seismic event detecting network of every 
station cluster as a learning task, and then we propose a deep 
multi-task network named detectMTIA among multiple tasks. 
Experimental results on a real-world seismic dataset with nine 
stations demonstrate the effectiveness of the proposed framework, 
especially when the labeled data is insufficient. 

Index Terms-Seismic event detection, Multi-task learning, 
Deep learning. 

I. INTRODUCTION

Professional seismic stations are widely distributed, which 

record continuous waveform data day and day. The continuous 

waveform record usually consists of three components, two of 

which record waveform in the horizontal direction, the rest 

one records waveform in the vertical direction. Fig. 1 gives an 

illustration of a three-component seismic event record. Based 

on these collected continuous waveform records, one important 

task for analysis is to effectively detect seismic event. 

The typical way to detect seismic event is to slice waveform 

segment from continuous record and adopt some method to 

determine whether this segment contains a seismic event or 

not. In the early work, seismic events were manually detected. 

However, manual detection cannot meet the demand of real­

time processing system. Therefore, many automatic detecting 

methods were proposed [1]-[3]. These methods detect seismic 
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Fig. 1: A seismic event record, where BHE, BHN and BHZ 

represent the three components respectively. 

events from a signal processing perspective. The detection 

happens when the extracted waveform attributes exceed the 

predetermined or dynamically specified threshold value. How­

ever, these methods suffer from three challenges: first, these 

detecting methods are sensitive to noise. The false positive 

rate and false negative rate of these methods will rise when 

the waveform records are of low signal-to-noise ratio (SNR). 

Secondly, these methods need to design waveform attributes 

which require a good command of seismological knowledge 

and may fail to fully utilize the information contained in the 

seismic event records. Thirdly, these methods will not perform 

well without a lot of effort on manual parameter tuning. 

With the development of deep learning, convolutional neural 

network (CNN) based detecting methods were proposed [4], 

[5]. However, these methods face two main challenges: firstly, 

these methods tend to ignore the fact that seismic stations 

are usually widely distributed. Fig. 2 shows the locations of 

seismic stations around Northern California area in USA. From 

this figure, it can be found that there are nine seismic stations 

which are widely distributed. When an earthquake happens, 

due to distinct geographic position of seismic stations, the 
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waveform received by seismic stations may differ. Secondly, 

these methods train network with a large number of labeled 

data. However, in some areas, due to a few seismic activities 

and high cost of manual data labeling, there are insufficient 

labeled data. Under this condition, the CNN-based detecting 

methods tend to perform poorly due to over-fitting problem. 
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Fig. 2: The location of nine seismic stations in Northern 

California area of USA. 

To solve the above challenges, in this paper, we propose 

a deep multi-task learning based framework to detect seismic 

event with a few labeled data. Considered that the difference 

between seismic stations, it is impractical to regard learning 

detecting network of a seismic station as a task, since the wide­

ly distributed seismic stations bring difficulties in determining 

the relationships between tasks. Therefore, in this paper, we 

first cluster seismic stations into several station clusters and 

regard learning detecting network of a station cluster as a task. 

Then, we use the proposed deep multi-task model to obtain 

the detecting network of every station cluster. Specifically, the 

detecting network consists of two components: shared layers 

among tasks and task-specific layers. With the use of multi­

task learning, the over-fitting problem can be alleviated and 

the performance of CNN-based detecting methods with few 

labeled data can be improved. In summary, we made several 

contributions as follows: 

• With full consideration of difference among seismic s­

tations, we do not regard learning detecting network of

all stations as a task. We perform clustering on seismic

stations based on geographic positions to get several

station clusters and regard learning detecting network of

a station cluster as a task.

• In order to alleviate over-fitting problem, we propose a

deep multi-task model to obtain detecting network of

every station cluster. The detecting network consists of

two parts: the shared layers which are used for sharing

common knowledge and the task-specific layers which

are used for making up the difference between tasks.

• The experimental results on a real-world seismic dataset

with nine stations demonstrate the promising performance

of the proposed framework for seismic event detection,

which also indicates that our framework can greatly

improve the detection performance especially while the

labeled data is insufficient.

The rest of paper is organized as follows. We review the related 

studies in Section 2. The proposed framework is introduced 

in Section 3. Experimental results are described in Section 4. 

Finally, we conclude our work and give the future work in 

Section 5. 

II. RELATED WORKS 

The related studies can be grouped into two categories: seis­

mic event detecting methods and multi-task learning methods. 

A. Existing Seismic Event Detecting Methods

The most popular seismic event detecting method is the

short term average to long term average ratio (STA/LTA) [1] . 

The principle of STA/LTA is readily comprehensible. The 

detection happens when the ratio between a short term average 

of a characteristic function and a long term average of the 

same characteristic function exceeds the threshold value. The 

STA/LTA of point i is computed as follows: 
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where ns denotes the length of short term, nl denotes the 

length of long term and CF denotes the characteristic func­

tion. 

Based on different computation approaches, STA/LTA can 

be sorted in two categories: classical STA/LTA (CSL) and 

recursive STA/LTA (RSL) [2]. The CSL and RSL of point 

i are computed as Eq. (2) and Eq. (3) respectively. 
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(3) 

STA/LTA and its variants are simple and detect seismic events 

at high speed. However, they tend to perform poorly when pro­

cessing waveform records of low signal-to-noise ratio (SNR). 

Meanwhile, these methods need a lot of effort on parameter 

tuning, such as the selection of threshold and characteristic 

function [3]. 

Convolutional Neural Network (CNN) [6] is a classical kind 

of neural network specialized for feature extraction, which has 

been widely used in various fields, such as video surveillance, 

mobile robot vision and seismic prediction [7]-[9]. The main 

parts of CNNs are convolutional layer and pooling layer. 

Convolutional layer utilizes filters to extract features whose 

characteristics are sparse interactions, parameter sharing and 

equivariant representations. Pooling layer maintains useful 

information while reducing the volume of data based on 

sub-sampling theory. High level features can be obtained by 

stacking layers of CNNs. With the rapid development of deep 

learning and success of CNN in object detection, various 

CNN-based seismic event detecting methods were proposed. 

For example, in [4], a highly scalable convolutional neural 

network was proposed for seismic event detection and location. 



In [5], a cascaded region-based convolutional neural net­

work was proposed for seismic event detection. These CNN­

based seismic event detecting methods have demonstrated 

their effectiveness in seismic event detection, however, they 

tend to ignore the difference between seismic stations and 

regard learning detecting network of all stations as a task. 

With sufficient labeled data, these methods perform well on 

seismic event detection. But the labeled data for seismic event 

detecting tasks in real collected data is usually insufficient. 

Under this condition, the performance of existing CNN-based 

methods will degrade. In this paper, with consideration of dif­

ference between seismic stations, we propose a deep multi-task 

learning framework to improve the prediction performance on 

seismic event detection under insufficient labeled data. 

B. Multi-Task Learning

Usually, in order to obtain a good learner, we need a large

number of labeled data. However, due to the nature of problem 

itself, high cost of data labeling and other reasons, sometimes 

it is hard to collect enough labeled data. For data insufficient 

problem, Multi-Task Learning (MTL) [10] is a good solution. 

MTL is inspired by human being learning ability, aiming at 

how to improve the generalization performance of multiple 

related tasks with limited labeled data by leverage the common 

knowledge among them. 

The key challenge in MTL is to exploit relationships be­

tween tasks. At early stage, prior information was imposed 

on task relationships. In [11], model parameters of all tasks 

were assumed to be close to each other, a regularizer was 

proposed to enforce the model parameters of all tasks to be 

close to the mean one. However, such prior information is 

difficult to obtain. In recent years, advanced MTL methods 

were proposed to learn task relationships. For example, multi­

task feature learning approaches were proposed, which can be 

further sorted into feature selection and feature transformation 

approaches. These approaches aims at learning a common 

feature representation from original feature space with or with­

out transformation [12], [13]. Multi-task low-rank approaches 

assume that models share the same low rank subspace [14]. 

In practice, it is too restrictive to constrain all the tasks to 

share the same structure. In [15], it was assumed that the 

model of task consists of a shared low-dimensional subspace 

and a task-specific component. In [16], it was assumed that 

the model of task consists of a group sparse component and 

a task-specific sparse component. Different from traditional 

MTL, multi-task task clustering approaches assume that the 

tasks can be partitioned into several clusters, where tasks 

within a cluster are related [ 17]. There are different methods to 

detect cluster structure, such as Dirichlet process [18], integer 

programming [19], identifying representative tasks [20] and so 

on. 

In deep learning, MTL can be classified into two categories: 

hard parameter sharing where the model of every task consists 

of shared layers among tasks and task-specific layers and soft 

parameter sharing where each task has its own model and 

the distance between parameters of the model is regularized 

to enforce parameters to be similar [21]. MTL has many 

applications in real-world tasks, such as natural language 

processing [22], [23], computer vision [24], [25] and so on. 

MTL has also been incorporated with other disciplines, such as 

multi-task multi-view learning [26], multi-task reinforcement 

learning [27], multi-task multi-label learning [28] and so on. 

In this paper, the technique of MTL is applied on seismic event 

detecting. Unlike typical way of using MTL, we do not regard 

learning detecting network of every station as a task, due to 

the fact that seismic stations are widely distributed and it is 

hard to determine the relationships between tasks. To this end, 

we first perform seismic station clustering and then regard the 

detecting network of each station cluster as a task. 
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Fig. 3: The procedure of the proposed framework. 

III. PROPOSED FRAMEWORK 

As shown in Fig. 3, the proposed framework consists of 

two steps. In the first step, we cluster seismic stations based 

on geographic position to obtain several station clusters and 

regard learning detecting network of each station cluster as a 

task. In the second step, we use the proposed deep multi-task 

model named detectMT L4 to obtain the detecting network 

of every task where the network consists of shared layers and 

task-specific layers. 

A. Station Clustering

Existing CNN-based detecting methods tend to ignore the

difference between seismic stations and regard learning the 

detecting network of all stations as a task. However, seis­

mic stations are widely and uniformly distributed. When an 

earthquake happens, due to different geographic positions, the 

waveform record collected by seismic stations may differ from 

each other. When there are a large number of labeled data, the 

performance of existing CNN-based detecting methods will 

not be affected a lot by the ignorance of differences between 

seismic stations. However, when the volume of training data 

decreases, the generalization performance of these methods 

will degrade a lot. 

To address the above problem, multi-task learning is a good 

solution. However, it is impractical to directly treat learning 

detecting network of every seismic station as a task. Some 

stations situate closely and some stations situate far away, 



if learning the detecting network of every seismic station 

is regarded as a task, it is hard to measure the relatedness 

between tasks. Therefore, in this paper, we first cluster seismic 

stations to obtain several station clusters. It is intuitive that the 

closer seismic stations situate, the more similar the waveform 

records that they collected. Therefore, learning the detecting 

network of seismic stations of a station cluster is considered as 

a task. In this paper, we adopt a popular and simple K-means 

clustering algorithm to cluster the seismic stations. 

B. Proposed Network

In this paper, we apply the basic CNN as the basic detecting

network of every task and utilize hard parameter sharing deep 

multi-task learning to form the proposed detectMTIA, where 

the network structure is shown in Fig. 4. 

To be specific, the detecting network of each task consists 

of two parts: shared layers and task-specific layers. The shared 

layers are used for sharing common knowledge while the task­

specific layers are used for making up differences between 

tasks. The structure of detecting network of every task stays 

the same, while the difference lies on the parameters of task­

specific layers. The shared layers start from convl layer to 

pooling4 layer, which provide the same feature representations 

for each task. The task-specific layers make up the difference 

between tasks and learn task-specific feature representations 

based on shared feature representations, which starts from 

conv5 layer to the end. 

The detailed information about detectMTIA is illustrated as 

follows. The convolutional layers we adopt are I-dimensional, 

the length of feature map is 6 and the stride is 1. convl 

convolutional layer has 8 feature maps, conv2 convolutional 

layer has 16 features and the rest of convolutional layers has 

32 feature maps. The pooling layers we adopt are I-dimension, 

the pooling strategy is max-pooling and the window size of 

pooling layers is 3. The stride of pooling! pooling layer and 

pooling2 pooling layer is 2, the stride of the remaining pooling 

layers is 4. The padding strategy of convolutional layers and 

pooling layers is SAME padding. Since detecting seismic 

event task is a binary classification problem, the loss function 

we adopted is cross-entropy loss function. 

IV. EXPERIMENTS

In this section, we first give experimental settings, including 

datasets, comparison algorithms, the evaluation criterions, and 

parameters. Then, we present the experimental results and 

analysis. 

A. Experimental Settings

1) Dataset: In this paper, we evaluate the proposed frame­

work on a real-world dataset named Napa [29]. The Napa 

dataset contains continuous waveform records in 2014, before 

and after Napa earthquake in North California. There are 

1,360 events recorded by nine stations. Table I gives the 

characteristic of Napa dataset sorted by seismic station. For 

Napa dataset, the length of segment of seismic event we sliced 

is 40 seconds. To obtain negative samples, we slice segment 
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Fig. 4: The network structure of the proposed detectMTIA. 

TABLE I: Characteristics of seismic stations in Napa dataset. 

Station Longitude Latitude Number of events 
BDM -121.86554 37.95397 154 

BRIE -122.15179 37.91886 214 

CVS -122.45840 38.34526 316 

FARB -123.00110 37.69782 53 

HOPS -123.07234 38.99349 28 

JRSC -122.23868 37.40373 61 

MCCM -122.88018 38.14478 227 

MNRC -122.44277 38.87874 79 

VAK -122.24889 37.87753 228 

of waveform record before Napa earthquake with the length of 

40 seconds, the number of negative samples is same with the 

number of seismic events of each seismic station. All the data 

are preprocessed with normalization, detrending and Bandpass 

filter [30]. 10% of Napa dataset has been divided in advance 

as validation set. 

2) Comparison schemes and evaluation criterions: In our

experiments, we evaluate the proposed framework with four 

competing methods. The first one is the single task learning 

method which regards learning the detecting network of all 

seismic stations as a task and the structure of detecting network 

is the same with detectMTIA with all layers shared, denoted 

as SingleTask. The second one is ConvNetQuake [4], which 

is a representative method of existing CNN-based detecting 

methods. The other two methods are traditional detecting 

methods, CSL [2] and RSL [2]. 

Since seismic event detection is a classification problem, Fl 

score and Accuracy are employed to evaluate the experimental 

results. 

3) Experimental parameters: For fair comparisons, the

recommended parameters values are adopted for all the com­

parison algorithms, which were suggested in their original 

papers. For the proposed framework, we add L2 regularizer on 

weights of convl and conv2 layers and use dropout and early 

stopping tricks to prevent over-fitting, the dropout rate is set to 

be 0.5_ The learning algorithm we adopted is Adam [31]. The 

learning rate is set to 0.0005. The way we train the detecting 

network of each task is alternative training, which is shown 

in Fig. 5. As can be observed from this figure, each task is 



trained alternatively and the batch size of each task is set 

according to the proportion of seismic events in each station 

cluster so that we can keep the statistical characteristic of Napa 

dataset. For convolutional layers and fully connected layers, 

we take ReLU as activation function and initialize weights 

with truncated normal distribution with standard deviation of 

0.1. For Softmax layer, w is initialized with truncated normal 

distribution, with standard deviation of 0.05, b is initialized all 

zeroes. The k in K-means clustering is set to be 3. 

Fig. 5: The computational graph of alternative training. 

B. Experimental Results

1) Effectiveness of proposed framework: We divide the

adopted data with nine stations into three station clusters. 

Specifically, Station cluster-1 includes FARB, HOPS and 

MCCM, station cluster-2 includes BDM, BRIE, JRSC 

and V AK, station cluster-3 includes CVS and MNRC. 

Fig. 6 shows the performance of comparison methods in 

terms of Fl score and Accuracy under different training 

ratio. It can be found that under different training ratio, 

the proposed detectMTIA performs better than SingleTask, 

which verifies the effectiveness of detectMTIA. It is mainly 

because in detectMTIA, besides the shared layers transferring 

common knowledge, there are task-specific layers that keep 

the instinct characteristic of each task. In fact, SingleTask can 

be regarded as a special situation of detectMTIA where all the 

seismic stations are treated within a cluster. Also, detectMTIA 

performs better than ConvNetQuake. It is mainly because the 

performance of ConvNetQuake degrade due to the over-fitting 

problem. Moreover, we can find that detectMTIA, SingleTask 

and ConvNetQuake perform better than CSL and RSL, which 

also demonstrates the effectiveness of CNN-based detecting 

methods. Last but not least, it can be also found that the 

performance gap between the proposed detectMTIA and CNN­

based detecting methods (SingleTask and ConvNetQuake) be­

comes large when the training ratio decreases. In other words, 

the proposed method can greatly improve the performance 

of CNN-based detecting methods especially when the labeled 

data is insufficient. 

2) Parameter sensitivity analysis: There is one important

parameter in the proposed model, that is, the number of shared 

layers. To this end, we analyze the sensitivity of the number 

of shared layers under the training ratio of 80%. Table II 
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Fig. 6: The comparison results of four baselines and our 

method on Napa dataset in terms of Fl score and Accuracy. 

gives the details about models with different number of shared 

layers. Table III presents the performance of different models 

shown in Table II in terms of Fl score and Accuracy. From 

this table, we can see that the performance of detectMTIA 

first increases with the number of shared layers increases, and 

get the best performance when the number of shared layers 

increases reaches four. Then, the performance decreases with 

the number of shared layers increases. This is because that 

when increasing the shared layers, the model will degrade to 

SingleTask where all the seismic stations are treated within 

a cluster. In addition, when decreasing the shared layers, the 

model will degrade to another kind of single task learning 

where learning detecting network of each station cluster is 

regarded as an independent task with no shared layers, under 

this condition, the available labeled data for each task with 

be further reduced and the over-fitting problem will be further 

serious. Thus, in this paper, the number of shared layers is 

suggested as four. 

TABLE II: Models with different number of shared layers. 

Model Shared layers 

detectMTL2 from convl to pooling2 

detectMTL3 from convl to pooling3 

detectMTIA from convl to pooling4 

detectMTL5 from convl to pooling5 

detectMTL6 from convl to pooling6 

TABLE III: The comparison results of models with different 

shared layers in terms of Fl score and Accuracy. 

Model Fl score Accuracy 

detectMTL2 0.738 0.759 

detectMTL3 0.757 0.762 

detectMTIA 0.764 0.776 

detectMTL5 0.759 0.771 

detectMTL6 0.742 0.764 



V. CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of seismic event 

detection with a few labeled data. Unlike most existing CNN­

based detecting methods, we proposed a deep multi-task 

based framework to detect seismic events. To be specific, 

the proposed framework first clustered seismic stations based 

on geographic positions and regard learning the detecting 

network of each station cluster as one task, then utilized the 

proposed detectMTIA to obtain the detecting network of each 

task. Specifically, detectMTIA consists of shared layers that 

were used for sharing common knowledge between tasks and 

task-specific layers that were used for making up for the 

difference between seismic stations. Finally, we demonstrated 

the effectiveness of our method on a real-world dataset with 

nine stations. Note that in this paper we detected seismic 

events on the sliced waveform segments. In future work, we 

plan to extend our method on continuous seismic waveform 

data. 

ACKNOWLEDGEMENT 

This work is supported by the Natural Science Foundation of China (Grant 

No.61976001 and 61876184), and the Natural Science Foundation of Anhui 

Province (1908085MF219). The authors would like to thank Data Manage­

ment Centre of China National Seismic Network at Institute of Geophysics, 

China Earthquake Administration and Northern California Earthquake Data 

Center (NCEDC) for providing waveform data for this study. 

REFERENCES 

[1] R. V. Allen, "Automatic earthquake recognition and timing from single 
traces," Bulletin of the Seismological Society of America, vol. 68, no. 5,
pp. 1521-1532, 1978. 

[2] M. Withers, R. Aster, C. Young, J. Beiriger, M. Harris, S. Moore, and 
J. Trujillo, "A comparison of select trigger algorithms for automated 
global seismic phase and event detection," Bulletin of the Seismological
Society of America, vol. 88, no. 1, pp. 95-106, 1998. 

[3] J. Zheng, J. Lu, S. Peng, and T. Jiang, "An automatic microseismic
or acoustic emission arrival identification scheme with deep recurrent 
neural networks," Geophysical Journal International, vol. 212, no. 2,
pp. 1389-1397, 2017.

[4] T. Pero!, M. Gharbi, and M. Denolle, "Convolutional neural network for 
earthquake detection and location," Science Advances, vol. 4, no. 2, p.
e1700578, 2018. 

[5] Y. Wu, Y. Lin, Z. Zhou, D. C. Bolton, J. Liu, and P. Johnson, 
"Deepdetect: A cascaded region-based densely connected network for 
seismic event detection," IEEE Transactions on Geoscience and Remote 
Sensing, vol. 57, no. 1, pp. 62-75, 2019. 

[6] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., "Gradient-based 
learning applied to document recognition," Proceedings of the IEEE, 

vol. 86, no. 11, pp. 2278-2324, 1998. 
[7] K. Muhammad, J. Ahmad, Z. Lv, P. Bellavista, P. Yang, and S. W.

Baik, "Efficient deep cnn-based fire detection and localization in video
surveillance applications," IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 49, no. 7, pp. 1419-1434, 2018. 

[8] L. Carnirneo, "A cnn-based vision system for pattern recognition in
mobile robots," in Proceedings of the I 5th IEEE European Conference
on Circuit Theory & Design, Espoo, Finland, 2001. 

[9] Y. Yu, J. Lin, L. Zhang, G. Liu, J. Hu, Y. Tan, and H. Zhang, 
"Identification of seismic wave first arrivals from earthquake records 
via deep learning;' in Proceedings of 11th International Conference on
Knowledge Science, Engineering and Management, 2018, pp. 274--282.

[10] R. Caruana, "Multitask learning," Machine learning, vol. 28, no. 1, pp.
41-75, 1997. 

[ 11] T. Evgeniou and M. Ponti!, "Regularized multi-task learning," in
Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2004, pp. 109-117.

[12] A. Argyriou, T. Evgeniou, and M. Ponti!, "Multi-task feature learning,"
in Advances in neural information processing systems, 2007, pp. 41-48. 

[13] G. Obozinski, B. Taskar, and M. Jordan, "Multi-task feature selection," 
Statistics Department, UC Berkeley, Tech. Rep., June 2006.

[14] S. Ji and J. Ye, "An accelerated gradient method for trace norm mini­
mization," in Proceedings of the 26th annual international conference
on machine learning. ACM, 2009, pp. 457-464.

[15] R. K. Ando and T. Zhang, "A framework for learning predictive 
structures from multiple tasks and unlabeled data," Journal of Machine 
Learning Research, vol. 6, no. Nov, pp. 1817-1853, 2005. 

[16] A. Jalali, S. Sanghavi, C. Ruan, and P. K. Ravikumar, "A dirty model 
for multi-task learning," in Advances in neural information processing
systems, 2010, pp. 964--972.

[17] J. Zhou, J. Chen, and J. Ye, "Clustered multi-task learning via alternating 
structure optimization," in Advances in neural information processing
systems, 2011, pp. 702-710.

[18] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram, "Multi-task learning for 
classification with dirichlet process priors," Journal of Machine Learning 
Research, vol. 8, no. Jan, pp. 35--63, 2007.

[19] Z. Kang, K. Grauman, and F. Sha, "Learning with whom to share in
multi-task feature learning," in Proceedings of the 28th International
Conference on International Conference on Machine Learning. Ornni­
press, 2011, pp. 521-528. 

[20] Q. Zhou and Q. Zhao, "Flexible clustered multi-task learning by learning
representative tasks," IEEE transactions on pattern analysis and machine 
intelligence, vol. 38, no. 2, pp. 266-278, 2016. 

[21] S. Ruder, "An overview of multi-task learning in deep neural networks," 
arXiv preprint arXiv:1706.05098, 2017.

[22] K. Singla, D. Can, and S. Narayanan, "A multi-task approach to learning
multilingual representations," in Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short
Papers), 2018, pp. 214--220.

[23] L. Xiao, H. Zhang, W. Chen, Y. Wang, and Y. Jin, "Learning what to
share: Leaky multi-task network for text classification," in Proceedings
of the 27th International Conference on Computational Linguistics,
2018, pp. 2055-2065.

[24] J. Cao, Y. Li, and Z. Zhang, "Partially shared multi-task convolutional
neural network with local constraint for face attribute learning," in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 4290-4299. 

[25] C. Doersch and A. Zisserman, "Multi-task self-supervised visual learn­
ing," in Proceedings of the IEEE International Conference on Computer 
Vision, 2017, pp. 2051-2060.

[26] X. Li and J. Huan, "Interactions modeling in multi-task multi-view
learning with consistent task diversity," in Proceedings of the 27th ACM
International Conference on Information and Knowledge Management.
ACM, 2018, pp. 853-861.

[27] Z. Yang, K. Merrick, H. Abbass, and L. Jin, "Multi-task deep reinforce­
ment learning for continuous action control," in Proceedings of the 26th 
International Joint Conference on Artificial Intelligence. AAAI Press,
2017, pp. 3301-3307.

[28] X. Zhang, W. Li, V. Nguyen, F. Zhuang, H. Xiong, and S. Lu, "Label­
sensitive task grouping by bayesian nonparametric approach for multi­
task multi-label learning," in Proceedings of the 27th International Joint
Conference on Artificial Intelligence. AAAI Press, 2018, pp. 3125-
3131. 

[29] "Ncedc (2014): Northern california earthquake data center. uc berkeley 
seismological laboratory. dataset. doi: 10.7932/ncedc." 

[30] J. Akram, "Downhole microseismic monitoring: processing, algorithms 
and error analysis," Ph.D. dissertation, University of Calgary, 2014. 

[31] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," 
arXiv preprint arXiv:1412.6980, 2014. 




