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Abstract—The presented paper proposes a method that enables
image object appearance editing by modifying its appearance-
related high-level attributes. First, attribute-related features get
extracted from a latent representation of an image generator and
then, their contents gets modified, which results in producing
the assumed appearance alterations. Convolutional Autoencoder
(CAE) has been adopted as an image manipulation framework
and face appearance, characterized by four attributes: age,
smile intensity, facial hair intensity and gender, was chosen for
modifications. To extract attribute-related features from CAE’s
latent representation, Supervised Kernel Principal Component
Analysis (SKPCA) was used, as this transformation is able to
disentangle complex, nonlinear image-to-attribute relationships.
The method has been evaluated using large-scale face dataset
CelebA. Qualitative results show that realistically-looking ap-
pearance modifications can be obtained. To quantify plausibility
of introduced modifications, face recognition experiments on
altered face images were performed, delivering on average 95%
classification accuracy, for twenty-six category dataset.

Index Terms—Autoencoders, kernel methods, image editing

I. INTRODUCTION

Deep neural networks (DNNs) boosted performance of in-
telligent data analysis and enabled successful implementation
of AI algorithms in a wide range of real-world applica-
tions. They proved superior not only with respect to other
information processing approaches but also with respect to
humans in handling several complex tasks, including visual
object recognition [1], speech recognition [2], image and video
understanding [3], machine translation [4], planning [5] or
document analysis [6]. Another domain where DNNs recently
proved excellence is content generation. They have been
shown to be able to create paintings with a learnable artistic
style [7], to synthesize realistic speech [8] or to generate or
edit visual image objects [9] [10] [11]. The three concepts that
enabled impressive performance in this field are Autoencoders
- AE [12], Convolutional Autoencoders (CAE) [13] and their
variational extensions, Normalizing Flows [14] [15], as well
as Generative Adversarial Networks - GANs [16] [17], which,

This research was funded by the National Centre for Research and Devel-
opment under the grant CYBERSECIDENT/382354/II/NCBR/2018.

at the moment, are unbeatable in realistic image synthesis.
Despite impressive performance, various approaches adopted
for image object editing give little insight and provide little
control over this process.

A motivation for the presented research was an attempt to
develop visual object editing framework that enables func-
tional control over transformations involved in appearance
alterations, where appearance is described using high-level
attributes, such as facial expression intensity or age. Such
a functional control would enable purposeful and computa-
tionally efficient appearance transformations to meet a desired
outcome. A core of the proposed idea is to target information
extracted in latent image representations, derived by either
CAEs or GANs, by means of the proposed, appropriately
developed Attribute Transformation Module (ATM). Research
reported in the presented paper employs Convolutional Au-
toencoders, trained to reconstruct facial images, as an object
appearance editing environment. We propose to extract from
latent image representation features, which strongly corre-
late with considered high-level visual appearance attributes.
We adopt Supervised Kernel Principal Component Analysis
(SKPCA) [18] as a nonlinear transformation to obtain this
objective and perform face appearance modifications in the
derived space (this extends our earlier approach, where linear
feature extraction was used [19]). Resulting, modified face
image representations are projected back to the latent repre-
sentation to be reconstructed by CAE’s decoding module.

A structure of the paper is the following. First, we provide a
brief review of related work on realistic image generation and
editing. Next, we explain the proposed appearance modifica-
tion method. Finally, we provide results of experimental evalu-
ation of the procedure (its Python implementation is available
at [20]). We show, using examples from a large scale, CelebA
face database [21], that the introduced approach enables
functional control over appearance modifications. In addition
to qualitative assessment, we also quantify the outcome of
the procedure by evaluating face classification accuracy on
transformed images.
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II. RELATED WORK

Although deep generative models, such as Autoencoders,
Normalizing Flows or Generative Adversarial Networks, have
been introduced only recently, an impressive amount of suc-
cessful research on complex visual object generation, mainly
attributed to the latter paradigm, has been presented thus
far [22] [23] [24] [25] [26]. As adversarial networks are
known to be difficult to train, nowadays much of the work is
concentrated on improving this process, for example, by mit-
igating modal collapse [27], stabilizing discriminator training
by means of spectral normalization [28], revising the basic
architecture and training using large scale datasets [29] or by
progressively growing both generator and discriminator [30].

A basic ability to generate realistically-looking visual ob-
jects of some specified category was quickly expanded to
provide more detailed control over objects’ properties. A
notable development was the introduction of a conditional
GAN (cGAN) concept [31], in which a mechanism for condi-
tioning generator outcome on additional, appearance-related
information was proposed. This concept has also quickly
quickly evolved. In [32] cGAN-based architecture appended
with an additional encoder module for retrieving attribute-
related information from input images was proposed. After
assembling this information with with latent representation,
remarkable appearance modification effects, such as changing
hair color, facial expressions or addition of eyeglasses, were
reported. Another extension is proposed in [33], where both
image generation and image editing is addressed by introduc-
ing a ’connection network’, which provides a trainable map-
ping between attributes and the corresponding image space.
The resulting framework enables continuous modifications of
attribute-expression intensity.

A concept of object generation and editing within a frame-
work of Variational Autoencoders proposed in [34] models
an image as a composite of foreground and background
with disentangled latent variables, using two encoder-decoder
pairs. The former pair is learned using a criterion involving
additional attribute information, which is extracted from a
description provided in a form of a natural language. The
indicated idea of exploiting natural language description for
visual object generation through conditioning image formation
processes was utilized in [35] [36] [37]. An extension to this
concept that provides also capability to modify existing scenes
using continuous linguistic feedback, has been presented in
[38].

A specific task of generating and modifying realistically
looking faces is another challenging, yet highly researched
topic. Face image synthesis methodology termed Semi-Latent
Facial Attribute Space (SL-FAS), which combines user defined
and latent spaces, has been formulated in [39]. Other ap-
proaches are based, for example on applying attribute classifi-
cation constraints [40] or by introducing semantic label masks
into a training process in order to achieve interactive face
editing and manipulation [41]. Recently, an approach inspired
by neural style transfer literature has been proposed, which

modifies generator architecture to gain fine-grained control
over image synthesis process [7] [42]. Image manipulations
are performed at a level of convolutional layers, using a ’latent
code’, which combined with noise injection leads to very good
separation of high-level attributes (such as pose or gender)
from small variations (skin texture, hair color etc.) [43] [44].

The last approach to content generation, the Normalizing
Flows concept, seeks for a chain of invertible transformations
that enable mappings between a complex distribution of train-
ing samples (e.g. face images) and a simple one (e.g. Gaussian)
that can be viewed as some latent data representation. A basis
for flow-generation is provided by the change of variables
theorem. To ensure computational efficiency for deriving the
transformations, consecutive bijections are characterized by a
triangular form of the corresponding Jacobian matrix, which
makes its determinant calculation trivial. As a consequence,
flow transformations can be seen as a sequence of autoregres-
sive models, where argument vector permutations at different
stages of the processing chain enable discovery of arbitrary
feature dependencies. Simplicity of a distribution assumed as
a latent representation of target data, combined with invert-
ibility of learned transformations, makes normalizing flows
an excellent tool for manipulating high-level contents of data
to be processed. Remarkable results of various normalizing
flow-based concepts were reported both in image contents
generation (e.g. using GLOW algorithm [45] or autoregressive
Pixel-RNN [46]) or audio contents generation [8].

The approach proposed in the paper can be seen as a com-
bination of Autoencoder-based and normalized flows-based
processing. The adopted SKPCA transformation can be con-
sidered as a single-step ‘encoding’ of a complex distribution of
Autoencoder’s latent space variables onto manageable distribu-
tions of some underlying priors, that model different high-level
visual attributes. In contrast to Autoencoder and GAN-based
content generation, we propose a ‘serial’ processing scheme,
in which attribute-related content is sought in a derived,
intermediate representation. Moreover, the proposed approach
is aimed at editing visual characteristics of a specific input
object. On the other hand, unlike it occurs for normalizing
flows, we propose only a single transformation that converts
some complex distribution to a one that is simple and easily-
manageable.

III. PROPOSED ALGORITHM

Computational architecture of the presented algorithm has
been shown in Fig. 1. The proposed Attribute Transformation
Module extracts samples (z) that contain disentangled infor-
mation on considered face appearance attributes from latent
Autoencoder’s representations (y) of input images (x). Then, it
modifies their contents, producing vectors z̃, and reassembles
latent representations (ỹ) that are to be finally decoded onto
output images (x̃).

A space of z vectors. referred to as attribute-space, should
provide decorrelated, monotonous (possibly linear) represen-
tations of attribute expression-level intensities. To meet these
objectives, transformation that maximizes correlations between



Fig. 1. Computational architecture of the algorithm.

vectors z and image label vectors l (comprising interval-type
appearance attribute descriptors) needs to be found. A pos-
sible candidate for this transformation is the aforementioned
SKPCA, which is built on maximizing Hilbert-Schmidt inde-
pendence criterion [47]. Denoting cross-covariance between
vectors y and image label vectors l by Cy,l:

Cy,l = E(y − µy)(l− µl)
T , (1)

where µy,µl denote corresponding means, supervised dimen-
sionality reduction seeks such unit-length projection bases:
u1...uk that maximize dependence between projections of
y samples (z = [u1...uk]

Ty) and labels l, which can be
expressed as:

u = argmax
v

(
vT tr(Cy,lC

T
y,l)v

)
, ||v|| = 1, (2)

where tr(.) denotes a trace. As linear transformations involved
in (2) are unlikely to provide decorrelation of probably highly
nonlinear visual attribute encodings that exist in latent rep-
resentation, the kernel-based SKPCA can be used to solve
the problem. SKPCA captures the required relationships in
some implicit high-dimensional space, where both samples
y and labels l get nonlinearly transformed (ŷ ← φ(y) and
l̂ ← ψ(l)). Due to a kernel trick, all necessary computations
can be done in original spaces, by introducing kernels that
evaluate similarity both on samples: K = [ky(yi,yj)] and on
labels: L = [kl(li, lj)], where ky(x, y) = 〈φ(x), φ(y)〉 and
kl(x, y) = 〈ψ(x), ψ(y)〉.

Attribute space derived by SKPCA is made up of mutually
uncorrelated features that are expected to correspond to in-
dividual appearance attributes. Each individual component of
a vector z′ = F (y′,K,L), which is to be modified, reflects
expression-level intensity of a specific appearance attribute of

input image x′. It follows that appearance modifications can
be performed selectively for each attribute, by altering appro-
priate entries of attribute-space vectors. Moreover, expected
functional relation between a specific feature value and the
corresponding attribute expression intensity should be linear.

Once attribute modifications have been introduced, the
resulting attribute-space vector needs to be converted back to
a latent space, so that it can be correctly decoded onto the
output image. As SKPCA transformation is highly nonlinear,
we pose the inversion problem in terms of mean-squared error
minimization: for all latent vectors from a training set we seek
a matrix M that attempts to reconstruct original latent vectors
from unaltered attribute space samples:

M = argmin
M′

E
(
(M′z− y)T (M′z− y)

)
, (3)

where z = F (y,K,L).
The proposed image modification procedure can be summa-

rized as a sequence of the following operations (Fig. 1). First,
input face image x is transformed to its latent representation
y in CAE’s encoding module. Next, SKPCA transformation is
performed, resulting in an attribute-space vector z. This vector
is subject to alterations that produce its modified version z̃,
which is subsequently projected onto the reconstructed latent
space using the linear transformation involving a matrix M.
The result - reconstructed latent vector ŷ is finally decoded to
CAE’s output x̂ in Autoencoder’s decoding module.

The algorithm involves two training procedures. Firstly,
CAE needs to be derived, using appropriately large set of un-
labeled face images, to obtain an appropriate latent representa-
tion of input visual information. Then, attribute transformation
module: SKPCA transformation and its approximate inversion
need to be derived, using a set of labeled facial images.

IV. EXPERIMENTAL EVALUATION

The proposed method has been evaluated using annotated
face images from CelebA database, which comprises over 200
000 images from over 10 000 classes. Since original face
image annotations are binary variables (presence/absence of
some visual attribute), they were inappropriate from the point
of view of the presented research. Therefore, a subset of 50
thousand images was additionally labeled with ordinal features
(such as age, facial hair intensity or smile intensity) using
Microsoft Cognitive Services Vision API [48].

The Convolutional Autoencoder, trained on all CelebA
images, of size 208x176x3, was built based on a basic archi-
tecture available at [49]. It comprised eleven convolutional,
six dropout, and four max-pooling layers at the encoder, and
eleven transposed-convolution layers at the decoder module.
CAE’s latent representation was composed of 4096 elements
(see Table I). The Autoencoder was trained using Adam
optimizer (β1 = 0.9, β2 = 0.999) with the learning rate of
1×10−4 and a batch size of 16. The Attribute Transformation
Module was trained on sixteen thousand annotated samples,
selected to provide balanced representation among all attribute
expression levels for the four considered appearance attributes:
gender, age, facial hair intensity and smile intensity. To derive



the attribute-space, Radial Basis Function (RBF) kernel was
used for assessing latent sample similarities (K), with its
parameter γ set to 0.25, whereas image labels were processed
using a linear kernel (L).

Although a typical machine learning approach requires that
training and test datasets are disjoint, for the considered
problem, processing of samples that were present in a training
dataset is well-justified. Therefore, throughout experiments we
focused on a scenario, where a sample to be transformed was
known during training of both CAE and ATM.

TABLE I
DETAILS OF CAES USED IN FACE APPEARANCE MODIFICATIONS.

Encoder Decoder
Conv2D (256, 6, 1), ReLU Dense (9152)
GaussianDropout (0.3) Reshape (target = 13, 11, 64)
Conv2D (256, 6, 1), ReLU DeConv2D (128, 2, 1), ReLU
GaussianDropout (0.3) DeConv2D (128, 2, 2), ReLU
MaxPooling2D DeConv2D (64, 3, 1), ReLU
Conv2D (128, 5, 1), ReLU DeConv2D (64, 3, 2), ReLU
GaussianDropout (0.3) DeConv2D (64, 4, 1), ReLU
Conv2D (128, 5, 1), ReLU DeConv2D (64, 4, 2), ReLU
GaussianDropout (0.3) DeConv2D (64, 3, 1), ReLU
MaxPooling2D DeConv2D (64, 3, 2), ReLU
Conv2D (128, 4, 1), ReLU DeConv2D (64, 4, 1), ReLU
GaussianDropout (0.3) DeConv2D (64, 2, 1), ReLU
Conv2D (128, 4, 1), ReLU DeConv2D (3, 3, 1), ReLU
GaussianDropout (0.3)
MaxPooling2D
Conv2D (128, 3, 1), ReLU
GaussianDropout (0.3)
Conv2D (128, 3, 1), ReLU
GaussianDropout (0.3)
MaxPooling2D
Conv2D (128, 2, 1), ReLU
GaussianDropout (0.3)
Conv2D (128, 2, 1), ReLU
GaussianDropout (0.3)
Flatten (9152)
Dense (4096)

* Conv2D(d,k,s) and DeConv2D(d,k,s) denote the 2D convolutional layer and
2D transposed convolutional layer, d is a dimension, k - a kernel size and s
is a stride

A. Attribute mappings in the SKPCA feature space

Each feature produced by SKPCA corresponds to some
sub-manifold in CAE’s 4096-dimensional space that orders
data samples in a way that provides maximum correlation
with image labels. To assess, whether such attribute intensity-
ordering maps have actually been discovered, relationships that
exist between image labels and the corresponding attribute-
space features have been examined. As it can be seen in
Fig.2, the resulting relations are almost perfectly linear for all
considered interval attributes. This proves good performance
of SKPCA in extraction of attribute-related information from
a latent space and gives a promising basis for subsequent
appearance manipulations.

Fig.3 indicates that attribute-space features are indeed un-
correlated. The presented 2D plots show projections of images
labeled with pairs of attributes (age plus facial hair and age

Fig. 2. Image projections onto attribute-space features for (from top to
bottom): age, smile intensity and facial hair, shown separately for female
and male faces.

plus smile intensity) onto the corresponding two attribute-
space features. Brightness of each dot is proportional to a
value of ’Age’ image label (for the left column) and to a
value of the second image label (right column). To identify,
which attribute-space feature corresponds to which object’s
attribute, we evaluate correlation coefficients between attribute
descriptors and the corresponding feature values (for the
considered task, simple Pearson’s correlation was sufficient
to get robust results).

B. Qualitative assessment of appearance modifications

To qualitatively assess effects of appearance modifications
performed in the attribute-space, the following procedure has
been adopted. Given a trained CAE together with the trained
ATM, a test sample is fed to CAE’s input and its attribute
expression levels are transformed by modifying either a single
feature or selected feature combinations.

Results of face appearance modifications are summarized
in Fig.4 through Fig.6. Modifications of expression-level for
a single attribute are presented in Fig.4, whereas results of
alterations introduced simultaneously to a couple of attributes
have been shown in Fig. 5. In the latter case, both components
of attribute-space vectors were updated by the same amount.
As it can be seen from Fig.4, realistically looking appearance
alterations can be obtained. Also, inducing a combined change
in two attributes results in plausible facial appearance.

An interesting consequence of the adopted appearance
modification strategy is an opportunity to examine impact of
interpolating binary attributes. Fig.6 shows face appearance
transitions induced by changes in a value of the ’Gender’
attribute, between the two extreme values.

The presented experiments proved that SKPCA is a promis-
ing method for extracting attribute-related information from
Autoencoder’s latent space. Also, attribute-space features



Fig. 3. Image projections onto 2D attribute space features: age vs. facial hair
(top ), age vs. smile intensity (bottom row). Five distinct values of facial hair
intensity were present in a dataset.

decorrelate information from different attributes, enabling se-
lective appearance modifications. However, we found several
issues that need to be addressed to enable photo-realistic image
editing. The first one is image quality deterioration introduced
by CAE. There are a few possible ways to improve image
re-synthesis fidelity. A possible approach is to significantly
reduce a number of classes involved in CAE training, to
enable better learning of individual appearance, however this
would require large amounts of training images per each of
considered classes. As this is not the case for the selected
dataset, we propose a two-step CAE training procedure: the
first one involves all examples, whereas the second one fine-
tunes the pretrained CAE to better learn only a subset of
classes. The strategy proved to improve face reconstruction
fidelity: sample results obtained for CAE tuned on 25 selected
classes, are shown in Fig. 7.

Another limitation of photo-realistic image editing capabil-
ities of the proposed approach is difficulty with generalization
of concepts learned by CAE and ATM for previously unseen
categories. Finally, the adopted method for SKPCA inversion
is valid only for samples that do not deviate much from
samples used for training.

C. Quantitative assessment of method’s performance

To evaluate whether face appearance modifications, in-
troduced by manipulations performed in attribute-space, are
plausible a set of face recognition experiments was performed.
The classifier, based on VGGFace architecture implemented
in Keras [50] for both VGG16 and ResNET backends, was
initially trained on VGGFace2 dataset [51] and used for the

Fig. 4. Results of attribute expression-intensity modifications. Original
samples are shown in the leftmost column, subsequent columns show face
appearance for the minimum, medium and the maximum values of the
corresponding attribute-space feature. The considered attributes are age (rows
(A) and (B)), smile (rows (C) and (D)) and facial hair (E).

Fig. 5. Face appearance changes for simultaneous modifications of two
attributes: age and smile (top row), age and facial hair (middle row) and
smile and facial hair (bottom row). Original images are shown in the leftmost
column, modifications from the minimum, through medium to the maximum
attribute expression-level are given in subsequent columns.



Fig. 6. Appearance modifications induced by gradual changes in the gender-
related attribute-space feature for original female face (top) and male faces
(bottom row).

Fig. 7. Original faces (top) and their reconstructions generated by CAE trained
using the two-step procedure (with the tuning phase - middle) and using one-
step procedure (no tuning - bottom).

task realization under a framework of transfer learning. Its
last three fully-connected layers were trained to recognize
a subset of twenty-six CelebA face categories, that were
passed through the Autoencoder without any modification.
An objective of the experiments was to assess recognition
accuracy for faces with appearance altered using the presented
method, as a function of attribute expression intensity levels.
The classification procedure was repeated ten times for random
training-test set splits. Results are summarized using mean
recognition accuracy (fraction of correctly classified samples)
and standard deviation, separately for six scenarios, involv-
ing alterations of different attribute-space features and their
combinations. In each case, five levels of attribute expression
intensity were considered (i.e. each feature of an attribute
space sample was assigned with either of five evenly-spaced
values, ranging from the minimum one - ’0’, to the maximum
’1’). Experiment results, provided in Table II prove plausibility

of face appearance modifications. As majority of original
training images featured moderate attribute expression-levels,
the best results can be found for mid-values of attribute-space
features. However, the differences are minor, with an exception
for age, which can be attributed to relatively few samples
labeled with extreme values.

TABLE II
FACE CLASSIFICATION RESULTS CONDITIONED ON APPEARANCE

ATTRIBUTE-EXPRESSION INTENSITY.

Attribute Intensity VGG16
µ

VGG16
σ

ResNet
µ

ResNet
σ

Not modified - 0.952 0.012 0.920 0.014

age

0 0.896 0.030 0.795 0.029
0.25 0.956 0.013 0.926 0.022
0.5 0.964 0.011 0.961 0.010
0.75 0.967 0.010 0.942 0.014
1 0.915 0.019 0.902 0.018

smile

0 0.971 0.015 0.962 0.013
0.25 0.970 0.009 0.967 0.014
0.5 0.970 0.007 0.973 0.011
0.75 0.958 0.012 0.962 0.010
1 0.963 0.013 0.950 0.012

facial
hair

0 0.964 0.012 0.964 0.013
0.25 0.971 0.008 0.963 0.008
0.5 0.962 0.008 0.967 0.008
0.75 0.952 0.019 0.968 0.008
1 0.939 0.016 0.939 0.017

age and
smile

0 0.875 0.041 0.772 0.026
0.25 0.960 0.013 0.905 0.018
0.5 0.965 0.013 0.940 0.016
0.75 0.947 0.012 0.924 0.019
1 0.872 0.032 0.840 0.028

age and
facial hair

0 0.872 0.032 0.748 0.028
0.25 0.951 0.017 0.896 0.026
0.5 0.963 0.012 0.962 0.014
0.75 0.908 0.017 0.906 0.019
1 0.788 0.031 0.786 0.044

smile and
facial hair

0 0.959 0.013 0.953 0.012
0.25 0.967 0.010 0.967 0.012
0.5 0.968 0.012 0.967 0.015
0.75 0.946 0.011 0.957 0.017
1 0.909 0.031 0.910 0.034

µ - average classification accuracy, σ - standard deviation

V. CONCLUSION

The presented concept for image object appearance mod-
ifications proved promising when tested on facial images.
However, as the core of the method is a simple concept of ex-
traction and alteration of specific content-related information,
we believe that it can be considered as a more general frame-
work, applicable to several other data processing contexts.
Firstly, the method should be examined in altering appearance
of visual objects other than faces, using other high-level
appearance attributes. Secondly, the introduced Appearance
Transformation Module could be considered as a component of
other content-generating architectures, such as e.g. Generative
Adversarial Networks. Finally, the concept could be used for
introducing modifications to data that does not have to be
structured as images, for example, it could be adapted to signal
modification.

One of important features of the proposed method is a
possibility of inducing real-time appearance changes in a



processing loop, where a required modification can be induced
by feedback information. This can be an important property
enabling improvements in operation of advanced human-
computer interfaces. However, it can also be exploited in a
malicious way, for example, by facilitating presentation attacks
on biometric systems.
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[19] Ślot K., Kapusta P., Kucharski J., Autoencoder-based image processing
framework for object appearance modifications, unpublished.

[20] Adamiak., K, Kapusta., P., Ślot K., Article source code, URL
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