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Abstract—The connections between optimal control and
Bayesian inference have long been recognised, with the field
of stochastic (optimal) control combining these frameworks
for the solution of partially observable control problems. In
particular, for the linear case with quadratic functions and
Gaussian noise, stochastic control has shown remarkable results
in different fields, including robotics, reinforcement learning
and neuroscience, especially thanks to the established duality of
estimation and control processes. Following this idea we recently
introduced a formulation of PID control, one of the most popular
methods from classical control, based on active inference, a theory
with roots in variational Bayesian methods, and applications in
the biological and neural sciences. In this work, we highlight
the advantages of our previous formulation and introduce new
and more general ways to tackle some existing problems in
current controller design procedures. In particular, we consider
1) a gradient-based tuning rule for the parameters (or gains) of
a PID controller, 2) an implementation of multiple degrees of
freedom for independent responses to different types of signals
(e.g., two-degree-of-freedom PID), and 3) a novel time-domain
formalisation of the performance-robustness trade-off in terms
of tunable constraints (i.e., priors in a Bayesian model) of a single
cost functional, variational free energy.

Index Terms—PID control, active inference, Bayesian infer-
ence, optimal control, optimal tuning, performance-robustness
trade-off

I. INTRODUCTION

In the last few decades, the importance of probabilistic
approaches to optimal control theory has been highlighted
by different applications of Bayesian methods to problems of
control. In his pioneering work, Bellman introduced Markov
decision processes [1] as part of what is now known as
stochastic optimal control [2]–[6]. This formulation captured
the intrinsic probabilistic nature of problems of optimal control
and decision making, with state transitions, outcomes and
actions/decisions that cannot always be easily described in
purely deterministic terms. Bellman’s approach extended on
his own work on the dynamic programming method for
(deterministic) optimal control, defining the Bellman equation,
its uses and limitations, including the idea of the curse of di-
mensionality [7]. Shortly after, Kalman introduced the notions
of observability and controllability of a system [8], with the
former expressing the degree to which states can be estimated
from noisy observations, and the latter representing the degree
of control over a system when different manipulations are
applied. Kalman also noticed that his filter was dual to the
linear quadratic regulator (LQR), a now well known method in
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(optimal) control theory that he also established [9], showing
how both solutions require solving Riccati equations, forward
in time for filtering (error covariance matrix) and backward
in time for control (Hessian of the cost-to-go function). In
the following years, several results improved the treatment
of stochastic optimal control problems, including for instance
the separation principle [4], [10]1 and its applications to the
treatment of regulation in the presence of uncertainty, i.e.,
for (linear) partially observable control problems. Due to
its analytical tractability and its combination of estimation
and control algorithms, the linear quadratic framework (i.e.,
stochastic optimal control for linear state-space models with
Gaussian white noise and quadratic cost functions) has since
then become a standard approach in different fields, including
not only control theory and engineering [3], [4], but also
robotics [13] and neuroscience [14], [15].

In recent years, the results based on the notion of duality
in the linear case have been extended to (some classes of)
nonlinear systems [16]–[18], highlighting further connections
between control and estimation. Notably, these extended du-
alities often rely on more efficient variational approximations
commonly used in problems of inference. For instance, rele-
vant advances in stochastic optimal control and reinforcement
learning have been driven by the use of methods commonly
adopted to approximate intractable problems of Bayesian
inference, e.g., variational Bayes. These methods have been
shown to outperform standard dynamic programming and
reinforcement learning algorithms for the control of different
classes of problems [6], [16], [19], [20]. Building on these
ideas, a similar approach has been proposed and adopted in
neuroscience in an attempt to characterise brain function and
sensorimotor control under a unifying probabilistic framework:
active inference. While a full treatment of this framework is
beyond the scope of the present work (for some technical
reviews see, for instance, [21], [22]), we highlight how active
inference combines methods from machine learning (varia-
tional Bayes), control theory (stochastic control) and statistical
inference (hierarchical and empirical Bayes) to form a theory
that includes several existing results from different fields as
special cases, from predictive coding, to the infomax principle,
to statistical models of learning, to risk-sensitive and KL-
control [22]–[27].

Most of these results rely, at the moment, on the application
of (approximate) Bayesian approaches to optimal control, with

1Also known in econometrics as certainty equivalence property [11], [12],
but see [4] for a possible distinction.
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almost no mention of classical control methods. While classi-
cal methods can be seen as a special case of optimal control,
the possible advantages specific to Bayesian formulations of
classical algorithms such as Proportional-Integral-Derivative
(PID), remain largely unexplored. In this work we look at clas-
sical controllers from the perspective of approximate Bayesian
inference, discussing the implications of variational Bayesian
methods for the future of, in particular, PID control [28]. This
perspective has previously been adopted in, for instance, [29]
where a new gradient-based gain tuning rule was derived in
closed-form for optimal regulation near the set-point/reference
goal. In the next sections we present three cases in support
of a new (Bayesian) framework to design and study classical
control methods that ought to be seen as complementary
to existing ones, e.g., optimal control and frequency-domain
analysis. We will first, briefly, 1) recapitulate the previously
derived results for gain tuning introducing new connections
to path integral control and estimation in the presence of
biases, then 2) present a more formal and in depth treatment
of the connections between PID controllers with two degrees
of freedom and Bayesian inference schemes, and finally 3)
focus on the open challenge of framing different competing
constraints of the performance-robustness trade-off in PID
control, here defined in terms of priors and hyperpriors on
a probabilistic generative model.

II. CASE 1: A BAYESIAN DERIVATION OF PID GAINS AND
THEIR OPTIMISATION

PID controllers are the most popular choice for SISO
systems regulation in different areas of engineering [30]. Their
popularity is mainly due to their simplicity and relatively
low number of tunable parameters. However, despite only
including a few key parameters, or gains, their tuning (or
optimisation) remains largely an open challenge [28], [31].
Existing tuning methods are often limited to specific cases
or applications, relying on (ad-hoc) analytical rules, simple
heuristics, frequency domain analysis, optimisation (including
the use of artificial neural networks) or a combination of the
above (for a survey, see [31]), that hardly generalise across
different classes of problems. Here we report a more general
method than can be explicitly derived by taking a different,
Bayesian perspective on control problems.

Previous work relating classical control to optimal ob-
servers, and thus indirectly to Bayesian methods, showed
that the integral component of PID controllers corresponds
to a process of estimation of unknown (but linear/constant
or step) perturbations, equivalent to a Kalman-Bucy filter
with augmented state for the inference of unknown inputs (or
biases) [32], [33]. Using the same approach, this connection
was then generalised to higher order polynomial disturbances,
equivalent to controllers including further integration terms
[34], i.e., corresponding to PIID, PIIID, etc. controllers. In
[29], we derived a fully probabilistic version of PID control,
highlighting in particular some of the relationships between
integral control and an emerging framework in computational
and cognitive neuroscience, active inference [25], [26]. Using

active inference, we thus defined a more explicit generative
model to describe an underlying stochastic process produc-
ing PID control as a gradient descent of a cost functional,
variational free energy. While these two approaches, [34] and
[29], share a number of features, they also present some core
technical differences. Our proposal in fact includes:
• a more direct interpretation of the control matrix R,

commonly used as a weight for the cost of control in
the value (or cost-to-go) function [3], [4],

• a gradient-based algorithm to optimise R, and
• a generalisation to (some classes of) nonlinear problems.

As shown in [32], [34], the control matrix R is particularly
relevant for the computation of the gains of PID controllers,
here treated as part of the feedback matrix of a linear quadratic
controller. In active inference, such gains correspond to spe-
cific hyperparametrisations of the linear state space (genera-
tive) model used to approximate the dynamics of the system
to control, i.e., the (expected) precision, or inverse covariance,
of the observation noise [29]. This result is closely related
to Kalman’s duality of inference and control [8], [18], [35],
highlighting the mathematical correspondence between the
processes of stochastic estimation and deterministic control,
At the same time, the active inference formulation extends
this duality beyond simply noting mathematical similarities,
in order to include an account of the dual role of action in
the context of exploration/exploitation problems [36], [37].
Furthermore, given the role of R as (expected) precision in
the generative model, the gain parameters of PID controllers
can be optimised via a gradient descent on the same cost
functional, i.e., variational free energy [29], following a second
order scheme introduced in [38] that, under some assumptions,
holds also for some classes of nonlinear problems [24], [38].

III. CASE 2: PID CONTROL WITH 2DOF IN ACTIVE
INFERENCE

In many applications of PID control, it is often desirable
to build regulators that can respond to external disturbances
while avoiding large fluctuations (e.g., overshooting) due to
changes of the target of the regulation process. In standard
PID control, these requirements are shown to be conflicting
[39], [40] thus leading, in the most general case, to a multi-
objective optimisation problem whose solutions lie on a Pareto
front defined by
• changes in the control target (i.e., set-point response), and
• changes in the amplitude of a step disturbance (i.e.,

disturbance response).
To overcome the limitations induced by this trade-off, previous
work (see [28], [40] and references therein) introduced the
idea of controllers with two degrees of freedom, or 2DOF,
PID. Multiple degrees of freedom obtained by augmenting
controllers with multiple internal loops of PI or PID control
(see also equivalent examples such as PI-PD control [28]), then
ensure that different constraints can be treated independently,
using parameters from different sub-loops to encode separate
desired behaviours [28], [40].



Our probabilistic derivation of PID control via a variational
approximation of Bayesian inference showcases a clear and
direct interpretation of the presence of two degrees of freedom,
here derived using rather general arguments. Unlike previous
proposals, one need not augment a controller with an extra
feedforward component that can separate the effects of a
compensator for disturbances or set-point changes [40]. In
active inference, the existence of two degrees of freedom is a
simple consequence of the probabilistic (Bayesian) description
of the generative model used to derive a controller [29]. This
becomes more obvious after looking at the variational free
energy (see equation (13) in [29]) here reported as2

F ≈ 1

2

[
µπz̃

(
ỹ − g(µ̃x, µ̃v)

)2
+ µπw̃

(
µ̃′x − f(µ̃x, µ̃v)

)2]
(1)

where y, µx, µv are observations (or measurements), and ex-
pected hidden states (the estimate of the state of the system to
regulate) and inputs (the set-point) respectively. Hyperparam-
eters µπz

, µπw
are the expected precisions on observation and

system noise, and f(), g() are state transition and observation
functions. The tilde simply highlights a notation used to
group different derivatives, or rather embeddings orders, of
a variable, e.g., ỹ = {y, y′, y′′}, see [29] for more details.
The simplified (i.e., under Gaussian assumptions) variational
free energy functional in (1) contains two sets of prediction
errors, essentially instantiating two degrees of freedom for the
controller. Notice that unlike equation (13) in [29], here we
explicitly replaced πz̃, πw̃ with µπz̃

, µπw̃
from the beginning,

to highlight the fact that hyperparameters µπz̃
, µπw̃

are only
estimates of some “true” hyperparameters πz̃, πw̃. This fol-
lows from a full Bayesian treatment of the control problem,
considering all variables to be random variables [41] (cf. tradi-
tional point-estimates in frequentist frameworks for statistical
learning). In our case, to simplify the mathematical treatment,
we treat them as Gaussian random variables with means
µπz̃

, µπw̃
(and covariances to be discussed in the next section).

Importantly, these expectations are updated on a slower time
scale [29], following schemes found in [23] and in particular
[38], emphasising how parameters and hyperparameters of a
generative model ought to be considered as fixed quantities
over a certain (i.e., long) time scale.

The two sets of prediction errors, µπz̃

(
ỹ − g(µ̃x, µ̃v)

)
and

µπw̃

(
µ̃′x − f(µ̃x, µ̃v)

)
weighted by hyperparameters µπz̃

and
µπw̃ , represent likelihood and prior of a Bayesian update
scheme formulated using generative models under Gaussian
assumptions, the Laplace [42] and the variational Gaussian
[43] approximations (to clarify their role see discussion in
Chapter 3 of [27]). The update equations minimising these
prediction errors [29] (also called recognition dynamics [44]),
are similar to the update and prediction steps of standard

2Some terms in the free energy functional are hereby dropped for clarity.
For the treatment of an extra set of terms important for the optimisation of
PID gains, see [29]. For a more complete discussion of other terms which are
constant during the optimisation phase, see [21], [23], [38].

algorithms from estimation theory such as Kalman-Bucy filters
[45], and equivalent to feedback and feedforward loops in
2DOF PID controllers [40]. In this set up, PID control with a
single degree of freedom can be derived as the limit case for
fully observable states, i.e., ỹ = x̃ (cf. state feedback meth-
ods in [30]). The independence of set-point and disturbance
responses crucial for 2DOF PID controllers then corresponds,
in this framework, to a generative model having system and
measurement noise independent of one another, a standard
assumption for linear state space models.

IV. CASE 3: THE PERFORMANCE-ROBUSTNESS TRADE-OFF
FOR PID CONTROLLERS UNDER ACTIVE INFERENCE

The presence of conflicting criteria for the design of PID
controller is a well known issue in the control theory literature
[46], as partially highlighted in the previous section. This
conflict is often referred to as the performance-robustness
trade-off [28], [47], [48]. Controllers are usually designed to
optimise some given performance criteria while, at the same
time, attempting to maintain a certain level of robustness
in face of uncertainty and unexpected conditions during the
regulation process. The performance of a controller is normally
assessed using one or more of the following criteria [28], [47]:
• load disturbance response, or how a controller reacts to

changes in external inputs, e.g., a step input,
• set-point response, or how a controller responds to dif-

ferent set-points over time,
• measurement noise response, or how noise on observa-

tions impacts the regulation process,
while robustness is mainly evaluated based on:
• robustness to model uncertainty, or how uncertainty on

plant/environment dynamics affects the controller.
The goal of a general methodology for the design and tuning of
PID controllers is to bring together these (and possibly more)
criteria into a formal, unified and tractable framework that
can be applied to a large class of compensation problems. An
example in this direction is presented in [49] (see also [50]–
[52] for other partial attempts). This methodology is based
on the maximisation of the integral gain (equivalent, near the
reference point, to the minimisation of the integral of the error
from the set-point [39]), subject to constraints derived from
a frequency domain analysis related to the Nyquist stability
criterion applied to the controlled system [49]. Here, we
propose our Bayesian formulation as an alternative (and in
many cases complementary) framework for the design of PID
controllers that leverages the straightforward interpretation of
the performance-robustness trade-off for PID controllers in
terms of uncertainty parameters (i.e., hyperparameters, pre-
cisions or inverse covariances) in the variational free energy
[29]. To highlight its potential, we discuss the four standard
criteria listed above as part of performance-robustness trade-
off to address what can be gained using a Bayesian perspective.

A. Load disturbance response

A classic design principle for PID controllers is based
on the response of a controller to perturbations that drive



a process away from the target value [39]. Random, zero-
mean disturbances are commonly modelled as white Gaussian
variables, and the parameters of the controller are simply
tuned to reject such noise. Integral control then guarantees an
appropriate response to step disturbances, equivalent to non-
zero-mean noise (or to a bias term [33]), by accumulating
and compensating for the ensuing steady-state error [32], [39],
[53], [54]. The load disturbance response is usually expressed
in terms of a minimisation of the Integral Absolute Error (IAE)
between the state of the system to regulate and its target:

IAE =

∫ ∞
o

|e(t)| dt (2)

or approximated by the Integral Error (IE) for non-oscillating
or oscillating but well-damped systems [39]:

IE =

∫ ∞
o

e(t) dt (3)

The IE criterion is especially relevant because it gives a
straightforward intuition of the role of integral gain since,
under a few simplifying assumptions (including a system’s
initial state close to the target value), the IE is equal to the
inverse of ki as t → ∞ [39]. This implies that for large
(theoretically, infinite) integral gains, the IE is minimised.
While useful for its straightforward interpretation of this free
parameter, practical and physical limitations often restrict the
maximisation of the integral gain.

Our formulation builds on previous work showing how the
use of integral control is optimal for unknown step pertur-
bations applied to a system [32], [54]. In statistical terms,
the presence of such disturbances can be formally seen as a
bias term in an estimation process [55], showing how rejecting
(step) perturbations is equivalent to estimating biases [33]. In
active inference we can extend this (exact) result for linear
systems and disturbances to nonlinear cases (not limited to
polynomial perturbations as in [34]), where a more general
(but often only approximate or limited to special classes of
nonlinearities) duality of estimation and control is obtained
using variational and path integral formulations [16], [18], or
via probability integral transforms in the form of hierarchical
generative models [24].

Furthermore, in our (Bayesian) formulation we gain a
second and arguably deeper intuition on the role of the
integral gain, which is now explicitly represented as one of
the expected precisions (or inverse covariance) of observations
ỹ, i.e., µπz , see [29]. This prescribes a simple and alternative
way of understanding why the maximisation of ki is usually
a good heuristic for regulation problems where PID control is
used [28]: maximising ki is in fact equivalent to minimising
uncertainty on measurements y, by maximising (minimising)
the expected precision µπz

(variance µσz
) of the measurements

of the system to regulate. At the same time, this can also
explain some of the limitations of this heuristic, discussed in
the frequency domain for instance in [49]. The maximisation

of ki, without any constraints, corresponds to the minimisation
of the expected measurement variance µσz

, such that t→∞,

µσz
→ 0. (4)

In practice, however, one should always consider a certain
level of intrinsic, i.e., aleatoric, uncertainty whose variance
is fundamentally irreducible. Even an optimal controller can’t
overcome the limited sensitivity of a sensor (here represented
by the “real” σz , as opposed to its estimate µσz

), bringing
µσz

down to 0 is thus not possible if σz > 0. In other
proposals [49], the same aleatoric uncertainty σz is effectively
approximated with a measure that captures the levels of
controllability of a system through the definition of appropriate
sensitivity functions in the frequency domain.

Our Bayesian implementation also extends the intuition be-
hind the integral gain as a precision of observations to the other
two gains, kp and kd. In our formulation, these gains become
in fact estimated precisions of higher embedding orders of the
observations, y′, y′′, often also called generalised coordinates
of motion [23], [38]. These embedding orders essentially
represent a Taylor expansion (in time) of continuous random
variables defined according to a Stratonovich (rather than Ito)
interpretation, equivalent to non-Markovian (semi-Markovian,
of Markovian of order n) stochastic processes [24], [29],
[45]. In practice, for measurements taken at a high enough
frequency, and with controllers having a short enough intrinsic
time scale to regulate such high frequency measurements (i.e.,
a time scale approaching the underlying continuous models of
the systems to regulate), observation noise should be treated as
coloured, rather than white as in standard delta-autocorrelated
noise. Under these assumptions, the implementation of PID
control and its extensions (e.g., multiple I and D terms)
becomes simply a linear approximation of a measured non-
Markovian trajectory. Perhaps in a more intuitive way, we
can see expected precisions µπz̃

= {µπz
, µπz′ , µπz′′ } as

simultaneously 1) representing the precision of a trajectory
in the state-space (rather than the precision on a point) and
2) regulating the convergence rate of measurements to a
set-trajectory (rather than point), specifying how quickly a
controller ought to respond to a sudden change in a set of
observations and their higher orders of motion.

B. Set-point response

Following the load disturbance rejection property, a second
performance criterion used for the design of PID controllers
is their set-point response, i.e., how controllers respond to
variations in the set value used as a target to regulate a
system. Naively, this could be seen as closely related to load
disturbances: rather than changes in the measurement, we
now have changes in the target value, both of them used to
define some error term, e. In practice however, it is desirable
to decouple these two problems, creating a controller with
different sensitivities to load disturbances or set-point updates
whenever necessary [39]. This requires a controller with two
degrees of freedom, as discussed in more detail in section III,
which is an inherent feature of the active inference formulation



where expectations of hidden states µ̃x are updated using a
(Bayesian) scheme that balances (via a set of independent
expected precisions, or weights) prediction errors on both

• observations, µπz̃

(
ỹ − g(µ̃x, µ̃v)

)
, where load distur-

bances can appear as part of the measurements ỹ, and
• system dynamics, µπw̃

(
µ̃′x − f(µ̃x, µ̃v)

)
, where set-

trajectories can be updated as inputs/priors µ̃v .
Mirroring the role of µπz̃ for load disturbances, expected
precisions µπw̃ on dynamic prediction errors effectively im-
plement a response mechanism to set-trajectories updates,
with high expected precisions implying a fast response, and
low precisions entailing a slow one. Equivalently, from a
probabilistic perspective this can be explained with the idea
that the former describes a model with low uncertainty on
dynamics (high precision = low covariance) meaning that any
variation from such dynamics should quickly be dealt with; the
latter encodes, on the other hand, the fact that high expected
covariance allows for changes in set-trajectories, i.e., sudden
updates are not surprising, therefore changes can be slow (and
in the limit for very large covariances, almost absent).

C. Measurement noise response

A third common requirement for PID controllers is re-
lated to their performance in face of noisy or uncertain
measurements. These may be due, for instance, to physical
constraints/sensitivities of the sensors. In the literature, high
frequency measurement noise [30] is usually tackled via a
careful and ad-hoc controller design, including for example
pre-filtering of the observed data [47]. In the Bayesian formu-
lation of PID controllers that we introduced, we have a direct
measure of (the best estimate of) the measurement noise: the
expected precision or inverse covariance µπz̃

of the random
variable z and its higher orders of motion. Measurement noise
is thus related to the same set of hyperparameters used to
explain load disturbances rejection which, on the other hand,
can be seen as low frequency noise. This shows another trade-
off between design criteria, in this case related to the high
frequency properties of measurement noise and the (usually)
low frequency of external disturbances.

The previously identified maximisation of expected preci-
sion µπz (integral gain ki) implies an increased cutoff fre-
quency of the low-pass filter implemented by linear generative
models of the kind we introduced to approximate PID control
[56]. This suggests that, while low-frequency disturbances can
be suppressed more quickly (even if at the cost of possibly
overshooting), this comes at the expenses of a “hypersensitiv-
ity” to high-frequency noise, i.e., not rejecting as much noise
as otherwise possible with slower load disturbance responses
(as shown in a simple model, for instance, in [56]). In our
framework, this can easily be noticed by looking at the role
played by expected precision µπz̃

in the time domain, encoding
expected variability in observed data without a clear distinction
between rare perturbations and persistent noise.

At the same time, however, the active inference formulation
can be used to treat this problem in a more principled way,

introducing informative priors on expected precisions µπz̃ ,
i.e., hyperpriors ηπz̃

3 (or more complicated functions h(ηπz̃ )),
see [24] for a formal treatment. The variational free energy
functional then includes another set of prediction errors, (cf.
(1)),

F ≈ 1

2

[
µπz̃

(
ỹ − g(µ̃x, µ̃v)

)2
+ µπw̃

(
µ̃′x − f(µ̃x, µ̃v)

)2
+µpz̃

(
µπz̃ − h(ηπz̃ )

)2]
(5)

with µpz̃
(
µπz̃
−h(ηπz̃

)
)

playing the role of L2 (or Tikhonov)
regularisation terms for the ensuing recognition dynamics
derived as a gradient descent on (5). Using these prediction
errors one can effectively encode, for instance, constraints that
reject strong high frequency noise by specifically targeting
frequent large instantaneous fluctuations of expected precision
µπz̃

, penalising them with a Gaussian hyperprior (an L2
regularisation term that affects “outliers”) centred at ηπz̃ .
While such hyperprior would certainly then also influence the
response to sparse step changes, expected precisions µπz̃

could
be updated by slowly shifting hyperpriors ηπz̃

to reflect biases
in measurements ỹ that persist over a long period of time.
Importantly, while the cost functional presents in this case
some new terms, the underlying minimisation scheme remains
the same: the recognition dynamics will simply include extra
regularisation terms while still following a gradient descent on
the (augmented) variational free energy.

In the same way expected precisions µπz̃
regulate the re-

sponse to changes in the observations due to load disturbances,
expected precisions on higher order stochastic properties (e.g.,
expected precisions on expected precisions, µpz̃ ) can then be
seen as regulating how a controller adapts to varying levels
of measurement noise covariance given some (informative)
priors h(ηπz̃

). For example, in cases where the variance
of measurement noise changes over time, e.g., due to the
natural degradation of sensors, our formulation can include
mechanisms that take into account existing prior knowledge
and that can be used by a controller to dynamically adapt
to new levels of noise. More in general, in the presence of
stochastic volatility (i.e., models where the covariances of
different random variables are themselves random variables
[41]), one can easily encode prior knowledge of higher order
properties of random variables by including extra hierarchical
layers on the generative model we introduced for PID control.

D. Robustness to model uncertainty

PID controllers are usually designed to withstand some level
of model uncertainty, inherent in any system we observe,
interact with and try to regulate. In control theory, this
problem affects compensators attempting to regulate a system
while having access only to a limited amount of information
regarding the dynamics of the system itself. PID controllers are
especially popular as a “model free” strategy, or rather, for the

3To maintain a notation similar to the one used in [24], [29].



small number of tunable parameters that are necessary to af-
ford robust, although often suboptimal, control [46]. In control
problems, this robustness is sometimes captured by sensitivity
functions [47], [49], providing a proxy for, among other things,
the sensitivity of a feedback system to variations in models
of process dynamics. In our derivation of PID control as a
process of Bayesian (active) inference, the uncertainty of the
dynamics is represented by the expected precisions of system
dynamics, µπw̃ , in the linear generative model defined in [29].
For instance, low expected precisions µπw̃

, expressing high
uncertainty/covariance, encode the (Bayesian) belief that large
fluctuations in the dynamics can be expected, while high ex-
pected precisions express the fact that dynamics should show
only small fluctuations. Moreover, using our formulation we
can describe the behaviour of a PID controller such that under
controllability assumptions [4], [8], it effectively “imposes”
its own (linear) dynamics/priors on a system through larger
weighted prediction errors µπw̃

(
µ̃′x − f(µ̃x, µ̃v)

)
, by forcing

it into an attractor encoded in the set-trajectory represented
by the controller’s priors. The state of affairs of the world is
only partially relevant to a PID controller, since as long as
conditions of reachability and controllability [4] are met, all it
does is try to drive a (controllable) system towards the desired
equilibrium encoded by its priors on a set-trajectory.

As in the case of measurement noise, our formulation allows
for the construction of an extra layer of hyperpriors to handle
model uncertainty: in the active inference formulation we can
in fact include priors on expected precisions µπw̃ to represent
existing information on the expected/desired dynamics of a
system to regulate

F ≈ 1

2

[
µπz̃

(
ỹ − g(µ̃x, µ̃v)

)2
+ µπw̃

(
µ̃′x − f(µ̃x, µ̃v)

)2
+µpw̃

(
µπw̃ − k(ηπw̃)

)2]
(6)

For instance, it is not hard to imagine that, following standard
hierarchical or empirical Bayes methods in statistical inference
[41], information on existing control problems could be used
to define classes of systems whose shared statistical properties
form generic priors ηπw̃

. These priors could then be used
to initialise our model in a suitable part of the state space
to ensure a desired level of robustness (and if a similar
approach were to be adopted for ηπz̃

, to guarantee some
desired performances). In such settings, expected precisions
µπw̃

can still be optimised via a simple gradient descent, now
L2-regularised with newly introduced priors entering the vari-
ational free energy equation in the form of weighted prediction
errors, µpw̃

(
µπw̃ − k(ηπw̃)

)
. This approach, especially when

employing empirical Bayes, is similar in spirit to the clever
initialisation achieved in deep learning approaches via “pre-
training”, where introducing an unsupervised learning phase
before supervised training showed substantial improvements
in the performance and generalisation properties of neural
networks [57], [58].

V. DISCUSSION

The duality of estimation and control has long been recog-
nised and exploited in problems of regulation under constraints
of partial observability, i.e., stochastic control [3], [4], [10],
[16], [18], [35]. This property relies on the mathematical
equivalence of some classes of estimation and regulation prob-
lems, formulated as Bayesian inference and optimal control
respectively. The applications of this duality have led to a
series of significant new results in different areas, such as
reinforcement learning [20], robotics [59] and neuroscience
[14] where methods of approximate Bayesian inference are
now often employed to improve existing solutions. In this work
we built on some of these previous ideas, discussing possible
applications of Bayesian inference theories and related approx-
imations to methods from classical control. In particular, we
focused on PID control and on our previous implementation
of this method in terms of Bayesian active inference [29],
proposing this as a general unifying framework for the design
of PID controllers still largely missing to date [28], [31].

In [29] we recently introduced a gradient-based procedure
for gain tuning, using an interpretation of these parameters
as stochastic properties (i.e., expected precisions, or inverse
variances) of the system to regulate. Here we expanded on
this formulation by providing direct links to Kalman’s duality
[8], [18], [35] and Bayesian estimation in the presence of bias
terms, i.e., unknown step inputs [33].

We then discussed standard problems such as the necessity
of two degrees of freedom in order to afford independent
responses to load and set-point changes [40]. Using the proba-
bilistic interpretation given in [29], we then drew a comparison
between a pragmatic introduction of two degrees of freedom
[40], represented by feedback and feedforward sub-loops in
standard 2DOF PID control, and the more principled formu-
lation of active inference, aligned with update and prediction
equations of filtering algorithms (e.g., Kalman-filters [9]), and
the use of prior and likelihood densities in recursive Bayesian
update schemes [45].

Crucially, we then proposed to frame one of the major
open challenges for methods like PID control, the general
performance-robustness trade-off due to the presence of con-
flicting design criteria [28], [31], in terms of variational free
energy minimisation [17], [23], [29], [38], [60]4

F ≈1

2

[
µπz̃

(
ỹ − g(µ̃x, µ̃v)

)2
+ µπw̃

(
µ̃′x − f(µ̃x, µ̃v)

)2
+µpz̃

(
µπz̃
− h(ηπz̃

)
)2

+ µpw̃

(
µπw̃
− k(ηπw̃

)
)2]

(7)

In this formulation, simple constraints (load disturbance re-
sponse and set-point change response) can easily be mapped
to first order weighting parameters on the mean estimates of
the state of the system to regulate. More complex ones, on
the other hand, (measurement noise response and robustness
to model uncertainty) can be introduced in terms of stochastic
volatility [41], i.e., by treating second moments (expected

4The following equation combines (5) and (6).



precisions, or hyperparameters) as random variable having
appropriate hyperpriors encoded in the generative model. This
mapping provides an immediate understanding of different
desired statistical properties of the system to govern (see
table I), now summarised in Table I.

TABLE I: Active inference as a general framework for PID
controllers design (adapted from [29] and here extended).

Criterion Mapped to Interpretation in Active Inference

Load
disturbance
response

µπz̃

Expected inverse covariance of the observa-
tions (i.e., precision), with low covariance
implying a fast response, and vice versa

Set-point
change
response

µπw̃

Two degrees of freedom derived from the
presence of two sets of prediction errors,
sensory and dynamics, mapping to likeli-
hood and priors of a Bayesian inference
process

Measurement
noise
response

(priors on)
µπz̃

Direct mapping of measurement noise to
inverse covariance of the observations (i.e.,
precision), with hyperpriors (priors on ex-
pected precisions) introduced to differen-
tiate high frequency noise from low fre-
quency disturbances

Robustness
to model
uncertainty

(priors on)
µπw̃

Direct mapping of model uncertainty to
expected covariances of system fluctuations,
representing the hidden dynamics of the
system to control, with hyperpriors that can
describe initial knowledge of, for example,
a class of similar regulation problems to fa-
cilitate the optimisation of states/parameters
(similar to the role of unsupervised “pre-
training” in deep learning [58])

VI. CONCLUSION AND FUTURE WORK

In an influential paper, Åström and Hägglund asked whether
PID control can play a role in the future of control theory
and engineering [28]. Despite being the most used controller
in industry, the emergence of more specialised and better
performing methods over the years, such as model predictive
control, cast doubts on its long term applications and uses.
Åström and Hägglund however argued that due to its combined
effectiveness and simplicity, PID is likely to remain relevant
for the foreseeable future, perhaps in conjunction with other
methods. At the same time, they highlighted a series of
existing problems and open challenges faced by PID, including
a relatively limited number of theoretical results in areas such
as gain tuning and general (PID) controller design. In this work
we built on our previous formulation of PID control in terms of
active inference, a modern theory combining stochastic control
and probabilistic Bayesian inference under the umbrella of
variational free energy minimisation, to propose new appli-
cations of Bayesian methods to PID controllers in order to
establish a more general design framework. After introducing
a new practical implementation of optimal gain tuning in [29],
here we extended our proposal highlighting the connections
between different design principles for PID, from the impor-
tance of multiple degrees of freedom to optimal tuning with
conflicting performance-robustness criteria. This framework
gives an interpretation of a series of different constraints as

first and second order properties of a generative model that
generates a PID controller as a gradient-based minimisation of
a single cost functional, variational free energy. In the future,
we will focus on simulations testing the current proposal using
standard control benchmarks and following a vast literature
on Bayesian models (see [24], [41] and references therein).
We will then also draw more direct connections to modern
machine and reinforcement learning, combining the present
work with methods from [61], where preliminary results based
on these and other ideas are utilised in the field of deep
reinforcement learning with large neural networks performing
amortised inference.
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