Bayesian Stress Testing of Models in a Classification Hierarchy

Bashar Awwad Shiekh Hasan
Caspian Learning
Newcastle Upon Tyne, United Kingdom
https://orcid.org/0000-0002-2721-0943
bashar.hasan@caspian.co.uk

Kate Kelly
Caspian Learning
Newcastle Upon Tyne, United Kingdom
kate.kelly@caspian.co.uk

Abstract—Building a machine learning solution in real-life applications often involves the decomposition of the problem into multiple models of various complexity. This has advantages in terms of overall performance, better interpretability of the outcomes, and easier model maintenance. In this work we propose a Bayesian framework to model the interaction amongst models in such a hierarchy. We show that the framework can facilitate stress testing of the overall solution, giving more confidence in its expected performance prior to active deployment. Finally, we test the proposed framework on a toy problem and financial fraud detection dataset to demonstrate how it can be applied for any machine learning based solution, regardless of the underlying modelling required.

Index Terms—Bayesian modelling, machine learning, stress testing, model pipelines

I. INTRODUCTION

Machine learning has seen in the last 5-10 years an explosion in its growth from a research centered area of computer science and mathematics to a driving force for innovation in every aspect of our lives [1]–[3]. This was driven mainly by the success of deep learning and the significant investment of big technology firms in open source machine learning research [4]–[6].

Real life machine learning based solutions often require a number of models to work together to achieve the business goal of the product(s) [7]. Such models can be trained independently or as part of an optimised training pipeline [8], [9].

Breaking down the product into multiple models has several advantages: I) It allows for parallel model development with model designers focused on solving relatively small and well-defined problems. II) It provides more transparency on how the solution makes decisions by providing the end user with information about how the decision process has been broken down and how individual sub-decisions were made. III) It allows the business to customise and vary the product by replacing/adding models in the solution hierarchy to satisfy business or customer needs. However, this comes at a cost: I) Error propagation between models can be a serious issue with errors propagating quickly to undermine the performance of the overall solution [10], [11]. II) In a fast-paced production environment it is not clear how to prioritise model improvement. III) An update of a model will have a cascading effect on the rest of the models and will hence require re-training of all dependent models.

Building machine learning based solutions goes further beyond the performance of the individual models in the solutions [12]. The authors in [13] discussed the different aspects of building machine learning solutions from a software engineering point of view and concluded some of the unique challenges in building such solutions especially in how to train and update the models. A rubric for machine learning production readiness is defined in [14] to help create reliable, production-level machine learning systems. In [15] we presented a risk based approach to the use of machine learning in anti money laundering which adds additional requirements to the solution including: model explainability, bias, confounds, etc.

Surprisingly, there has been very little work in the literature on how to model and understand the interaction amongst models within a solution. Some work focused on optimising the parameters of the pipeline [7], [9], [16]. Others focused on the troubleshooting and diagnosis of faults and errors in a machine learning pipeline [17]–[19].

With the increased use of pre-trained models [20], [21], pipelining and putting models in a hierarchy has become the norm in most machine learning solutions. This makes the need to stress test classification hierarchy in machine learning solutions even more pertinent to increase confidence in the solution and trust in the model predictions.

The authors in [10] proposed an architecture for modelling a pipeline as a Bayesian network. Their work is written in the context of natural language processing (NLP), where the end-to-end performance of an NLP system is limited, and potentially degraded, by the performance of the models and the error propagation through the pipeline. In their proposed architecture, models within the pipeline are represented as variables in the network. By sampling the entire distribution over the labels at each stage of the pipeline, a probabilistic output can be produced, smoothing the output of the models and improving the end-to-end solution performance. This directly addresses the error propagation problem in NLP, but does not cover the rest of the challenges of building a class hierarchy/pipeline.

In this paper we present a general purpose framework for building a Bayesian network that can be used to perform stress
testing on a set of models that are connected in a set hierarchy. The framework will help answer important questions not only to understand the behaviour of the built model but also to assist in its maintenance and ongoing development (see Section II-A). The main contribution of this paper is not narrowly defined for a specific application area, e.g. NLP, but is general and abstract enough to apply to any machine learning solution regardless of the underlying modelling approach required.

After presenting the framework in Section II, we present a toy problem to explain how the framework could be implemented in Section III-A. Section III-B presents the results of applying the framework on a sample fraud detection dataset. Section IV provides additional discussion on the framework and its potential use.

II. Methods

A. Problem Definition

Assume a machine learning based solution consisting of a hierarchy of N models $M = \{m_1, ..., m_N\}$. The models use raw K data features $X = \{x_1, ..., x_K\}$ and propagate sub decisions through the hierarchy towards a top model(s). The input features X can be continuous or discrete, and each model takes as input a subset of the features and the output of a number of models, $q \geq 0$. Each model produces either a class prediction or regression value.

The relationships amongst the models and the input features can be represented as a directed acyclic graph (DAG) $G = (V,E)$, where $V = \{v_i : i \in [1,N+K]\}$ is a node in the graph which can be either a model or an input feature, and $E = \{e_{ij} : i \neq j \text{ and } i,j \in [1,N+K]\}$ is the directed link from v_i to v_j which represents information flow in the edge direction.

We would like to be able to answer questions like:

(Q1) What is the impact of a change of the distribution of feature x_k on the overall performance of the solution?

(Q2) What is the impact of updating a model m_i on the overall performance of the solution?

(Q3) Which model in the hierarchy would be the most influential in improving the overall solution performance?

B. Model Definition

A Bayesian framework is best fit to answer the questions addressed in this work. It leads to a generative model of the overall solution that allows for running simulations targeted at stress testing the solution. The hierarchy being represented as a DAG makes it easy to model the solution as a Bayesian belief network, which in turn allows the use of the full functionalities of the Bayesian framework - for example Bayes chain rule, prior distributions and sampling [22].

Under the Bayesian framework, it is not enough for a model in the hierarchy to produce predictions of the most likely class, it must also produce a probabilistic output per class. A probabilistic output is intrinsic to Bayesian and probabilistic based classifiers [22], but it can also be easily extended to most commonly used classification or regression models in the literature [23]–[26], and can even be extended to rule-based learning [27], [28].

The framework gives us the flexibility of defining prior information about the models within the hierarchy. Those prior distributions help incorporate domain knowledge about the class distribution of the particular model within the solution. It is common to model a classifier output as a multinomial or categorical distribution. Dirichlet distribution is a conjugate prior to those distributions and hence is a good choice for a prior distribution for the models in our framework [22], [29], although there is no restriction on using only Dirichlet. Similarly, prior distributions can also be defined for the input features. We define $\Theta = \{\theta_i : i \in [1,N+K]\}$ as the set of the prior distributions for all the models and the features.

Following the Bayesian chain rule, the joint probability distribution of the models, features, and priors can then be defined as:

$$P(M, X, \Theta) = \prod_{i=1}^{N+K} P(v_i | A_i, \theta_i) P(\theta_i)$$ \hspace{1cm} (1)

where $v_i \in V$ and

$$A_i = \{v_j : \exists e_{ji} \in E\}$$ \hspace{1cm} (2)

is the set of the nodes that v_i has dependency on. If $A_i = \emptyset$, then $P(v_i | A_i, \theta_i) = P(v_i | \theta_i)$. If no prior is defined for v_i, then $P(v_i | A_i, \theta_i) = P(v_i | A_i)$ and $P(\theta_i) = 1$.

The conditional probability distributions $P(v_i | A_i, \theta_i)$ are usually difficult to estimate. However, given that we are working with models that have already been trained, the conditional distribution is simply the prediction output of the model. Using the known distributions of the input features, X, the framework becomes a generative model that can propagate data through the models from the independent variables towards the top of the hierarchy.

C. Inference

Most classification models would have a relatively low number of classes. In which case, Equation 1 allows for an exact inference. However, in some applications and especially those involving natural language processing pipelines the number of possible values for the variables become too large that exact inference becomes intractable. For example, parsing, part of speech tagging, and named entity recognition have a number of possible classes that is exponential to the length of the input sentence. In which case approximate inference becomes a necessity [10]. We recommend the use of a Markov chain Monte Carlo (MCMC) approach, e.g. Random Walk Metropolis [30].

Given a set of observable data D, the log posterior distribution can be defined as:

$$\log(P(\Theta | V, D)) \propto \log(P(D | V, \Theta) P(\Theta))$$

$$\propto \sum_{i=1}^{N+K} \log(P(D | v_i, A_i, \theta_i)) + \sum_{i=1}^{N+K} \log(\theta_i)$$ \hspace{1cm} (3)
The only remaining piece to run MCMC is the ability to sample from the independent and joint distributions in the model.

D. Sampling

Sampling from the independent variables, most likely the features X, is straightforward, as those are parameterized by the relevant θ_i. The exception is when the space to sample from is exponentially large, e.g. the space of all parse trees, or the words in the English language. To overcome this problem [10], [31] has proposed sampling approaches for multiple examples of such cases. The details of those sampling methods are outside the scope of this paper, but interestingly the changes required to support such sampling are minimal.

Sampling from the conditional distribution is straightforward. Given that those are the models M within our solution, we only need to sample their input features and then run the model to obtain the output samples, which can be passed to higher level model(s) in the hierarchy.

E. Stress testing

Once the model is built, stress testing the solution can be easily achieved. The model is general enough to support a wide range of potential questions important for the solution operation in the live environment. In the following we answer the questions raised in Section II-A.

(Q1) To measure the impact of the change of a feature x_k on the overall solution, we sample from the changed distribution of x_k. Kullback–Leibler (KL) divergence [22] would then be used as a measure of how the output probability distribution of the solution changes accordingly. This is particularly helpful to gain understanding of how the solution will react as a result of expected changes in the input data (e.g. due to data drift) or sudden changes in the input data (e.g. due to a deployment of the solution in a new territory). We recommend sampling repeatedly from the input feature distributions and calculating the joint distribution Eq. 1 so a more robust measure is obtained.

(Q2) Similarly to (Q1), KL divergence can be used to measure the change in the distribution of the output model as a result of changing a model using sampled data. Additionally, a change in the area under the curve (AUC) for the model at the top of the hierarchy can be a very informative measure of impact of a given model change on the overall solution performance.

(Q3) In order to decide which model is the most influential in the hierarchy, we retrain each individual model, one by one, on randomly assigned labels. This forces the model to produce predictions at the experimental random level, changing the output distribution of that single model. The AUC of the final solution with this updated model is then obtained and compared to the previous AUC where that single model was not trained on random labels. The resulting reduction in the AUC is then a strong indication of the importance of the targeted model on the overall solution. When this process is repeated for each model in the hierarchy, we can then determine which model should be focused on next when improving the solution.

F. Implementation Considerations

We implemented the framework using tensorflow probability [32]. In the current implementation we relied heavily on tensorflow models whether linear or neural networks. If using direct inference, then the code can easily be extended to none tensorflow models. However, when using MCMC, this is more challenging and requires further development. The code used to produce the results in this paper is available at https://github.com/Caspian-Ltd.

III. EXPERIMENTS AND RESULTS

To demonstrate the proposed framework and how it can be used to stress test a machine learning based solution, we use a toy problem and a more realistic dataset for fraud detection in transactional banking data.

A. Toy Problem

The toy problem consists of three raw features $X = \{x_1, x_2, x_3\}$, with each feature having a categorical distribution, where x_1 has two categories, and x_2, x_3 both have three categories. The three models in the hierarchy are $M = \{m_1, m_2, y\}$, where m_1 is a classifier with 3-class output, and m_2, y are both 2-class classifiers. The priors associated with those models are plotted in Fig. 1 along with the DAG.

![Fig. 1. A toy example of a machine learning solution that uses a set of models in a hierarchical configuration. $\{x_1, x_2, x_3\}$ are the raw features feeding into two classifiers m_1 and m_2, which in turn feed into the top model y. Each variable in the graph is represented with its categorical distribution.](https://github.com/Caspian-Ltd)
1 if we are using exact inference, or using MCMC as described in Section II.

Experiment 1: Change the distribution of \(x_3 \) by setting the category probabilities to \([0.1, 0.2, 0.7]\). The simulation, i.e., sampling and joint probability estimation, is repeated 100 times. This results in KL-divergence of 0.21 indicating minor change in the output distribution as can be seen in Fig. 2 top left panel.

Experiment 2: In addition to change in Experiment 1, the distribution of \(x_1 \) is modified by setting the category probabilities to \([0.9, 0.1]\). KL-divergence increases to 0.99 which is reflected in the shift from the baseline distribution, Fig. 2 bottom left panel.

Experiment 3: Sets the category probabilities for \(x_2 \) to \([0.6, 0.3, 0.1]\). KL-divergence is 0.35, Fig. 2 top right panel.

Experiment 4: Combines the changes in Experiment 2 and 3. KL-divergence is 1.135 which can be seen as a much bigger change from the baseline distribution in Fig. 2 bottom right panel.

Experiment 5: Here the linear classifier in \(m_1 \) is replaced by a neural network. In exp 1 the distribution of \(x_3 \) is changed. exp 2 changes the distributions of \(x_1 \) and \(x_3 \). exp 3 modifies the distribution for \(x_2 \). exp 4 changes all the input features.

Experiment 6: The linear classifier in \(m_2 \) is replaced by a boosted tree classifier. Figure 3 demonstrates the outcome of experiments 5 and 6. The MLP did not change the model performance compared to the linear model (<1% difference in accuracy on testing set), but we can still see a change in the distribution of the final model output with KL-divergence of \(\sim 0.11 \) and a \(\sim 2\% \) drop in AUC. On the other hand, \(m_2 \) has a significant influence on the solution output, KL-divergence is very large (\(\infty \)) and the AUC showed a drop to chance level at 50%. This clearly suggests that \(m_2 \) is much more important for the overall solution performance compared to \(m_1 \), which is supported by the results of Experiment 6.

B. Fraud Detection Example

To test the framework on a more realistic dataset, we used the BankSim dataset [33]. BankSim is “an agent-based simulator of bank payments based on a sample of aggregated transactional data provided by a bank in Spain”. The simulator is designed to generate synthetic data that can be used for the study of fraud detection. The dataset contains approximately six months worth of data and an average of two fraudulent transactions per day. In total there are 594,643 records with 587,443 normal payments and 7,200 fraudulent transactions. There are 7 features in the data:
Fig. 4. Normalized histograms of the solution output in the toy example as a result of experiment 7 compared against the baseline distribution. In the top panel the m_1 linear classifier is re-trained using randomly assigned labels. In the bottom panel the same is repeated for m_2.

- step: time step
- customer: the customer ID
- age: a numeric value 0-7 representing the age category of the customer
- gender: the gender of the customer
- merchant: the ID of the merchant in a given transaction
- category: the nature of business of the merchant
- amount: transaction amount

To solve the challenge in fraud detection in Banksim we have applied some background knowledge of the AML investigation process and developed a classification hierarchy that consists of three models:

- The Nature of Business Risk classifier (m_1): assesses the risk of transacting with the merchant and rates the transaction as low, medium, high risk.
- Transaction Frequency classifier (m_2): assesses the frequency of the transaction with the merchant in the customer data. The classifier predicts whether the transaction is rare, infrequent, regular.
- Decision classifier (y): uses the engineered features and m_1 and m_2 to predict whether the transaction is fraudulent or not.

To support the models several new features are engineered, in particular for the Transaction Frequency classifier. Table I summarizes the features $X = \{x_1, ..., x_9\}$, and Figure 5 demonstrates the DAG representing the classification hierarchy.

All models $M = \{m_1, m_2, y\}$ are trained as linear classifiers. To reduce the impact of imbalanced data (98% of transactions are not fraudulent) the majority class is down-sampled when training the Decision classifier so we have an equal number of samples for both classes. To train m_1 and m_2 a randomly selected subset of the data is selected and manually labelled. Note that the choice of a linear classifier is not significant to the problem and may not necessarily be the best choice for the problem, however this experiment was not to find the best classifier, but was to display how the hierarchy of models can be utilised in a Bayesian framework.

![Bayesian network represented as a DAG for Fraud Detection Example](image)

TABLE I

<table>
<thead>
<tr>
<th>Node</th>
<th>Details</th>
<th>Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>Normalized Transaction Amount</td>
<td>Truncated Normal</td>
</tr>
<tr>
<td>x_2</td>
<td>Customer Age</td>
<td>Categorical</td>
</tr>
<tr>
<td>x_3</td>
<td>Customer Gender</td>
<td>Categorical</td>
</tr>
<tr>
<td>x_4</td>
<td>Category</td>
<td>OneHot Categorical</td>
</tr>
<tr>
<td>x_5</td>
<td>Average Time Between Transactions with a merchant</td>
<td>Gamma</td>
</tr>
<tr>
<td>x_6</td>
<td>Standard Deviation of Time Between Transactions with a merchant</td>
<td>Gamma</td>
</tr>
<tr>
<td>x_7</td>
<td>Average Transaction Amount with a merchant</td>
<td>Gamma</td>
</tr>
<tr>
<td>x_8</td>
<td>Standard Deviation of Transaction Amount with a merchant</td>
<td>Gamma</td>
</tr>
<tr>
<td>x_9</td>
<td>Ratio of the number of transactions with a merchant to the number of transactions the customer has</td>
<td>Truncated Normal</td>
</tr>
<tr>
<td>m_1</td>
<td>Nature of Business Risk Classifier</td>
<td>OneHot Categorical</td>
</tr>
<tr>
<td>m_2</td>
<td>Transaction Frequency Classifier</td>
<td>OneHot Categorical</td>
</tr>
<tr>
<td>y</td>
<td>Decision Classifier</td>
<td>OneHot Categorical</td>
</tr>
</tbody>
</table>

Similar to the toy example, we ran a number of experiments to demonstrate the potential use cases of the framework. We will focus on the distribution of the “Fraud” class as, from our experience in the domain, this is a key factor for
the investigating banks. High number of predicted fraudulent transactions will lead to a large false positive rate which in turn leads to significant operational overhead to the bank. On the other hand low predictions might lead to missing true fraudulent activity. Naturally a high f1 score is the preference but if a compromise to be made then a higher recall is usually preferred to high precision.

Experiment 8: The distribution of customer’s age (x_2) is modified. We performed 100 repetition of the sampling (5000 samples) and joint probability estimation (Eq. 1). The difference in x_2 distribution and the resulted distribution of the “Fraud” class is shown in Fig. 6 (upper panel). KL-divergence is 0.024 between the baseline and the resulted “Fraud” probability distribution.

Experiment 9: The distribution of the normalized transaction amount (x_1) is modified to produce much smaller values. As in Experiment 8, we performed 100 repetition of the sampling and joint probability estimation. The change in x_1 distribution and the output “Fraud” probability is shown in Fig. 6 (lower panel). KL-divergence is 0.007 between the baseline and the resulted “Fraud” probability distribution indicating little change in the predicted risk.

Experiment 10: Here we are trying to understand the relevant importance of the Nature of Business Risk classifier m_1 and the Transaction Frequency classifier m_2 to the overall solution performance. Both models are retrained with randomly assigned labels to the training data in order to produce experimental chance level results. The new models are then, separately, replaced by the baseline models and a 100 repetition of the simulations are ran. Fig. 7 uses box plots to show the resulted probability of “Fraud” in the three scenarios: baseline, m_1 with randomly assigned labels, and m_2 with randomly assigned labels. It is clear from the figure that an unreliable Nature of Business Risk classifier leads to an increase in the predicted fraudulent transactions as the median of the fraud probability significantly shifts upwards. This, however, results in a 9% reduction in recall indicating that the overall performance of the solution has dropped significantly. On the other hand a random Transaction Frequency classifier results in a 6% drop in the median of the “Fraud” probability with a 9% reduction in recall. This implies that in this case the solution is significantly underestimating risks.

Figure 8 demonstrates further the impact of changes in Experiment 10 on the output of the solution. It is clear from the top panel that a poorly performing Nature of Business Risk classifier leads to an increase in reported fraud (mostly incorrectly), while a poorly performing Transaction Frequency model has the opposite impact. This demonstrates the power of the proposed framework as it allows a decision maker to understand the behaviour of their fraud detection system. It also empowers the risk managers to define the types of risks that might occur as a result of adopting a machine learning solution and then enforce the required measures and processes to mitigate those risks.

IV. DISCUSSION

In this work we proposed a general purpose framework for stress testing machine learning based solutions. The framework takes a Bayesian approach to modelling a hierarchy of classifiers as a Bayesian network with directed links indicating probabilistic dependencies. This allows the use of the full Bayesian framework for parameter estimation and inference. After defining the model, we demonstrated how the framework can be used by applying it on a simplified toy example, and then on a realistic problem: fraud detection in banking systems.

The main purpose of the framework is to increase the trust in the deployed machine learning solution before going live and during the ongoing maintenance. In real-life applications, labelled data is very difficult to obtain and even if labels are available they usually come after a lengthy labelling process. Subject matter experts are usually used to evaluate
periodically and retrospectively the outcome of the machine learning solution. This leaves a gap of uncertainty regarding the performance of the solution especially in highly risky environments, for example, in fraud detection and anti-money laundering.

The proposed framework provides decision makers with directional evidence of how their deployed solution will most likely behave in extreme edge cases, or as a result of re-deploying the system in a different region with different data distributions. This is extremely valuable information for risk stewards, operation managers, and data science teams, as it provides insight to the solution performance in different scenarios whilst also minimising the risk involved.

In the examples provided here we assumed, without loss of generality, that the input features X are independent, hence no links between them in Fig. 1 and Fig. 5. During the engineering of the machine learning solution, features are preferred to be independent. However this is not always possible, and in some situations dependencies are not very clear. The framework presented here is not impacted by any dependencies among the features as they are treated as any other node in the Bayesian network and the same Bayesian chain rule will apply. For highly complex problems, it might be more efficient to simulate the features independently and provide the simulation data to the framework here. This can be for example using agent-based simulations similar to [33].

The built Bayesian model can be used as a basis for a causal model [34]. This will help provide further stress testing of the solution and potentially more robust interrogation of the models through interventions. In the future, this is the direction where we want to drive and build upon this work.

REFERENCES

