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Abstract—Bionformatics and pharmacokinetics-
pharmacodynamics (PKPD) systems are two conjugated
tools to intensively explore the effect of new drugs on the
human body running in-silico analysis. Usually, PKPD models
do not consider all the biological reactions that explain the
pharmaceutical effect. A complementary non-parametric
modeling can be useful to recover the PKPD dynamics despite
the uncertainties and external perturbations effect, which can
reduce the degree of uncertainties on the drug evaluation. The
aim of this study is to get a feasible non-parametric model
of PKPD models using a bioinformatics inspired evaluation
of antibacterial drug doses. A class of bioinformatics inspired
differential neural networks (DNNs) responding to the dose
modification provides the non-parametric approximation of the
PKPD dynamics. The DNN modeling strategy was applied to
approximate the dynamics of PKPD models under four different
dosing regimes. The modeling strategy estimated the bacteria
survival (measured as the logarithm of the colony forming units
per milliliter) after the drug application. The same adjusted
DNN-based model confirmed the ability of designing an off-line
lab for evaluating diverse dosing strategies of antibacterial
pharmaceutical.

I. INTRODUCTION

The classical pharmacology science considers a unique
route for testing the effectiveness of new drugs. Usually, the
controlled administration of such drugs is proposed to connect
the processes between medication dose and its physiological
response. These studies are considered the fundamental basis
of the drug kinetic and dynamic mechanisms [1]. The col-
lected data from these studies can be used to derive abstract
relations between drug dose and the specific physiological
reactions. The results of such abstract formulations are known
as pharmacokinetic-pharmacodynamic (PKPD) models. Such
modeling structures have been used in modern pharmacology
as powerful predicting tools and their applications have saved
enormous amounts of money [2], [3]. Moreover, the adequate
instrumentation of these models has contributed to reduce the
animal testings of new drugs, for which the secondary effects
are completely unknown, and maybe adverse.

Nowadays, PKPD modelling and simulation techniques are
becoming popular as a result of their low cost and rapid
implementation [4]. In the last few years, the number of

publications regarding the applications of PKPD models as
critical elements in drug effect pre-testing has been growing
and growing. Just to mention a few, the study proposed by [5]
reviews several well-settled PKPD models employed in the
field of anesthesia. This study shows how anesthesiologists
apply such models to evaluate the drug dosage according to
the specific characteristics of each patient. Some measured
variables during the anesthesia procedure (obtained by non-
invasive continuous monitoring systems) are used as outputs
of the model. The individualization of the suggested model
provides a formal manner to evaluate the potential long-term
effect of anesthesia over each patient.

Shah et al. in [6] applied a PKPD model to establish
an in vivo-in vitro correlation of antibody drug conjugates.
This study used two mathematical models to characterize the
efficacy of chemotherapeutic drugs; signal distribution [7] and
cell distribution models [8]. The models were adjusted with
the aim of evaluating the antibody efficiency on the patients,
once a pretesting has been realized on in-vitro cultured tissue.

The previous two examples show that individualizing the
PKPD models for each patient plays a key role to make these
models useful within the in-silico drug dosing evaluation. Such
individualization requires adjusting the PKPD model for each
set of data coming from each patient. This process can be
highly time consuming and sometimes expensive. There is an
alternative option to complete the individualization processes
based on a combined modeling strategy. This mixed model
uses a nominal form (the PKPD) and an adaptive model which
compensates the individual characteristics of each patient. The
compensating model can use different approximation options
including polynomials, wavelets, Legrende functions and many
others. One of the most advanced options to generate the
approximate model are the artificial neural networks (ANNs).

ANNs are nonlinear forms connecting sigmoidal functions
which try to emulate the highly parallel and powerful infor-
mation processing ability of animals brain. There are several
artificial realizations for ANN in literature. Depending on the
structural form of the ANN, it can work as a static map
connecting input-output static related data. On the other hand,
if the ANN works using internal output feedback, then it
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is called dynamic. This ANN variant seems to be the more
efficient way to complement the PKPD model and produce a
reliable feasible and individualized representation of a certain
drug effect on the proposed target physiological tissue, organ
or system.

This study provides a formal application of dynamic ANN
to realize an individualization of PKPD adaptable models
for relating drug dose and the bacteria survival for patients
suffering an infection. The PKPD model complemented with
the ANN estimated the bacteria concentration for all the
evaluated patients. A nominal PKPD model provides a pre-
liminary approximation to the bacterial surviving which was
complemented with the ANN dynamics. This mixed model
offers a more practical modelling strategy to realize suitable
predictions for the potential effect of the drug concentration
on a certain patient.

The main contribution of this study is the design of a
mixed model for individualizing the application of PKPD
to reproduce the relationship between a pharmaceutical dose
and the corresponding surviving bacteria concentrations. The
mixed model uses a classical bi-compartmental PKPD model
and the dynamic ANN.

This paper is organized as follows: Section II presents
the general fundamentals of PKPD perturbed models. Section
III details the design of the approximated model based on
dynamic ANN considering a class of affine representation
with respect to the weights and considering a single outut
layer. Section IV shows the numerical results corresponding
to the application of the proposed mixed PKPD model plus
the approximated model. Section V closes the paper with some
final remarks.

II. PHARMACOKINETICS-PHARMACODYNAMICS SYSTEMS
WITH UNCERTAIN MODELS

Let consider a mathematical model for the perturbed PKPD
system represented by:

ẋ(t) = fPh(x (t) , I (t)) + ξ (x (t) , t) (1)

Here x represents the time dependent profile of
Pr(log(CFU/ml) < 0), that is the bacterial concentration
forced by the selected drug dose I on the renal function
group which operates as an index of the drug antibacterial
efficiency. The nonlinear vector field fPh refers to the
pharmaceutical effect of the input drug I at the time t. The
input I (t) is the patient data related to age, body weight
and gender but also creatinine clearance (ClCr) and dosage
regimes during time t. In this study, let us assume that this
function can be represented as the composition of a nominal
PKPD model fPKPD plus the approximate ANN based
approximate model, namely fANN . The class of proposed
ANN model corresponds to a class of differential neural
network. DNN is a type of NN described by a set of ordinary
differential equations (ODEs) [9]. These ODEs may be used
to obtain an approximated model of the relationship between
the patient age, body weight, gender, creatinine clearance
(ClCr) and dosage regimes. These characteristics can serve

as input to the DNN and the time dependent profile of
Pr(log(CFU/ml) < 0).

Assumption 1: The time dependent profiles
Pr(log(CFU/ml) < 0) associated to the renal function
can be represented as an absolutely continuous function ∞,
namely x(t). This assumption makes possible to represent
the profiles Pr(log(CFU/ml) < 0) as the solution of an
uncertain ordinary differential equation

ẋ(t) = fPKPD(x (t) , I (t)) + fANN (x (t) , I (t))+

f̃ANN (x (t) , I (t)) + ξ (x (t) , t)
(2)

Here, the function f̃(·, ·) represents the modeling error
produced by the ANN and it is associated to all the biological
reactions that explain the pharmaceutical effect on the body
as a function of the drug dose. This representation is used
to approximate the response obtained by the renal functional
group.

The code represented by fANN (·, ·) is actually unknown
and particular for each patient. Nevertheless, one can assume
that such function is the same for all subjects plus a degree
of uncertainties represented by ξ (t) ∈ R. This function
ξ (t) symbolizes the perturbations and uncertainties associated
to the relationship between the patient data or treatment,
and the renal function group. A natural consequence of the
assumption described above is: 1. The function fPh(·, ·) satis-
fies the Lipschitz condition, that is ‖f(x1, u1)− f(x2, u1)‖2
≤ Lx ‖x1 − x2‖2.

2. The uncertainties belong to the patient characteristics and
treatment represented by

‖ξ (x, t)‖2 ≤ ξ0 + ξ1 ‖x‖2 ∀t ≥ 0 (3)

Considering these both restrictions, one can propose the use
of DNN to obtain a suitable numerical approximation of the
underlying model relating the patient data /treatment and the
index of antibacterial efficiency.

III. NON-PARAMETRIC MODELING USING DNNS OF PKPD
SYSTEMS

The modelling problem addressed in this work can be
rephrased in the following manner; To design a parallel
adaptive identifier combining the DNN approximation with
an adaptive structure using several correction terms to adjust
the identifier trajectories, the so called DNN weights. The
mixed structure working together with the adaptive DNN
identification can be presented as

fANN (x̂t) = h̃0(x̂t,Θt), ẑ0 is fixed

Θ̇t := Rt(t,Θt, δt) (4)

Here ĥ0(x̂t,Θt) represents the adapted version of the func-
tion h0(xt,Θ

0) produced by the DNN. Therefore, the problem
tackled in this paper can be reformulated as follows: to achieve
an adequate selection of matrices and in the identifier (4)
(which is adjusted with the learning algorithm defined by
Rt(t,Θt, δt) in such a way that identification error defined



as β := lim
t→∞

‖ xt − x̂t ‖Q can be stabilized within a small
ball around zero. The volume of this ball will be dependent
on the power of noises and uncertainties. This averaged error
is quiet similar to the mean squared error that is commonly
used in NN theory.

The identifier used in this paper is described by the follow-
ing structure

d

dt
x̂t = Ax̂t +W>1,tΨ1(x̂) +W>2,tΨ2(x̂)ut (5)

where A ∈ <,W i
1,t ∈ <n1 ,W2,t ∈ <n2 The scalar x̂t ∈ < de-

fines the identifier state. W i
1,t and W i

2,t are adaptive parameters
that should be adjusted to reproduce (as well as possible) the
ANN dynamics, that is the index of antibacterial efficiency.
Usually in NN, the weights (Wj,t, j = 1, 2) provide the
function approximation capacity. The functions Ψ1(x̂) ∈ <n1

and Ψ2(x̂) ∈ <n2∗s were selected as Chebyshev polynomials.
The non-linear weight updating (learning) law is described

by following matrix differential equations

Wj,t = −kjP∆tΠ
T
j + 2−1kjW̃j,t (6)

Matrices W̃1,t and W̃2,t represent the distance between the
current values of W1,t and W2,t to their corresponding best
fitted values W 0

1,t and W 0
2,t, that is W̃j,t = Wj,t −Wj,0. The

time varying ∆t function is the identification error. Matrices
Wj,0 are weights that adjust perfectly the trajectories of the
uncertain system. These weights always exist (based on the
Stone-Weisstrass theorem) but they are unknown. Evidently,
the accuracy of these values depends on the number of weights
adopted to represent the identifier dynamics. The variables kj
j = 1, 2 are the learning rates. Matrix P is the positive definite
solutions for the Riccati equations

Ric (P ) := PA+AᵀP + PRP +Q
R = W 0

1 (Λ2)−1[W 0
1 ]T +W 0

2 (Λ4)−1[W 0
2 ]T + Λ1 + Λ3

Q = λmax(2Λ2)l1)Inxn +Q0

(7)
Here Λk ∈ <, k = 1, 4 and are positive definite too. In fact,

they must be selected (over a large set of possible values)
just to ensure the existence of the solution for the previous
equations. These results give the theoretical support to ensure
that DNN algorithm may be used to reproduce the time course
profiles Pr(log(CFU/ml) < 0) by renal function group.

Remark 1: The identifier structure introduced in (5) has
been deeply studied by several authors. Some interesting
descriptions of such description may be founded in [10].

The following theorem describes the convergence
of the identifier response to time course profiles
Pr(log(CFU/ml) < 0) by renal function group.

Theorem 1: Assuming that upper bounds given in (3) are
valid, lets consider the DNN identifier (5) to be adjusted with
the adaptive laws (6), and if there exist matrices Λr = (Λr)

ᵀ
>

0, Λr ∈ <n×n, r = 1, 4, Q ∈ <n×n such that the set of Riccati
inequalities presented before has positive solution, then

a) The identification error ∆t := x̂(t)−x(t) is ε-practically
stable, that is: lim

t→∞
∆ᵀ (t)P∆(t) ≤ β

αQ

where αQ := λmin((P )
−1/2

Q (P )
−1/2

) > 0 and β :=

λmin((P )
−1/2

Λ2 (P )
−1/2

)ξ0. Here λmin (Ω) is the mini-
mum eigenvalue of the matrix Ω.

b) The weights trajectories W̃1 (t) and W̃2 (t) are also

bounded in the large as follows: lim
t→∞

∥∥∥W̃j (t)
∥∥∥2 ≤ 2kj

β
αQ
,

j = 1, 2

Notice that the proposed identifier uses the information
collected from diverse patients to get individual approximation
based on their own information. These approximate models
can serve in an eventual use of the approximate model for
individualizing relation between drug doses and the bacterial
surviving.

IV. NUMERICAL EVALUATION

A. The PKPD system

The system presented in this study was taken from [11]. This
study aims to model and simulate effective dosage regimens of
doripenem by a PKPD theory, to explain in vitro bactericidal
kinetics of doripenem for several Pseudomonas aeruginosa
strains (Figure 1). The study perform simulations with dosage
regimens of 250mg a day (b.i.d.), 250mg three times a day
(t.i.d.), 500mg a day (b.i.d.) and 500mg three times a day
(t.i.d.), for the infusion a period of 0.5h was set for all the
patient simulations. A Monte Carlo simulations generated the
individual values for the 5000 patients, please refer to [11] for
the parameter employed for the simulation.

Fig. 1: Scheme of the DNN model for bactericidal kinetics.

The trajectories of the PKPD model were generated from
the Matlab toolbox named SimBiology, where all the data can
be downloaded. Also, their proposed models of time dependent
profiles achieving the criterion (log(CFU/mL) < 0) can be
test.



B. Simulated implementation

The parameters for the DNN simulation where; k1 = 1.3,
k2 = 1.6, P = 1 and A =, the mean value for the weights
for time-course profiles of Prlog(CFU/mL) < 0 by renal
function group with different dosage regimens can be seen in
figures 2 and 3.
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Fig. 2: Weights W1 for the renal function group at different
dosage regimens; in blue 250mg b.i.d., in red the 250mg t.i.d.,
in green the 500mg b.i.d. and in purple the 500mg t.i.d.
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Fig. 3: Weights W2 for the renal function group at different
dosage regimens; in blue 250mg b.i.d., in red the 250mg t.i.d.,
in green the 500mg b.i.d. and in purple the 500mg t.i.d.

As mentioned before, the time-course profiles of probability
achieving the criterion (log(CFU/mL) < 0) for the different
dosages was employed as reference trajectory for the DNN.
The renal function for the different patients are; normal renal
function CLcr <= 70mL/min and severe renal dysfunction
(CLcr < 30mL/min).

Figure 4 shows the DNN approximation for cases of patients
with severe renal dysfunction. Figure 5 dects the cases of
patients with renal function values between 30 <= CLcr <
50mL/min. The patients with renal function values between
50 <= CLcr < 70mL/min and the DNN approximation to
their response with respect to different dosing regimens can
be seen in figure 6. Finally, the patients with normal renal
function response to the selected doses was approximated by
the DNN are represented in figure 7.

V. CONCLUSION

In this work a novel approach for the non-parametric
modelling of PKPD to explore the effect of dosage regimens
of doripenem in 5000 virtual patients by DNN is presented.
The model can be useful to recover the PKPD dynamics
despite the uncertainties and external perturbations effect,
this perturbations are often misrepresented by the traditional
modelling strategies that do not consider the full dynamics of
the drug with the human body.

The proposed DNN takes into account the full character-
istics of each patient and for its training the response of the
previous developed modelling. As a result the DNN is able
to approximate the response of each patient to the dosages
regimes according to the virtual patient renal function. The
renal function strategy is also useful because is a way to
estimated the bacteria survival after the drug application.
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Fig. 4: Time-course profiles of probability achieving the criterion (log(CFU/mL) < 0) for the evaluation of antibacterial
efficacy by renal function obtained by [11] is represented by the purple line, the DNN approximation for the 5000 patients is
shown in the green lines, finally the DNN mean value is depicted by the red line.

Fig. 5: Time-course profiles of probability achieving the criterion (log(CFU/mL)¡0) for the evaluation of antibacterial efficacy
by renal function obtained by [11] is represented by the purple line, the DNN approximation for the 5000 patients is shown
in the green lines, finally the DNN mean value is depicted by the red line.



Fig. 6: Time-course profiles of probability achieving the criterion (log(CFU/mL)¡0) for the evaluation of antibacterial efficacy
by renal function obtained by [11] is represented by the purple line, the DNN approximation for the 5000 patients is shown
in the green lines, finally the DNN mean value is depicted by the red line.

Fig. 7: Time-course profiles of probability achieving the criterion (log(CFU/mL)¡0) for the evaluation of antibacterial efficacy
by renal function obtained by [11] is represented by the purple line, the DNN approximation for the 5000 patients is shown
in the green lines, finally the DNN mean value is depicted by the red line.




