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Abstract—Extreme Learning Machine (ELM) has gained lots
of research interest due to its universal approximation capability
and fast learning speed. However, traditional ELMs are devised
for regular Euclidean data, such as 2D grid and 1D sequence, and
thus don’t apply to non-Euclidean data, e.g., graph-structured
data. To overcome this shortcoming, this paper presents a Graph
Convolutional Extreme Learning Machine (termed as GCELM)
for semi-supervised classification. Technically, a random graph
convolutional layer is introduced to replace the random projec-
tion of original ELM, which endues ELM with the capability
of dealing with graph-structured data directly. To generate a
robust graph from the raw dataset, a self-representation model
is adopted to construct a weighted graph. Extensive experiments
on 27 UCI datasets demonstrate that GCELM outperforms many
popular semi-supervised methods, and with faster learning speed.
To the best of our knowledge, this is the first work that combines
graph convolution with ELM.

Index Terms—Extreme Learning Machine, Graph Convolution
Network, Semi-supervised Classification

I. INTRODUCTION

Extreme Learning Machine (ELM) [1], [2], [3], a special
case of random vector functional-link network (RVFL) [4], [5],
is a single hidden layer feedforward neural network (SLFN) in
which the hidden layer parameters are generated randomly and
the output weights are calculated as a closed-form solution.
ELM algorithms are characterized by a very light computa-
tional burden, since the training of the hidden layer is avoided
[6]. Over the last decade, ELM has achieved great success
in a variety of fields ranging from medical/biomedical data
analysis [7], computer vision [8], [9], image processing [10],
[11], [12], to system modeling and prediction [13], [14].

Despite promising performance and extensive studies,
ELMs can only operate on regular Euclidean data, such as text
(1D sequence) and images (2D grid). These data structures can
be treated as special cases of non-Euclidean data. As a typical
non-Euclidean data structure, graph-structured data is widely
used to analyze the complex relationship between objects, e.g.,
social network [15] and molecule [16]. However, how to apply
ELM to graph-structured data is still an open problem that fails
to draw too much attention. This motivates us to extend the
classical ELM into the non-Euclidean domain and enable it to
learn on the graph. We refer to this kind of ELM as Graph
Convolutional Extreme Learning Machine (GCELM).

† W. Gong is the corresponding author.

Recently, Graph Neural Network (GNN) [17], [18] has
gained increasing research interests due to its powerful ability
for representation learning on graph-structured data. Unlike
traditional neural networks, GNNs capture the dependence of
graphs via message passing between the nodes of graphs.
Specifically, GNNs gather information from each node’s
neighbors and update nodes’ hidden states. By analogy with
convolutional neural network (CNN) [19], convolutions in
graph domain have drawn lots of interest. GNNs equipped with
generalized convolutions are often referred to as Graph convo-
lutional network (GCN) [20]. Since spectral representation of
graphs can provide a theoretical guarantee, it is frequently used
as an alternative for the implementation of graph convolution.

Compared with traditional neural networks, the propagation
step of GCN can be regarded as a fully connected layer that
cooperated with Laplacian smooth [21]. Depending on this
point of view, we introduce graph convolution into ELM to
replace its hidden layer, which endues it with the capacity
of processing graph-structured data. Following the common
procedure of ELM, we randomly generate filter parameters
of graph convolution and calculate ELM’s output weights as
a closed-form solution. This reserves the main advantages of
ELMs according to the theory of ELMs. That is fast learning
speed and universal approximation capability. Furthermore,
our proposed method can be used as a semi-supervised
classification approach, since it takes unlabeled data into
account. Nevertheless, it is different from semi-supervised
ELM (SS-ELM) [22] because SS-ELM incorporates structure
information in the output layer by casting it as a manifold
regularization term.

To sum up, the main contributions of this paper are:
1) We propose a graph convolutional ELM, i.e., GCELM,

for semi-supervised classification. GCELM is able to
learn on graph-structured data directly and keeps the
advantages of GCN and ELM. To the best of our
knowledge, this is the first work that combines ELM
with graph convolution. The successful attempt signifies
that considering structure information among data is im-
portant for ELM, which offers an alternative orientation
for graph representation learning.

2) A robust graph construction method is employed to
fast generate graph information from raw data. The
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Fig. 1. Overview of the proposed GCELM. The method takes data features and its graph structure as inputs, and consists of a random graph convolutional
layer and a ELM classifier layer.

method models the intrinsic structure of data using self-
representation, and thus is robust to noise. By slacking
self-representation with Frobenius regularization, the
affinity matrix (graph edge weights) can be expressed
as a closed-form solution. This keeps consistency with
ELM and accelerates learning.

3) We conduct extensive experiments on many popular
datasets for semi-supervised classification tasks. Com-
parisons with state-of-the-art methods demonstrate the
effectiveness of the proposed GCELM. Code is available
at: https://github.com/AngryCai/GCELM.

This paper is structured as follows. Related works on ELM
and GCN are presented in Section II. The proposed graph
convolutional ELM and robust graph generation are introduced
in Section III. Experimental results are presented in Section
IV. Finally, Section V concludes the paper with a brief
summary.

II. RELATED WORK

In this section, we give a brief review of the basic ELM and
its semi-supervised version, and the recent progress of GCN.

A. Basic ELM and Semi-Supervised ELM

The basic ELM can be interpreted as two components,
i.e., random generated hidden layer and closed-form output
layer. Formally, in the first stage, ELM’s hidden layer can be
expressed as

H = σ (XW + b) , (1)

where H is the hidden layer output matrix that takes X as
input. The hidden layer is parameterized by hidden weight

matrix W and bias vector b, both are generated randomly.
σ denotes nonlinear activation function such as Sigmoid and
Tanh. In the second stage, ELM computes prediction as

Y =Hβ. (2)

Here, Y is the prediction of ELM and β is the output
weights matrix. Since H is known to the output layer, Eq.
(2) essentially is a least squares optimization problem and can
be solved as

β =H†Y , (3)

where H† indicates Moore–Penrose generalized inverse of
matrix H . ELM avoids iteratively parameters tuning, thus it
is significantly faster than gradient based neural networks.

To enhance the basic ELM, numerous ELM variants have
been proposed, including kernel ELM [23], evolutionary ELM
[24], deep ELM [3], and so on. To leverage the unlabelled data,
some works devoted to extending ELM to semi-supervised
task. The representative semi-supervised ELM (SS-ELM)
[22] is based on manifold regularization, usually denoted as
Trace

(
βTHT

allLHallβ
)

, where Hall represents the hidden
output of all samples (labeled and unlabelled) and L denotes
Laplacian matrix. Thus, the optimization problem of SS-ELM
can be written as

min ‖H labeledβ − Y labeled‖2F + Trace
(
βTHT

allLHallβ
)
,

(4)
where H labeled denotes labeled hidden outputs and Y labeled

is the training labels.



B. Graph Convolutional Networks

Graph convolutional networks (GCNs) generalize traditional
convolutional neural networks to the graph domain. It has been
proven to be excellent for graph representation learning. GCNs
can be categorized into two schemes, i.e., spectral GCNs and
spatial GCNs. Here, we focus only on the first GCN [20]. Let
A ∈ R|V|×|V| be the adjacency matrix of an undirected graph
G (V, E). The propagation rule of one simplified GCN model
can be written as

H = σ
(
D̃
−1/2

ÃD̃
−1/2

XW
)
, (5)

where Ã = I |V|+A is the adjacency matrix considered self-
connection and D̃ denotes diagonal degree matrix of nodes
whose elements given by D̃ii =

∑
j Ãij . Eq. (5) is regarded as

the graph convloutional layer, which can be optimized using
gradient descent. By stacking several such layers, GCN can
use to learn deep graph representation. However, many studies
have proven that the performance of GCN will be degraded
as the depth due to the overfitting issue.

III. GRAPH CONVOLUTIONAL ELM

The classical ELM can be treated as a nonlinear ran-
dom transformation followed by a ridge regression classi-
fier. However, the random transformation is sub-optimal and
often neglects the graph-structured information, resulting in
inaccurate feature transformation. Furthermore, such random
transformation doesn’t apply to the graph-structured data. To
address this problem, we introduce the graph convolution into
ELM. The overview of the proposed GCELM is given in Fig.
1 and more details are described in the following subsections.

A. Random Graph Convolution

Let G (V, E) be an undirected graph that is composed of a
node set vi ∈ V with the size of N and an edge set (vi, vj) ∈
E with size |E|. We indicate the adjacency matrix of G as
A ∈ RN×N where each element Aij can be binarily denoting
whether vi join with vj , or a scalar signifying the weights of
edge (vi, vj). Suppose each node contain a feature vector xi ∈
Rm with a label yi ∈ {1, 2, · · · , C}, where C is the number
of distinct classes. For clarity, we indicate feature set and label
set in matrix forms, i.e., X ∈ RN×m and Y ∈ RN×C , where
Y is binarized label matrix using one-hot encoding.

Inspired by the recent development of graph neural net-
works, we introduce graph convolution into ELM. Specifically,
instead of adopting simple random projection like the classical
ELM, we extend ELM to the non-Euclidean domain by
introducing random graph convolution. We define the random
graph convolutional layer in ELM as

H = σ (AXW ) . (6)

Here, W ∈ Rm×L denotes the hidden layer parameters and σ
signifies the nonlinear activation function. A is the normalized
adjacency matrix which is formulated by

A = D̃
− 1

2 ÃD̃
− 1

2 , (7)

where Ã = A+ IN is the adjacency matrix with added self-
connections, and D̃ denotes the diagonal degree matrix of Ã
whose elements are given by D̃ii =

∑
j Ãij . Inherited from

the classical ELM, we generate W randomly according to a
continuous probability distribution. For convenience, we omit
biases but it is easy to add biases by augmenting X using one
column with all elements 1.

Formally, compared with the original ELM hidden layer, the
random graph convolutional layer adds an extra matrix opera-
tion, i.e., A. This is the main difference between the random
graph convolutional layer and the original ELM hidden layer
and this also endues ELM with the capability of processing
structure data.

B. Fast Semi-Supervised Node Classification

One of the main advantages of ELM is fast learning speed,
which is benefited from its closed-form solution in the output
layer. In this paper, we keep such advantage by using ELM
classification layer as GCELM’s output layer.

Let XT ∈ RNT ×m and Y T ∈ RNT×C be the labeled
nodes’ feature set and their one-hot label matrix, where NT
denotes the number of labeled nodes. Further let XU ∈
RNU×m be the unlabelled nodes’ feature set, where NU is the
number of unlabelled nodes. To learn the output layer weights,
denoted as β ∈ RL×C , we first divide the hidden layer outputs
into labeled and unlabeled two parts, i.e., HT and HU . Our
goal is to assign certain labels for those unlabeled nodes. To
this end, we formulate the objective function as

HT β = Y T . (8)

We solve Eq. (8) by reformulating it as following regularized
ridge regression optimization problem

argmin
β
L (β) = argmin

β

1

2
‖HT β − Y T ‖2F+

λ

2
‖β‖2F . (9)

Here, L denotes loss function. λ is a nonnegative regulariza-
tion coefficient. Eq. (9) has a closed-form solution that can be
obtained by computing the partial derivative of L with respect
to β. The partial derivative can be written as

∂L
∂β

=HT
THT β + λβ −HT

T Y T . (10)

By setting Eq. (10) to zero, we obtain the solution to the
GCELM as follow:

β =
(
HT
THT + λIL

)−1
HT
T Y T . (11)

Therefore, the labels of those unlabeled nodes can be deter-
mined by

Y U =HUβ. (12)



C. Robust Graph Generation

In this subsection, we describe how to generate a robust
graph from raw data. Although many works have been pro-
posed to exploit the structure information among data, such
as the k-nearest neighbors graph [25], they are sensitive to
noise. To remedy this problem, we propose using a self-
representation model to construct a weighted graph. Formally,
we define the self-representation as

XTZ =XT , s.t., diag (Z) = 0. (13)

Here, Z ∈ RN×N denotes the coefficient matrix in which
each column reflects the contribution that a sample is linearly
represented by the remaining samples. To avoid trivial solu-
tion, the diagonal elements diag (Z) are usually constrained
to zeros. However, Pan et al. [26] have proven that this con-
straint is unnecessary when a Frobenius regularization is used.
Following this corollary, we solve Eq. (13) by minimizing the
following objective

argmin
Z

1

2

∥∥∥XTZ −XT
∥∥∥2
F
+
α

2
‖Z‖2F . (14)

Here, α denotes regularization coefficient. Similar to ELM,
this objective has a closed-form solution that can be expressed
as

Z =
(
XXT + αIN

)−1
XXT . (15)

Subsequently, we use Z as the estimation of edge weights and
construct the adjacency matrix as

A =
1

2

(
|Z|+

∣∣∣ZT
∣∣∣) . (16)

It is noteworthy that this method leads to a dense connected
graph rather than sparse connected graph like k-nearest neigh-
bors graph. The abovementioned graph generation method is
also known as subspace learning [27] due to it essentially
exploits the intrinsic subspace structure of data.

Algorithm 1: GCELM
Input: XT , XU , Y T , α and λ
Output: Y U

1 Construct robust graph adjacency matrix A by Eq.
(16);

2 Calculate normalized adjacency matrix A by Eq. (7);
3 Initialize hidden layer parameters W ;
4 Calculate graph convolution outputs H = σ (AXW );
5 Calculate output layer parameters β by Eq. (11);
6 Predict unlabelled samples’ labels Y U via (12);

D. Remarks

Having introduced graph convolution into ELM, we endue
classical ELM with the capacity of leaning on graph. We give
the overall procedures of the proposed GCELMs in Algorithm
1. It can be seen that there is no iterative operation in the

GCELMs. Furthermore, all the key steps of GCELMs can
be represented as closed-form. Therefore, GCELMs retain the
main advantage of ELMs, i.e., high-efficiency training, which
makes GCELM easy implementation. This is different from
GCN [20] which needs great effort to parameters tuning.
In other words, GCELM will be much faster than GCN
theoretically.

Comparing with SS-ELM [22], the main difference between
them is that our method combines graph structure information
in the hidden layer, while SS-ELM utilizes graph information
by adding an additional Laplacian regularization term into
the objective function. This signifies that SS-ELM is difficult
to directly process structured data. Moreover, GCELM uses
graph convolution operation in the hidden layer enabling
structured information to be embedded into the intermediate
process. In fact, one can adopt deep ELM to generate deeper
graph representation.

IV. EXPERIMENTS

A. Data Sets and Setup

We evaluate our method on 27 widely used classification
datasets that are taken from University of California at Irvine
(UCI) repository 1. These datasets include binary-class and
multi-class classification tasks. All the datasets are scaled into
the range [0, 1] using the min-max standardization technique.
For each dataset, we randomly take 5 samples from each class
as the labeled sample set and the rest as the unlabelled sample
set.

We compare our method with seven baselines, i.e., basic
ELM [2], KELM [28], SS-ELM [22], Transductive Support
Vector Machine (TSVM) [29], Self-training Semi-supervised
ELM (ST-ELM) [30], Laplacian Support Vector Machine
(LapSVM) [31], and GCN [20]. We set 100 hidden neurons
for the methods that contain hidden layers, namely GCELM,
ELM, SS-ELM, ST-ELM, and GCN. The hyper-parameters
involved in different methods are determined by grid search.
All the methods are implemented with Python 3.5 running on
an Intel i5-6500 3.20 GHz CPU with 8.00GB RAM.

B. Performance Comparison

Table I shows the comparative accuracy obtained by differ-
ent methods on 27 datasets. All the results are calculated by
averaging the results from 30 independent runs. In Table I, the
field marked with • and ◦ denote that GCELM’s classification
accuracy is statistically and significantly better or worse than
the method shown in the corresponding column. While the
filed without mark signifies that there is no significant dif-
ference between GCELM and the corresponding method. We
determine the significance by conducting a paired two-tailed
t-tests with significance level p = 0.05 [3]. Basing on the
significance testing results, we summarize the Win/Tie/Lose
(W/T/L) values at the bottom of the table, where W/T/L
indicates that, compared to their competitors, GCELM won
on W datasets, tied on T datasets, and lost on L datasets. In

1https://archive.ics.uci.edu/ml/datasets.php



TABLE I
AVERAGE TESTING ACCURACY OF DIFFERENT METHODS (MEAN±STD, BEST IN BOLD)

Data sets GCELM SS-ELM ELM KELM TSVM ST-ELM LapSVM GCN

austra 80.78±2.99 76.24±8.14• 73.32±10.48• 79.47±4.12 77.43±10.59 75.17±9.99• 55.70±0.21• 71.38±8.36•
australian 78.46±4.82 78.10±6.24 71.35±11.25• 79.32±6.11 75.38±10.81 78.57±9.56 75.79±6.61 75.36±7.56

breast 61.61±8.61 55.30±7.67• 52.00±7.38• 55.56±8.97• 55.77±6.78• 53.18±10.68• 71.54±0.00◦ 60.17±6.18
cleve 72.90±6.42 72.88±5.30 68.95±7.31• 72.38±3.79 72.80±5.70 68.85±8.30• 54.20±0.00• 70.17±6.14

diabetes 70.10±3.09 66.27±8.92• 57.31±8.51• 65.71±5.64• 64.97±5.26 58.43±8.56• 65.30±0.06• 62.93±6.62•
dnatest 67.87±5.03 51.60±4.63• 50.77±4.79• 50.81±4.26• 60.99±2.94• 42.86±8.51• 48.27±4.10• 59.33±3.95•
german 67.10±10.01 54.48±5.35• 57.95±9.42• 51.07±7.48• 59.52±6.89• 59.64±7.63• 70.21±0.03 59.54±5.32•

heart 76.53±3.63 72.54±6.06• 69.15±9.07• 73.25±8.99 70.23±7.77• 67.21±8.62• 55.77±0.00• 70.00±8.58•
ionosphere 81.07±7.51 75.98±4.31• 74.65±8.96• 75.57±6.18• 77.05±5.43• 77.20±5.68• 64.52±0.00• 71.32±8.21•

iris 94.32±3.20 80.04±4.79• 80.70±10.76• 93.04±3.88 93.00±3.70 81.04±8.36• 92.70±2.58• 91.19±3.61•
sonar 67.44±6.64 63.28±5.10• 64.66±6.37• 62.56±5.37• 66.41±5.27 62.21±5.10• 46.46±0.00• 67.22±7.09
vote 84.19±5.72 83.75±3.49 84.39±6.17 87.98±1.97◦ 87.97±3.59◦ 87.65±6.21◦ 38.35±0.00• 86.62±3.87

WBC 96.53±0.74 92.30±1.83• 89.35±5.63• 95.30±2.78• 95.40±1.90• 92.14±3.50• 65.26±0.07• 95.93±2.28
weather 76.94±14.38 69.72±15.14 73.61±12.74 69.17±11.21• 76.39±14.29 70.00±15.00 41.67±0.00• 50.83±11.66•

Wine 91.25±2.28 89.37±3.33• 79.75±6.72• 90.31±3.92 90.51±3.34 79.59±7.68• 88.45±1.60• 90.84±2.79
X8D5K 100.00±0.00 100.00±0.00 96.93±3.07• 99.96±0.06• 99.98±0.05• 99.93±0.21 100.00±0.00 100.00±0.00

zoo 99.22±1.32 98.02±1.45 98.18±1.51• 98.65±1.60 99.48±1.09 99.69±0.94 99.95±0.28◦ 100.00±0.00◦
cloud 90.18±3.68 89.92±3.22 73.38±10.32• 88.48±4.36 89.71±4.65 75.95±9.54• 81.32±4.86• 88.10±3.90•
bupa 56.33±6.93 52.55±4.01• 54.07±6.63 56.15±4.98 55.95±5.62 55.41±5.85 41.79±0.00• 51.72±3.71•
air 71.30±6.25 66.52±4.50• 67.44±5.83• 70.89±4.18 70.68±6.38 69.53±7.55 72.49±7.63 79.65±5.78◦

segmentation 83.22±3.14 78.91±3.42• 65.71±7.74• 83.01±3.22 81.85±4.53 67.05±8.36• 80.84±3.51• 80.74±3.61•
pima In. D. 68.45±5.55 67.28±7.67 58.43±7.06• 63.52±6.78• 64.84±8.34 62.35±5.65• 35.29±1.03• 65.47±4.70•

Xinp 93.48±1.95 93.04±2.31 80.31±6.64• 92.76±3.00 93.90±1.76 81.56±8.59• 92.45±1.32• 94.97±1.82◦
Normal7 99.08±0.42 84.85±1.02• 84.33±4.22• 99.45±0.24◦ 99.35±0.32◦ 84.86±7.06• 99.58±0.12◦ 95.26±1.12•

wdbc 92.13±0.16 88.94±4.59• 81.20±8.63• 91.72±4.20 91.15±4.02 89.51±5.39• 62.97±0.00• 90.86±2.44•
ecoli_label 64.46±7.16 67.09±2.29 57.92±11.95• 61.17±12.58 58.92±13.97 63.28±9.71 61.80±8.44 63.14±8.21
appendicitis 85.83±2.80 73.33±14.10• 58.12±11.00• 69.06±12.88• 63.70±15.29• 57.86±15.23• 16.67±0.00• 76.15±10.68•

Average 80.4±4.61 75.64±5.14 71.26±7.78 76.9±5.29 77.53±5.94 72.62±7.68 65.9±1.57 76.63±5.12
W/T/L – 17/10/0 24/3/0 11/14/2 8/17/2 19/7/1 19/5/3 15/9/3

addition, the arithmetic mean accuracy of each method over
all the datasets is given at the bottom of the table.

It can be seen that GCELM achieves the best accuracy on 18
datasets. The arithmetic mean accuracy of GCELM is 80.40%
that is 2.87% better than the second better baseline, TSVM
(77.53%). A more detailed analysis is given bellow.

• GCELM v.s. GCN: Comparing with GCN, our method
is significantly better on 16 datasets and achieves similar
performance on 9 datasets, although GCN has updated
its parameters for 100 epoch with learning rate of 0.002.
This signifies that 1) the random graph convolution opera-
tion is beneficial for semi-supervised classification; 2) the
iterative parameters updating in GCN may be optional.

• GCELM v.s. SS-ELM and ST-ELM: GCELM wins on
17 and 19 datasets by comparing with SS-ELM and ST-
ELM, respectively. Although these methods are ELM-
based semi-supervised methods, GCELM and SS-ELM
are based on the graph while ST-ELM relies on pseudo
labels generated by self-training strategy. The compar-
ative results with SS-ELM show that embedding graph
information into feature representation is more efficient
than the traditional manifold regularization.

• GCELM v.s. ELM and KELM: Comparing with the

basic ELM and KELM, GCELM wins on 24 and 11
datasets, respectively. Since ELM uses only labeled sam-
ples, its classification accuracy is relatively lower than
other semi-supervised methods. By utilizing kernel trick,
KELM can achieve significant improvement but it is still
not superior to our method.

• GCELM v.s. TSVM and LapSVM: Despite there are
17 datasets that have no statistical significance comparing
TSVM with GCELM, GCELM achieves higher classifica-
tion accuracy on most datasets. Especially, GCELM wins
on 8 datasets which is much larger than that TSVM wins.
Comparing with LapSVM, GCELM achieves better per-
formance on 19 datasets, demonstrating the effectiveness
and superiority of our method.

C. Sensitivity Analysis of Hyper-parameters

To observe the sensitivity of the main hyper-parameters
of GCELM, i.e., λ, α, and the number of hidden neurons,
we evaluate the performance of GCELM with varying hyper-
parameter values. Fig. 2 (a)-(c) show the impact of λ and α for
Iris, WBC, and Wine dataset. The two hyper-parameters vary
in range from 1e−6 to 1e6 and are represented with logarithmic
values. As can be seen, the classification accuracy of GCELM
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Fig. 2. Impact of λ and α where x-axis and y-axis denotes lg (λ) and lg (α), respectively.
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Fig. 3. Performance comparison of SS-ELM, GCN, and our method with different hidden neurons.

tends towards increasing as λ decreased, while is insensitive to
α. This indirectly demonstrates that the classification accuracy
of GCELM depends mainly upon its output layer.

In Fig. 3, we show the influence of the number of hidden
neurons involved in GCELM, SS-ELM, and GCN. We plot the
average accuracy obtained by varying the number of hidden
neurons from 20 to 200 with a interval of 20. It can be seen
that, by increasing the number of hidden neurons, GCELM
can achieve better classification accuracy, and furthermore, it
is generally superior to SS-ELM and GCN with same setttings.
It should be noted that the classification accuracy of SS-
ELM and GCN might be degraded when using too many
hidden neurons, e.g., WBC. That because more hidden neurons
increase the risk to overfit the training data.

D. Running Time

In this experiment, we compare the running time of GCELM
and all the baselines. The results are given in Table II. We
can observe that GCELM is significantly faster than TSVM,
ST-ELM, and GCN. Since GCELM includes more matrix
operations than ELM, KELM, and SS-ELM, such as graph
construction, it takes slightly more running time. ST-ELM and
GCN contain iterative operations thus they commonly spent
more time to update parameters. To sum up, GCELM keeps
the advantage of fast learning speed existing in ELMs. This
benefits from the closed-form solutions of output weights and
graph generation.

V. CONCLUSIONS

We have presented a novel semi-supervised classifica-
tion approach (GCELM) which generalizes ELM to graph-
structured data. GCELM uses random graph convolutional
layer to generate hidden representation and keeps fast learning
speed by calculating output weights as close-form solution.
To construct a robust graph structure from datasets, a self-
representation model is adopted to estimate the similarity
between data points. We evaluate GCELM on many popular
datasets. The experimental results show that GCELM not
only outperforms many semi-supervised classification models,
especially GCN, but keeps the advantage of ELM, i.e., fast
learning speed.

It should be noted that the proposed method is a preliminary
work. We evaluated it on traditional non-structured data but
it can be applied to graph-structured data. Furthermore, the
proposed method offers an alternative orientation for ELM.
Therefore, one can consider various useful strategies used in
ELM into our method. For example, one can try to make
random mapping more stable and make the model deeper. In
our future works, we will further study the proposed method
and give more extensive applications.
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TABLE II
COMPARISON OF RUNNING TIME (IN SECOND).

Data sets GCELM SS-ELM ELM KELM TSVM ST-ELM LapSVM GCN

austra 0.0807 0.0333 0.0011 0.001 0.1761 0.8139 0.0802 0.6895
australian 0.0858 0.0341 0.0013 0.001 0.1816 0.7839 0.0799 0.7015

breast 0.0131 0.0119 0.0010 0.0010 0.0636 0.9096 0.0194 0.3354
cleve 0.0679 0.0129 0.0010 0.0010 0.0574 0.9843 0.0227 0.3447

diabetes 0.4853 0.0226 0.0012 0.001 0.4382 1.4124 0.1053 0.7454
dnatest 0.2332 0.0830 0.0033 0.0020 15.2089 1.6511 1.8055 1.7704
german 0.1403 0.0599 0.0020 0.0010 0.6302 1.4070 0.2303 1.1184

heart 0.0116 0.0135 0.0010 0.0010 0.0498 0.8333 0.0190 0.3452
ionosphere 0.0215 0.0087 0.0010 0.0010 0.1175 0.1150 0.0249 0.5574

iris 0.0053 0.0024 0.0010 0.0004 0.0585 0.0894 0.0256 0.3864
sonar 0.0099 0.0103 0.0010 0.0010 0.0921 0.4789 0.0206 0.3301
vote 0.0361 0.0189 0.0010 0.0010 0.0988 0.8711 0.0428 0.4789

WBC 0.0658 0.0279 0.0010 0.0010 0.0866 1.4105 0.0779 0.7195
weather 0.0033 0.0052 0.0010 0.0010 0.0084 0.0078 0.0059 0.2591

Wine 0.0062 0.0071 0.0007 0.0010 0.0700 0.7059 0.0632 0.3407
X8D5K 0.1435 0.0516 0.0020 0.0011 0.3224 1.5884 0.9441 1.1851

zoo 0.0059 0.0066 0.0010 0.0011 0.0358 0.1386 0.0441 0.2818
cloud 0.2160 0.0427 0.0022 0.0010 0.4260 1.5406 0.2120 1.1149
bupa 0.0174 0.0087 0.0010 0.0010 0.1712 1.1659 0.0233 0.3945
air 0.0221 0.0132 0.0010 0.0010 0.9576 1.1664 0.1753 0.4491

segmentation 0.0086 0.0087 0.0010 0.0011 0.2186 0.9132 0.1391 0.3295
pima Indians Ddiabetes 0.0859 0.0225 0.0011 0.0010 0.4453 1.4115 0.1063 0.7535

Xinp 0.0396 0.1538 0.0085 0.0052 0.1556 1.1651 0.8320 2.1210
Normal7 22.5832 7.1307 0.1521 0.0218 25.0076 15.3488 668.768 46.9471

wdbc 0.0476 0.1923 0.0161 0.0070 0.3248 2.0556 1.0375 2.2494
ecoli_label 0.1208 0.1924 0.0110 0.0060 0.1247 0.9238 0.3322 2.1403
appendicitis 0.0132 0.0240 0.0070 0.0058 0.0761 0.1568 0.0658 2.0623
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