
Adaptive XGBoost for Evolving Data Streams
Jacob Montiel∗, Rory Mitchell∗, Eibe Frank∗, Bernhard Pfahringer∗, Talel Abdessalem† and Albert Bifet∗†

∗ Department of Computer Science, University of Waikato, Hamilton, New Zealand
Email: {jmontiel, eibe, bernhard, abifet}@waikato.ac.nz, r.a.mitchell.nz@gmail.com

† LTCI, Télécom ParisTech, Institut Polytechnique de Paris, Paris, France
Email: talel.abdessalem@telecom-paris.fr

Abstract—Boosting is an ensemble method that combines
base models in a sequential manner to achieve high predictive
accuracy. A popular learning algorithm based on this ensemble
method is eXtreme Gradient Boosting (XGB). We present an
adaptation of XGB for classification of evolving data streams.
In this setting, new data arrives over time and the relationship
between the class and the features may change in the process,
thus exhibiting concept drift. The proposed method creates new
members of the ensemble from mini-batches of data as new
data becomes available. The maximum ensemble size is fixed,
but learning does not stop when this size is reached because
the ensemble is updated on new data to ensure consistency with
the current concept. We also explore the use of concept drift
detection to trigger a mechanism to update the ensemble. We test
our method on real and synthetic data with concept drift and
compare it against batch-incremental and instance-incremental
classification methods for data streams.

Index Terms—Ensembles, Boosting, Stream Learning, Classi-
fication

I. INTRODUCTION

The eXtreme Gradient Boosting (XGB) algorithm is a
popular method for supervised learning tasks. XGB is an
ensemble learner based on boosting that is generally used with
decision trees as weak learners. During training, new weak
learners are added to the ensemble in order to minimize the
objective function. Different to other boosting techniques, the
complexity of the trees is also considered when adding weak
learners: trees with lower complexity are preferred. Although
configuring the multiple hyper-parameters in XGB can be
challenging, it performs at the state-of-the-art if this is done
properly.

An emerging approach to machine learning comes in the
form of learning from evolving data streams. It provides an
attractive alternative to traditional batch learning in multiple
scenarios. An example is fraud detection for online banking
operations, where training is performed on massive amounts of
data. In this case, consideration of runtime is critical: waiting
for a long time until the model is trained means that potential
frauds may pass undetected. Another example is the analysis
of communication logs for security, where storing all logs is
impractical (and in most cases unnecessary). The requirement
to store all data is a significant limitation of methods that need
to perform multiple passes over the data.

Stream learning comprises a set of additional challenges,
such as: models have access to the data only once and need
to process it on the go since new data arrives continuously;
models need to provide predictions at any moment in time;

and there is a potential change in the relationship between
features and learning targets, known as concept drift. Concept
drift is a challenging problem, and is common in many
real-world applications that aim to model dynamic systems.
Without proper intervention, batch methods will fail after a
concept drift because they are essentially trained for a different
problem (concept). A common approach to deal with this
phenomenon, usually signaled by the degradation of a batch
model, is to replace the model with a new model, which
implies a considerable investment on resources to collect and
process data, train new models and validate them. In contrast,
stream models are continuously updated and adapt to the new
concept.

We list the contributions of our work as follows:
• We propose an adaptation of the eXtreme Gradient Boost-

ing algorithm for evolving data streams.
• We provide an open-source implementation1 of the pro-

posed algorithm.
• We perform a thorough evaluation of the proposed

method in terms of performance, hyper-parameter rele-
vance, memory, and training time.

• Our experimental results update the existing literature
comparing instance-incremental and batch-incremental
methods, with current state-of-the-art methods.

This paper is organized as follows: In Section II we ex-
amine related work. The proposed method is introduced in
Section III. Section IV describes the methodology for our
experiments. Results are discussed in Section V. We present
our conclusions in Section VI.

II. RELATED WORK

Ensemble methods are a popular approach to improve pre-
dictive performance and robustness. One of the first techniques
to address concept drift with ensembles trained on streaming
data is the SEA algorithm [1], a variant of bagging [2]
which maintains a fixed-size ensemble trained incrementally
on chunks of data. Online Bagging [3] is an adaptation of
bagging for data streams. Similar to batch bagging, M models
are generated and then trained on N samples. Different to
batch bagging, where samples are selected with replacement,
in Online Bagging, samples are assigned a weight based
on Poisson(1). Leveraging Bagging [4] builds upon Online
Bagging. The key idea is to increase accuracy and diversity

1https://github.com/jacobmontiel/AdaptiveXGBoostClassifier

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

https://github.com/jacobmontiel/AdaptiveXGBoostClassifier

on the ensemble via randomization. Additionally, Leveraging
Bagging uses the ADWIN [5] drift detector; if a change is
detected, the worst member in the ensemble is replaced by
a new one. The Ensemble of Restricted Hoeffding Trees [6]
combines the predictions of multiple tree models built from
subsets of the full feature space using stacking. The Self
Adjusting Memory algorithm [7] builds an ensemble with
models targeting current or former concepts. SAM works
under the Long-Term — Short-Term memory model (LTM-
STM), where the STM focuses on the current concept and
the LTM retains information about past concepts. Adaptive
Random Forest [8] is an adaptation of the Random Forest
method designed to work on data streams. The base learners
are Hoeffding Trees, attributes are randomly selected during
training, and concept drift is tracked using ADWIN on each
member of the ensemble.

In the batch setting, boosting is an extremely popular
ensemble learning strategy. The Pasting Votes [9] method is
the first to apply boosting on large data sets by using different
sub-sets of data for each boosting iteration; it does not require
to store all data and potentially can be used on stream data. A
similar approach is Racing Committees [10]. Different to [9],
Racing Committees includes a adaptive pruning strategy to
manage resources (time and memory). In the stream setting,
a number of approaches for boosting have been proposed.
Learn++.NSE [11], inspired in AdaBoost [12], generates a
batch-based ensemble of weak classifiers trained on different
sample distributions and combines weak hypotheses through
weighted majority voting.

In stream learning, two main branches of algorithms can
be distinguished depending on the schema used to train a
model. Instance-incremental methods [3], [4], [6], [8], [7],
where a single sample is used at a time, and batch-incremental
methods [9], [11], [10] that use batches of data: Once a given
number of samples are stored in the batch, they are used
to train the model. The Accuracy-Weighted Ensembles [13],
is a framework for mining streams with concept drift using
weighted classifiers. Members of the ensemble are discarded
by an instance-based pruning strategy if they are below a
confidence threshold. A relevant study is [14], where the
authors compare batch-incremental and instance-incremental
methods for the task of classification of evolving data streams.
While instance-incremental methods perform better on aver-
age, batch-incremental methods achieve similar performance
in some scenarios.

III. ADAPTING XGB FOR STREAM LEARNING

In this section, we present an adaptation of the XGB
algorithm [15] suitable for evolving data streams.

A. Preliminaries

The goal of supervised learning is to predict the responses
Y = {yi} : i ∈ {1, 2, . . . , n} corresponding to a set of feature
vectors X = {~xi} : i ∈ {1, 2, . . . , n}. Ensemble methods yield
predictions ŷi corresponding to a given input ~xi by combining

the predictions of all the members of the ensemble E. In this
paper, we focus on binary classification, that is, y ∈ {C1, C2}.

In the case of boosting, the ensemble E is created sequen-
tially. In each iteration k, a new base function fk is selected
and added to the ensemble so that the loss ` of the ensemble
is minimized:

`(E) =

K∑
k=1

`(Y, Ŷ (k−1) + fk(X)) + Ω(fk). (1)

Here, K is the number of ensemble members and each fk ∈ F
with F being the space of possible base functions. Commonly,
this is the space of regression trees, so each base function
is a step-wise constant predictor and the ensemble prediction
Ŷ , which is simply the sum of all K base functions, is also
step-wise constant. The regularization parameter Ω penalizes
complex functions.

The ensemble is created using forward additive modeling,
where new trees are added one at a time. At step k, the training
data is evaluated on existing members of the ensemble and
the corresponding prediction scores Y (k) are used to drive the
creation of new members of the ensemble. The base functions
predictions are combined additively:

Ŷ (k) =

K∑
k=1

fk(X) = Ŷ (k−1) + fk(X) (2)

The final prediction for a sample ŷi is the sum of the
predictions for each tree fk in the ensemble.

ŷi =

K∑
k=1

ft(xi) (3)

B. Adaptive eXtreme Gradient Boosting

In the batch setting, XGB training is performed using all
available data (X,Y). However, in the stream setting, we
receive new data over time, and this data may be subject to
concept drift. A continuous stream of data can be defined
as A = {(~xt, yt)}|t = 1, . . . , T where T → ∞, ~xt is
a feature vector, and yt the corresponding target. We now
describe a modified version of the XGB algorithm for this
scenario, called ADAPTIVE EXTREME GRADIENT BOOSTING
(AXGB). AXGB uses an incremental strategy to create the
ensemble. Instead of using the same data to select each base
function fi, it uses sub-samples of data obtained from non-
overlapping (tumbling) windows. More specifically, as new
data samples arrive, they are stored in a buffer w = (~xi, yi) :
i ∈ {1, 2, . . . ,W} with size |w| = W samples. Once the
buffer is full, AXGB proceeds to train a single fk. We can
rewrite Eq. 2 as:

Ŷ (k) =

K∑
k=1

fk(wk) = Ŷ (k−1) + fk(wk) (4)

The index k of the new base function within the ensemble
determines the way in which this function is obtained. If it

(a) Push

(b) Replace

Fig. 1: Ensemble creation strategies.

is the first member of the ensemble, f1, then the data in the
buffer is used directly. If k > 1, then the data is passed through
the ensemble and the residuals from the first k− 1 models in
the ensemble are used to obtain the new base function fk.

C. Updating the Ensemble

Given that data streams are potentially infinite and may
change over time, learned predictors must be updated con-
tinuously. Thus, it is essential to define a strategy to keep the
AXGB ensemble updated once it is full. In the following, we
consider two strategies for this purpose:

• A push strategy (AXGB[p]), shown in Figure 1a, where
the ensemble resembles a queue. When new models
are created they are appended to the ensemble. If the
ensemble is full then older models are removed before
appending a new model.

• A replacement strategy (AXGB[r]), shown in Figure 1b,
where older members of the ensemble are replaced with
newer ones.

Notice that in both cases, we have to wait K iterations
to have a completely new ensemble. However, in AXGB[r],
newer models have a more significant impact on predictions
than older ones, while the reverse is true for AXGB[p].

A requirement in stream learning is that models are ready to
provide predictions at any time. Given the incremental nature
of AXGB, if the window (buffer) size W is fixed, the ensem-
ble will require K ·W samples to create the full ensemble.
A negative aspect of this approach is that performance can
be sub-optimal at the beginning of the stream. To overcome
this, AXGB uses a dynamic window size W that doubles
in each iteration from a given minimum size Wmin until a
maximum size Wmax is reached. In other words, it grows
exponentially until reaching Wmax. The window size, W (i),
for the ith iteration is defined as:

W (i) = min(Wmin · 2i,Wmax) (5)

From Eq. 5, we see that the number of iterations i required
to reach the maximum window size is:

i =

⌈
log2

(
Wmax

Wmin

)⌉
(6)

Similarly, we see that the number of samples required to
create K models to fill the ensemble is smaller when using
the dynamic window size approach than when using a fixed
window size Wmax given that

K−1∑
i=0

Wmin · 2i � K ·Wmax. (7)

Because we monotonically increase the window size, we
see that both ensemble update strategies replace base functions
trained on small windows with newer ones trained on more
data.

D. Handling Concept Drift

Although the incremental strategy used by AXGB to create
the ensemble indirectly deals with concept drift—new mem-
bers of the ensemble are added based on newer data—it may
be too slow to adjust to fast drifts. Hence, we use ADWIN [5],
to track changes in the performance of AXGB, as measured
by a metric such as classification accuracy. We use subscript A

to denote ADWIN, therefore the concept-drift-aware version
of AXGB is referred in the following as AXGBA.

AXGBA uses the change detection signal obtained from
ADWIN to trigger a mechanism to update the ensemble. This
mechanism works as follows:

1) Reset the size of the window w to the defined minimum
size Wmin.

2) Train and add new members to the ensemble depending
on the chosen strategy:

a) Push: New ensemble members are appended to the en-
semble while the oldest are removed from it. Since new
models are trained on increasing window sizes they
will be added at a faster rate initially; this effectively
works as a flushing strategy to update the ensemble.

b) Replacement: The index used to replace old members
of the ensemble is reset so that it points to the
beginning of the ensemble. There are two consider-
ations: First, new models replace the oldest ones in
the ensemble. Second, new models are trained without
considering the residuals of old models that were
trained on the older concept.

IV. EXPERIMENTAL METHODOLOGY

In this section, we describe the methodology of our tests,
which we classify into the following categories: predictive per-
formance, hyper-parameter relevance, memory usage / model
complexity, and training time.

1) Predictive performance. Our first set of tests evaluates
the predictive performance of AXGB. For this we use
both, synthetic and real-world data sets. We then proceed
to compare AXGB against other learning methods. This

comparison is defined by the nature of the learning
method as follows:

a) Batch-incremental methods. In this type of learning
methods, batches of samples are used to incrementally
update the model. We compare AXGB against a batch-
incremental ensemble created by combining multiple
per-batch base models. New base models are trained
independently on disjoint batches of data (windows).
When the ensemble is full, older models are replaced
with newer ones. Predictions are formed by majority
vote. In order to compare this approach with AXGB,
we use XGB as the base batch-learner to learn an
ensemble for each batch. Thus, our batch-incremental
model is an ensemble of XGB ensembles. We refer
to this batch-incremental method as BXGB. We also
consider Accuracy-Weighted Ensembles with Decision
Trees as the base batch-learner. We refer to this method
as AWE-J48. We choose this configuration since
AWE-J48 is reported as the top batch-incremental
performer in [14], so it serves as a baseline for batch-
incremental methods.

b) Instance-incremental methods. We are also interested
in comparing AXGB against methods that update
their model one instance at a time. The following
instance-incremental methods are used in our tests:
Adaptive Random Forest (ARF), Hoeffding Adaptive
Tree (HAT), Leverage Bagging with Hoeffding Tree
as base learner (LBHT), Oza Bagging with Hoeffding
Tree as base learner (OBHT), Self Adjusting Memory
with kNN (SAMkNN) and the Ensemble of Restricted
Hoeffding Trees (RHT). In [14], LBHT is reported as
the top instance-incremental performer.

We perform non-parametric tests to verify whether there
are statistically significant differences between algo-
rithms, as described in [16], [17].

2) Hyper-parameter relevance. The XGB algorithm relies
on multiple hyper-parameters, which can make the model
hard to tune for different problems. We are interested
in analyzing the impact of hyper-parameters in AXGB.
For this purpose, we use a hyper parameter tuning setup
where a model is trained on the first 30% of the data
stream using different combinations of hyper-parameters.
Then, the best performers during the training phase
are evaluated on the remaining 70% of the stream. To
evaluate the influence of hyper-parameters, we compare
performance between AXGB and BXGB.

3) Memory usage and model complexity. The potentially
infinite number of samples in data streams requires re-
sources such as time and memory to be properly man-
aged. We use the total number of nodes in the ensemble
to gain insight into memory usage and model complexity
as AXGB is trained on a data stream. We compare the
proposed versions of AXGB against a baseline XGB
model trained on all the data from the stream. The
baseline number of nodes in the XGB model is expected

to be larger than the number of nodes in incremental-
models that evolve with the stream. By analyzing memory
usage and model complexity we aim to get intuition on
the evolution of the model over time.

4) Training time. Another relevant way to analyze the
proposed method is in terms of training time. We compare
the training time of the different versions of AXGB
against XGB, reporting results in terms of training time
(seconds) and in terms of throughput (samples per sec-
ond).

Our implementation of AXGB is based on the official XGB
C-API2 on top of scikit-multiflow3 [18], a stream learning
framework in Python. Tests are performed using the official
XGB implementation, the implementations of ARF, RHT and
AWE in MOA [19], and for the rest of the methods, the imple-
mentations available in scikit-multiflow. Default parameters of
the algorithms are used unless otherwise specified.

A. Data

In the following, we provide a short description of the
synthetic and real world datasets used in our tests. All datasets
are publicly available. A summary of the datasets used in our
experiments is available in Table I.

• AGRAWAL – Based on the Agrawal generator [20],
represents a data stream with six nominal and three
numerical features. Different functions map instances into
two different classes. Three abrupt drifts are simulated for
AGRa and three gradual drifts for AGRg .

• HYPER – A stream with fast incremental drifts where a d-
dimensional hyperplane changes position and orientation.
Obtained from a random hyperplane generator [21].

• SEA – A data stream with three numerical features where
only two attributes are related to the target class. Created
using the SEA generator [1]. Three abrupt drifts are
simulated for SEAa and three gradual drifts for SEAg .

• AIRLINES – Real world data containing information from
scheduled departures of commercial flights within the US.
The objective is to predict if a flight will be delayed.

• ELECTRICITY – Data from the Australian New South
Wales Electricity Market, where prices are not fixed but
change based on supply and demand. The two target
classes represent changes in the price (up or down).

• WEATHER – Contains weather information collected
between 1949–1999 in Bellevue, Nebraska. The goal is
to predict rain on a given date.

V. EXPERIMENTAL RESULTS

The results discussed in this section provide information
about predictive performance, parameter relevance, memory
and time for the different versions of AXGB.

2https://github.com/dmlc/xgboost
3https://github.com/scikit-multiflow/scikit-multiflow

https://github.com/dmlc/xgboost
https://github.com/scikit-multiflow/scikit-multiflow

TABLE I: Datasets. [Type] S: synthetic data; R: real world
data. [Drifts] A: abrupt, G: gradual; If : incremental fast,
?: drifts with unknown nature.

Dataset # instances # features # classes Type Drift

AGRa 1000000 9 2 S A
AGRg 1000000 9 2 S G
HYPERf 1000000 10 2 S If
SEAa 1000000 3 2 S A
SEAg 1000000 3 2 S G
AIRL 539383 7 2 R ?
ELEC 45312 6 2 R ?
WEATHER 18159 8 2 R ?

TABLE II: Parameters used for batch-incremental methods.

Parameter AXGB * BXGB AWE-J48

ensemble size 30 30 30
ensemble size (base learner) - 30 -
max window size 1000 1000 1000
min window size 1 - -
max depth 6 6 -
learning rate 0.3 0.3 -

* The same parameter configuration is used for all variations: AXGB[p],
AXGBA[p], AXGB[r] and AXGBA[r].

A. Predictive Performance

We evaluate the performance of AXGB against other batch-
incremental methods and against instance-incremental meth-
ods. We use prequential evaluation [22], where predictions
are generated for a sample in the stream before using it to
train/update the model. We use classification accuracy as the
metric in our tests in order to measure performance. First,
we compare the different versions of AXGB (AXGB[p],
AXGBA[p], AXGB[r] and AXGBA[r]) against two batch-
incremental methods: BXGB and AWE-J48. The parameters
used to configure these methods are available in Table II.

Results comparing against batch-incremental methods are
available in Table III. We see that the overall top performer
in this test is AXGB[r], followed by AXGBA[r]. Next are
the versions of AXGB using the push strategy. Interestingly,
we find that AWE-J48 performs better than BXGB, which
comes last in this test. This is noteworthy considering that the
base learner in AWE-J48 (a single decision tree) is simpler
than the one in BXGB (an ensemble of trees generated using
XGBoost).

These tests provide insights into the different versions of
AXGB. We see that, in the push-strategy versions, track-

TABLE III: Comparing performance of AXGB vs batch-
incremental methods.

Dataset AXGB[p] AXGB[r] AXGBA[p] AXGBA[r] BXGB AWE-J48

AGRa 0.919 0.931 0.927 0.928 0.703 0.926
AGRg 0.896 0.907 0.897 0.901 0.710 0.905
AIRL 0.604 0.621 0.611 0.618 0.641 0.599
ELEC 0.718 0.739 0.740 0.747 0.702 0.614
HYPERf 0.822 0.847 0.825 0.847 0.756 0.777
SEAa 0.865 0.875 0.866 0.874 0.856 0.860
SEAg 0.863 0.873 0.863 0.872 0.857 0.860
WEATHER 0.765 0.774 0.767 0.747 0.737 0.712

avg. rank 4.188 1.438 3.063 2.313 5.125 4.875

TABLE IV: Comparing performance of AXGB vs instance-
incremental methods.

Dataset AXGB[r] AXGBA[r] ARF HAT LBHT OBHT SAMkNN RHT

AGRa 0.931 0.928 0.939 0.807 0.881 0.915 0.686 0.936
AGRg 0.907 0.901 0.912 0.792 0.858 0.847 0.669 0.911
AIRL 0.621 0.618 0.680 0.608 0.670 0.658 0.605 0.648
ELEC 0.739 0.747 0.855 0.874 0.836 0.794 0.799 0.873
HYPERf 0.847 0.847 0.849 0.869 0.814 0.806 0.870 0.896
SEAa 0.875 0.874 0.897 0.827 0.891 0.869 0.876 0.889
SEAg 0.873 0.872 0.893 0.825 0.889 0.869 0.873 0.885
WEATHER 0.774 0.747 0.791 0.693 0.783 0.749 0.781 0.758

avg. rank 4.750 5.688 1.625 6.125 3.750 6.000 5.313 2.750

CD = 4.9469

ARF

RHT

LBHT

AXGB[r]

AXGBA[r]

SAMkNN

OBHT

HAT

AWE-J48

BXGB

Fig. 2: Nemenyi post-hoc test (95% confidence level), identi-
fying statistical differences between all methods in our tests.

ing performance to detect concept drift (AXGBA[p]) pro-
vides a consistent advantage over the drift-unaware ap-
proach (AXGB[p]). The reason for this is that, as expected,
AXGBA[p] reacts faster to changes in performance: When a
drift is detected, the window size is reset and new models are
quickly added to the ensemble, flushing-out older models. This
is not the case for methods using the replace-strategy, with
AXGB[r] providing the best performance for most datasets.
These results are significant given the compromise between the
computational overhead of tracking concept drift and the gains
in performance. We analyze this trade-off when discussing
results of the running time tests.

Next, we compare AXGB against instance-incremental
methods. Results are shown in Table IV. For AXGB, we
only show results of AXGB[r] and AXGBA[r]. We see that
the top performer in this test is ARF, closely followed by
RHT. AXGB’s performance is not on par with that of the
top performers, but it is important to note that (i) these results
are consistent with those in [14], where instance-incremental
methods outperform batch-incremental methods, and (ii) both
AXGB[r] and AXGBA[r] are placed in the top tier between
LBHT and SAMkNN.

The corrected Friedman test with α = 0.05 indicates that
there are statistical significant differences between the methods
in Table III and Table IV . The follow-up post-hoc Nemenyi
test, Figure 2, indicates that there are no significant differences
among the methods in the top tier. We believe that these
findings serve to indicate the potential of eXtreme Gradient
Boosting for data streams.

B. Hyper-parameter Relevance

As previously mentioned, hyper parameters play a key role
in the performance of XGB. Thus, we also need to consider
their impact in AXGB. In order to do so, we present results

TABLE V: Parameter grid used to evaluate hyper-parameters
relevance.

Parameter Values

max depth 1, 5, 10, 15
learning rate 0.01, 0.05, 0.1, 0.5
ensemble size 5, 10, 25, 50, 100
max window size 512, 1024, 2048, 4096, 8192
min window size 4, 8, 16

obtained by running multiple tests on different combinations of
key parameters: the maximum depth of the trees, the learning
rate (eta), the ensemble size, and the maximum and minimum
window size. To cover a wide range of values for each
parameter, we use a grid search based on the grid parameters
specified in Table V. The parameter grid corresponds to a
total of 4× 4× 5× 5× 3 = 1200 combinations. For this test,
we compare the following XGB-based methods: AXGB[p],
AXGBA[p] and BXGB.

For establishing the effect of parameter tuning, the test is
split into two phases: training and optimization on the first
30% of the stream—using this validation data to evaluate all
parameter combinations in the grid and choosing the best one
using prequential evaluation of classification accuracy—and
performance evaluation on the remaining 70% of the stream
to establish accuracy of the parameter-optimized algorithm
by evaluating the algorithm with the identified parameter
settings using prequential evaluation on this remaining data.
The ensemble model is trained from scratch in this second
phase. This strategy is limited in the sense that the nature of
the validation data, including concepts drifts, is assumed to be
similar to that of the remaining data. Nonetheless, it provides
insights into the importance of hyper parameters.

Results from this experiment are available in Table VI.
Reported results correspond to measurements obtained with
parameter tuning (Tuning) vs. reference results (Ref) obtained
using the fixed parameters in Table II, building an ensemble
from scratch on the same 70% portion of the stream.

We can see that optimizing hyper parameters clearly benefits
all methods. As expected, hyper-parameters can provide an
advantage over other methods. In this case, under-performers
are now on par or above LBHT. Surprisingly, BXGB obtains
the largest boost in performance and is now the method that
performs best. When analyzing the parameter configurations
(detailed results not included due to space constraints), we see

TABLE VI: Parameter tuning results.

Ref Tuning Ref Tuning Ref Tuning
Dataset AXGB[p] AXGB[p] AXGBA[p] AXGBA[p] BXGB BXGB

AGRa 0.881 0.927 0.933 0.931 0.727 0.930
AGRg 0.898 0.906 0.902 0.905 0.728 0.909
AIRL 0.616 0.627 0.588 0.628 0.632 0.639
ELEC 0.713 0.736 0.658 0.739 0.631 0.742
HYPERf 0.816 0.873 0.833 0.876 0.754 0.904
SEAa 0.879 0.889 0.881 0.892 0.854 0.890
SEAg 0.877 0.888 0.878 0.889 0.855 0.888
WEATHER 0.755 0.767 0.758 0.765 0.703 0.782

average 0.804 0.827 0.804 0.828 0.736 0.835

that BXGB favors smaller values for max window size, learn-
ing rate and max depth. The observed increase in performance
can be attributed to the impact of the hyper parameters on the
base learner in BXGB (batch XGB models), remembering
that BXGB is an ensemble of ensembles. Another factor to
consider is the small window sizes. In practice, having smaller
windows means that models are replaced faster as the stream
progresses and this can ameliorate the lack of drift awareness
to some degree. It is reasonable that the same applies to
the reduction in the performance gap between AXGB[p] and
AXGBA[p]. In the case of AXGB, our results show that
the learning rate has a consistent impact on performance
(lower is better), followed by max window size and max
depth. Finally, our tests reveal the contrast in the impact
of the ensemble size on the two versions of AXGB. While
AXGB[p] benefits from a smaller ensemble size, the opposite
applies to AXGBA[p]. This supports the intuition that drift-
aware methods can benefit from larger ensembles (to build
complex models) which adapt faster in the presence of drift
by triggering the corresponding ensemble update mechanism.
On the other hand, batch-incremental methods without explicit
drift detection mechanisms rely on their natural ability to
adapt, which can be counterproductive with large ensemble
sizes. It is important to note that although BXGB is the top
performer in this test, it is not efficient in terms of resources
(time and memory), which affects stream applications where
resources are limited.

C. Memory Usage and Model Complexity

In this section, we analyze memory usage of the proposed
methods during the learning process. For this purpose, we
count the number of nodes in the ensemble, including both
leaf nodes and internal nodes of each tree. This approach also
provides some intuition regarding the model’s complexity. We
perform this test on a synthetic dataset with 40 features (only
30 of which are informative) and 5% noise, corresponding
to the Madelon dataset, described in [23]. We use 1 million
samples for training and calculate the number of nodes in the
ensemble to get an estimate of the model size. Models are
trained using the following configuration: ensemble size = 30,
max window size = 10K, min window size = 1, learning
rate = 0.05, max depth = 6. We measure the number of nodes
as new members of the ensemble are introduced. Results from
this test are available in Figure 3, and serve to compare the
number of nodes in the batch model vs. the stream models. For
reference, the number of nodes in the XGB model is 12.7K
(outside the plot area). It is important to note that this number
is constant since it represents the size of the model trained on
all the data.

In Figure 3a, we see that AXGB[p] and AXGB[r] have
similar behaviors. As the stream progresses, the number of
nodes added to the ensemble increases until reaching a plateau.
This is expected since new models are trained on larger
windows of data. The plateau corresponds to the region where
the ensemble is complete and old members of the ensemble are
replaced by new members trained on equally large windows.

0.0 0.2 0.4 0.6 0.8 1.0
Samples 1e6

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

No
de

s c
ou

nt
1e3

AXGB[p]
AXGB[p] mean
AXGB[r]

AXGB[r] mean
AXGBA[p]
AXGBA[p] mean

AXGBA[r]
AXGBA[r] mean
XGB

(a) Total nodes in the ensemble.

0.0 0.2 0.4 0.6 0.8 1.0
Samples 1e6

0

5

10

15

20

25

30

es
tim

at
or
s c

ou
nt

AXGB[p]
AXGB[p] mean
AXGB[r]

AXGB[r] mean
AXGBA[p]
AXGBA[p] mean

AXGBA[r]
AXGBA[r] mean
XGB

(b) Number of ensemble members.

Fig. 3: Insight into ensemble complexity by number of nodes
and ensemble members over the stream. For reference, an
XGB model with 30 ensemble members trained on all the
data has 12.7K nodes (outside the plot area).

On the other hand, AXGBA[p] and AXGBA[r] also exhibit an
incremental increase in the number nodes over the stream—at
a lower rate than the AXGB versions—but with some inter-
esting differences. In AXGBA[p], we see multiple drop points
in the nodes count, which can be attributed to the ensemble
update mechanism. When drift is detected, the window size
is reset and new models are pushed into the ensemble, in
other words, simpler models are quickly introduced into the
ensemble. In contrast, the number of nodes in AXGBA[r]

increases steadily. This difference in number of nodes can
explain the difference in performance between AXGB[r] and
AXGBA[r] discussed in Sec. V-A.

We also analyze AXGB by counting the number of models
in the ensemble across the stream, shown in Figure 3b. Notice
that the number of models reach the maximum value when the
ensemble is full; from that point on, new models replace old
ones. As anticipated, we see that AXGBA[p] fills the ensemble
quickly at the beginning of the stream because concept drift
detection triggers the reset of the window size and speeds up
the introduction of new models. AXGB[p] and AXGB[r] fill

0.2 0.4 0.6 0.8 1.0

Train set size (sam ples) 1e6

0

200

400

600

800

1000

1200

1400

1600

S
e

c
o

n
d

s

AXGB[p]

AXGB[r]

AXGBA[p]

AXGBA[r]

XGB

0.2 0.4 0.6 0.8 1.0

Train set size (sam ples) 1e6

2000

4000

6000

8000

S
a

m
p

le
s
 p

e
r

s
e

c
o

n
d

AXGB[p]

AXGB[r]

AXGBA[p]

AXGBA[r]

XGB

Fig. 4: Training time (top) and throughput (bottom) test results.

the ensemble at a slower rate and finish filling the ensemble
before the 200K mark. This is in line with our expectations
given the introduction of new models trained on increasing
window sizes as defined in Eq. 5. Finally, AXGBA[r] is the
slowest to fill the ensemble at around the 700K mark. This
is expected given that upon drift detection, AXGBA[r] starts
replacing the oldest models of the ensemble.

It is important to mention that additional memory resources
are used by the different AXGB variants given their batch-
incremental nature: mini-batches are accumulated in memory
before they are used to fit a tree. In this sense, other things
being equal, instance-incremental methods are more memory
efficient. However, our results show that all versions of AXGB
keep the size of the model under control, a critical feature
when facing theoretically infinite data streams.

D. Training Time

Finally, we measure training time for the different versions
of AXGB. We use as reference the time required to train
an XGB model on the Madelon dataset used in the model
complexity test. Models are trained using the following con-
figuration: ensemble size = 30, max window size = 10K,
min window size = 1, learning rate = 0.05, max depth = 6.
We used the following dataset sizes: 200K, 400K, 600K,

800K and 1M. Results correspond to the average time after
running the experiments 10 times for each dataset size and
for each classifier. Measurements are shown in Figure 4 in
terms of time (seconds) and in Figure 4 in terms of throughput
(samples per second). These tests show that the fastest learners
are AXGB[p] and AXGB[r], both showing small change in
training time as the number of instances increases. This is an
important feature given that training time plays a key role in
stream learning applications. On the other hand, AXGBA[p]

and AXGBA[r] have similar behaviour in terms of training
time compared to XGB while being slightly slower. This
can be attributed to the overhead from the drift-detection
process, which implies getting predictions for each instance
and keeping the drift detector statistics. Additionally, we see
that AXGBA[p] is the slowest classifier, which might be
related to the overhead incurred by predicting using more
ensemble members, given that the ensemble is quickly filled
as previously discussed.

VI. CONCLUSIONS

In this paper, we propose an adaptation of the eXtreme
Gradient Boosting algorithm (XGB) to evolving data streams.
The core idea of ADAPTIVE XGBOOST (AXGB) is the in-
cremental creation/update of the ensemble, i.e., weak learners
are trained on mini-batches of data and then added to the
ensemble. We study variations of the proposed method by
considering two main factors: concept drift awareness and
the strategy to update the ensemble. We test AXGB against
instance-incremental and batch-incremental methods on syn-
thetic and real-world data. Additionally, we consider a simple
batch-incremental approach (BXGB) consisting of ensemble
members that are full XGB models trained on consecutive
mini-batches. From our tests, we conclude that AXGB[r] (the
version that performs model replacement in the ensemble but
does not include explicit concept drift awareness) represents
the best compromise in terms of performance, training time
and memory usage.

Another noteworthy finding from our experiments is the
good predictive performance of BXGB after parameter tuning.
If resource consumption is a secondary consideration, this
approach may be a worthwhile candidate for application in
practical data stream mining scenarios, particularly consider-
ing that our parameter tuning experiments did not investigate
optimizing the size of the boosted ensemble for each mini-
batch in BXGB. (The size of each sub-ensemble was fixed
at 30 members.) Overall, despite the limitations of mini-
batch-based data stream mining, and its drawbacks compared
to instance-incremental methods, it appears that XGB-based
techniques are promising candidates for data stream applica-
tions. In a similar way, we believe AXGB is an interesting
alternative to XGB for some applications given its efficient
management of resources and adaptability.

REFERENCES

[1] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification,” in Proceedings of the seventh ACM SIGKDD

international conference on Knowledge discovery and data mining.
ACM, 2001, pp. 377–382.

[2] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, Aug 1996.

[3] N. Oza, “Online Bagging and Boosting,” in IEEE International Con-
ference on Systems, Man and Cybernetics, vol. 3. IEEE, 2005, pp.
2340–2345.

[4] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging Bagging for
Evolving Data Streams,” in Joint European conference on machine
learning and knowledge discovery in databases, 2010, pp. 135–150.

[5] A. Bifet and R. Gavaldà, “Learning from Time-Changing Data with
Adaptive Windowing,” Proceedings of the 2007 SIAM International
Conference on Data Mining, pp. 443–448, 2007.

[6] A. Bifet, E. Frank, G. Holmes, and B. Pfahringer, “Ensembles of
Restricted Hoeffding Trees,” ACM Transactions on Intelligent Systems
and Technology, vol. 3, no. 2, pp. 1–20, feb 2012.

[7] V. Losing, B. Hammer, and H. Wersing, “KNN classifier with self
adjusting memory for heterogeneous concept drift,” Proceedings - IEEE
International Conference on Data Mining, ICDM, pp. 291–300, 2017.

[8] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger, G. Holmes, and T. Abdessalem, “Adaptive random forests
for evolving data stream classification,” Machine Learning, vol. 106, no.
9-10, pp. 1469–1495, 2017.

[9] L. Breiman, D. Wolpert, P. Chan, and S. Stolfo, “Pasting Small Votes
for Classification in Large Databases and On-Line,” Machine Learning,
vol. 36, pp. 85–103, 1999.

[10] E. Frank, G. Holmes, and R. Kirkby, “Racing committees for large
datasets,” Discovery Science, pp. 153–164, 2002.

[11] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, “Learn++: An
incremental learning algorithm for supervised neural networks,” IEEE
Transactions on Systems, Man and Cybernetics Part C: Applications and
Reviews, vol. 31, no. 4, pp. 497–508, 2001.

[12] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boosting,” Journal of Computer
and System Sciences, pp. 119–139, 1997.

[13] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining - KDD ’03, vol. 42. New York, New York, USA: ACM Press,
2003, p. 226.

[14] J. Read, A. Bifet, B. Pfahringer, and G. Holmes, “Batch-incremental
versus instance-incremental learning in dynamic and evolving data,”
Lecture Notes in Computer Science, vol. 7619, pp. 313–323, 2012.

[15] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: ACM, 2016, pp. 785–794.

[16] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, p. 1–30, Dec. 2006.

[17] S. Garcı́a and F. Herrera, “An extension on ”statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons,” Journal
of Machine Learning Research, vol. 9, pp. 2677–2694, 2009.

[18] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, “Scikit-Multiflow:
A Multi-output Streaming Framework,” Journal of Machine Learning
Research, vol. 19, pp. 1–5, 10 2018.

[19] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive online
analysis,” Journal of Machine Learning Research, vol. 11, no. May, pp.
1601–1604, 2010.

[20] C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang, “-a framework
for clustering evolving data streams,” in Proceedings 2003 VLDB
Conference. Elsevier, 2003, pp. 81–92.

[21] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2001, pp. 97–106.

[22] A. P. Dawid, “Present position and potential developments: Some
personal views: Statistical theory: The prequential approach,” Journal
of the Royal Statistical Society. Series A (General), pp. 278–292, 1984.

[23] I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider, and M. Uhr,
“Competitive baseline methods set new standards for the NIPS 2003
feature selection benchmark,” Pattern Recognition Letters, vol. 28,
no. 12, pp. 1438–1444, 2007.

