
Bayesian Stress Testing of Models in a
Classification Hierarchy

Bashar Awwad Shiekh Hasan
Caspian Learning

Newcastle Upon Tyne, United Kingdom
https://orcid.org/0000-0002-2721-0943

bashar.hasan@caspian.co.uk

Kate Kelly
Caspian Learning

Newcastle Upon Tyne, United Kingdom
kate.kelly@caspian.co.uk

Abstract—Building a machine learning solution in real-life
applications often involves the decomposition of the problem
into multiple models of various complexity. This has advantages
in terms of overall performance, better interpretability of the
outcomes, and easier model maintenance. In this work we propose
a Bayesian framework to model the interaction amongst models
in such a hierarchy. We show that the framework can facilitate
stress testing of the overall solution, giving more confidence in its
expected performance prior to active deployment. Finally, we test
the proposed framework on a toy problem and financial fraud
detection dataset to demonstrate how it can be applied for any
machine learning based solution, regardless of the underlying
modelling required.

Index Terms—Bayesian modelling, machine learning, stress
testing, model pipelines

I. INTRODUCTION

Machine learning has seen in the last 5-10 years an explo-
sion in its growth from a research centered area of computer
science and mathematics to a driving force for innovation in
every aspect of our lives [1]–[3]. This was driven mainly by
the success of deep learning and the significant investment of
big technology firms in open source machine learning research
[4]–[6].

Real life machine learning based solutions often require a
number of models to work together to achieve the business
goal of the product(s) [7]. Such models can be trained inde-
pendently or as part of an optimised training pipeline [8], [9].

Breaking down the product into multiple models has several
advantages: I) It allows for parallel model development with
model designers focused on solving relatively small and well-
defined problems. II) It provides more transparency on how
the solution makes decisions by providing the end user with
information about how the decision process has been broken
down and how individual sub-decisions were made. III) It
allows the business to customise and variate the product by
replacing/adding models in the solution hierarchy to satisfy
business or customer needs. However, this comes at a cost: I)
Error propagation between models can be a serious issue with
errors propagating quickly to undermine the performance of
the overall solution [10], [11]. II) In a fast-paced production
environment it is not clear how to prioritise model improve-
ment. III) An update of a model will have a cascading effect

on the rest of the models and will hence require re-training of
all dependent models.

Building machine learning based solutions goes further be-
yond the performance of the individual models in the solutions
[12]. The authors in [13] discussed the different aspects of
building machine learning solutions from a software engineer-
ing point of view and concluded some of the unique challenges
in building such solutions especially in how to train and
update the models. A rubric for machine learning production
readiness is defined in [14] to help create reliable, production-
level machine learning systems. In [15] we presented a risk
based approach to the use of machine learning in anti money
laundering which adds additional requirements to the solution
including: model explainability, bias, confounds, etc.

Surprisingly, there has been very little work in the literature
on how to model and understand the interaction amongst
models within a solution. Some work focused on optimising
the parameters of the pipeline [7], [9], [16]. Others focused
on the troubleshooting and diagnosis of faults and errors in a
machine learning pipeline [17]–[19].

With the increased use of pre-trained models [20], [21],
pipelining and putting models in a hierarchy has become the
norm in most machine learning solutions. This makes the
need to stress test classification hierarchy in machine learning
solutions ever more pertinent to increase confidence in the
solution and trust in the model predictions.

The authors in [10] proposed an architecture for modelling
a pipeline as a Bayesian network. Their work is written in
the context of natural language processing (NLP), where the
end-to-end performance of an NLP system is limited, and
potentially degraded, by the performance of the models and
the error propagation through the pipeline. In their proposed
architecture, models within the pipeline are represented as
variables in the network. By sampling the entire distribution
over the labels at each stage of the pipeline, a probabilistic
output can be produced, smoothing the output of the models
and improving the end-to-end solution performance. This
directly addresses the error propagation problem in NLP, but
does not cover the rest of the challenges of building a class
hierarchy/pipeline.

In this paper we present a general purpose framework for
building a Bayesian network that can be used to perform stress

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



testing on a set of models that are connected in a set hierarchy.
The framework will help answer important questions not only
to understand the behaviour of the built model but also to assist
in its maintenance and ongoing development (see Section
II-A). The main contribution of this paper is not narrowly
defined for a specific application area, e.g. NLP, but is general
and abstract enough to apply to any machine learning solution
regardless of the underlying modelling approach required.

After presenting the framework in Section II, we present a
toy problem to explain how the framework could be imple-
mented in Section III-A. Section III-B presents the results of
applying the framework on a sample fraud detection dataset.
Section IV provides additional discussion on the framework
and its potential use.

II. METHODS

A. Problem Definition

Assume a machine learning based solution consisting of a
hierarchy of N models M = {m1, ...,mN}. The models use
raw K data features X = {x1, ..., xK} and propagate sub
decisions through the hierarchy towards a top model(s). The
input features X can be continuous or discrete, and each model
takes as an input a subset of the features and the output of a
number of models, q ≥ 0. Each model produces either a class
prediction or regression value.

The relationships amongst the models and the input features
can be represented as a directed acyclic graph (DAG) G =
(V,E), where V = {vi : i ∈ [1, N + K]} is a node in the
graph which can be either a model or an input feature, and
E = {eij : i 6= j and i, j ∈ [1, N + K]} is the directed link
from vi to vj which represents information flow in the edge
direction.

We would like to be able to answer questions like:
(Q1) What is the impact of a change of the distribution of

feature xk on the overall performance of the solution?
(Q2) What is the impact of updating a model mi on the overall

performance of the solution?
(Q3) Which model in the hierarchy would be the most influ-

ential in improving the overall solution performance?

B. Model Definition

A Bayesian framework is best fit to answer the questions
addressed in this work. It leads to a generative model of the
overall solution that allows for running simulations targeted at
stress testing the solution. The hierarchy being represented as a
DAG makes it easy to model the solution as a Bayesian belief
network, which in turn allows the use of the full functionalities
of the Bayesian framework - for example Bayes chain rule,
prior distributions and sampling [22].

Under the Bayesian framework, it is not enough for a model
in the hierarchy to produce predictions of the most likely
class, it must also produce a probabilistic output per class. A
probabilistic output is intrinsic to Bayesian and probabilistic
based classifiers [22], but it can also be easily extended to
most commonly used classification or regression models in the

literature [23]–[26], and can even be extended to rule-based
learning [27], [28].

The framework gives us the flexibility of defining prior
information about the models within the hierarchy. Those prior
distributions help incorporate domain knowledge about the
class distribution of the particular model within the solution.
It is common to model a classifier output as a multinomial or
categorical distribution. Dirichlet distribution is a conjugate
prior to those distributions and hence is a good choice for
a prior distribution for the models in our framework [22],
[29], although there is no restriction on using only Dirichlet.
Similarly, prior distributions can also be defined for the input
features. We define Θ = {θi : i ∈ [1, N + K]} as the set of
the prior distributions for all the models and the features.

Following the Bayesian chain rule, the joint probability
distribution of the models, features, and priors can then be
defined as:

P(M,X,Θ) = P(V,Θ) =

N+K∏
i=1

P(vi|Ai, θi)P(θi) (1)

where vi ∈ V and

Ai = {vj : ∃ eji ∈ E} (2)

is the set of the nodes that vi has dependency on. If Ai = ∅,
then P(vi|Ai, θi) = P(vi|θi). If no prior is defined for vi, then
P(vi|Ai, θi) = P(vi|Ai) and P(θi) = 1.

The conditional probability distributions P(vi|Ai, θi) are
usually difficult to estimate. However, given that we are
working with models that have already been trained, the
conditional distribution is simply the prediction output of the
model. Using the known distributions of the input features,
X , the framework becomes a generative model that can prop-
agate data through the models from the independent variables
towards the top of the hierarchy.

C. Inference

Most classification models would have a relatively low num-
ber of classes. In which case, Equation 1 allows for an exact
inference. However, in some applications and especially those
involving natural language processing pipelines the number
of possible values for the variables become too large that
exact inference becomes intractable. For example, parsing,
part of speech tagging, and named entity recognition have a
number of possible classes that is exponential to the length
of the input sentence. In which case approximate inference
becomes a necessity [10]. We recommend the use of a Markov
chain Monte Carlo (MCMC) approach, e.g. Random Walk
Metropolis [30].

Given a set of observable data D, the log posterior distri-
bution can be defined as:

log(P(Θ|V,D)) ∝ log(P(D|V,Θ)P(Θ))

∝
N+K∑
i=1

log(P(D|vi, Ai, θi)) +

N+K∑
i=1

log(θi)

(3)



The only remaining piece to run MCMC is the ability to
sample from the independent and joint distributions in the
model.

D. Sampling

Sampling from the independent variables, most likely the
features X , is straightforward, as those are parameterized by
the relevant θi. The exception is when the space to sample
from is exponentially large, e.g. the space of all parse trees,
or the words in the English language. To overcome this
problem [10], [31] has proposed sampling approaches for
multiple examples of such cases. The details of those sampling
methods are outside the scope of this paper, but interestingly
the changes required to support such sampling are minimal.

Sampling from the conditional distribution is straightfor-
ward. Given that those are the models M within our solution,
we only need to sample their input features and then run the
model to obtain the output samples, which can be passed to
higher level model(s) in the hierarchy.

E. Stress testing

Once the model is built, stress testing the solution can be
easily achieved. The model is general enough to support a
wide range of potential questions important for the solution
operation in the live environment. In the following we answer
the questions raised in Section II-A.

(Q1) To measure the impact of the change of a feature xk on
the overall solution, we sample from the changed distribu-
tion of xk. Kullback–Leibler (KL) divergence [22] would
then be used as a measure of how the output probability
distribution of the solution changes accordingly. This is
particularly helpful to gain understanding of how the
solution will react as a result of expected changes in the
input data (e.g. due to data drift) or sudden changes in the
input data (e.g. due to a deployment of the solution in a
new territory). We recommend sampling repeatedly from
the input feature distributions and calculating the joint
distribution Eq. 1 so a more robust measure is obtained.

(Q2) Similarly to (Q1), KL divergence can be used to measure
the change in the distribution of the output model as
a result of changing a model using sampled data. Ad-
ditionally, a change in the area under the curve (AUC)
for the model at the top of the hierarchy can be a very
informative measure of impact of a given model change
on the overall solution performance.

(Q3) In order to decide which model is the most influential in
the hierarchy, we retrain each individual model, one by
one, on randomly assigned labels. This forces the model
to produce predictions at the experimental random level,
changing the output distribution of that single model. The
AUC of the final solution with this updated model is
then obtained and compared to the previous AUC where
that single model was not trained on random labels. The
resulting reduction in the AUC is then a strong indication
of the importance of the targeted model on the overall
solution. When this process is repeated for each model in

the hierarchy, we can then determine which model should
be focused on next when improving the solution.

F. Implementation Considerations

We implemented the framework using tensorflow proba-
bility [32]. In the current implementation we relied heavily
on tensorflow models whether linear or neural networks. If
using direct inference, then the code can easily be extended to
none tensorflow models. However, when using MCMC, this
is more challenging and requires further development. The
code used to produce the results in this paper is available at
https://github.com/Caspian-Ltd.

III. EXPERIMENTS AND RESULTS

To demonstrate the proposed framework and how it can be
used to stress test a machine learning based solution, we use
a toy problem and a more realistic dataset for fraud detection
in transactional banking data.

A. Toy Problem

The toy problem consists of three raw features X =
{x1, x2, x3}, with each feature having a categorical distri-
bution, where x1 has two categories, and x2, x3 both have
three categories. The three models in the hierarchy are M =
{m1,m2, y}, where m1 is a classifier with 3-class output, and
m2, y are both 2-class classifiers. The priors associated with
those models are plotted in Fig 1 along with the DAG.

Fig. 1. A toy example of a machine learning solution that uses a set of models
in a hierarchical configuration. {x1, x2, x3} are the raw features feeding into
two classifiers m1 and m2, which in turn feed into the top model y. Each
variable in the graph is represented with its categorical distribution.

An equivalent DAG is built where the classifiers are replaced
by categorical distributions, which are then used to generate
sample data for training the models in M . In a real scenario
this would be the available training data.

To establish a baseline, m1,m2 and y are trained as linear
classifiers and the joint probability is calculated following Eq.



1 if we are using exact inference, or using MCMC as described
in Section II.

Experiment 1: Change the distribution of x3 by setting
the category probabilities to [0.1, 0.2, 0.7]. The simulation,
i.e. sampling and joint probability estimation, is repeated 100
times. This results in KL-divergence of 0.21 indicating minor
change in the output distribution as can be seen in Fig. 2 top
left panel.

Experiment 2: In addition to change in Experiment 1,
the distribution of x1 is modified by setting the category
probabilities to [0.9, 0.1]. KL-divergence increases to 0.99
which is reflected in the shift from the baseline distribution,
Fig. 2 bottom left panel.

Experiment 3: Sets the category probabilities for x2 to
[0.6, 0.3, 0.1]. KL-divergence is 0.35, Fig. 2 top right panel.

Experiment 4: Combines the changes in Experiment 2 and
3. KL-divergence is 1.135 which can be seen as a much bigger
change from the baseline distribution in Fig. 2 bottom right
panel.

Fig. 2. Normalized histograms of the solution output in the toy example as a
result of the experiments 1-4. Each histogram is compared against the baseline
distribution. In exp 1 the distribution of x3 is changed. exp 2 changes the
distributions of x1 and x3. exp 3 modifies the distribution for x2. exp 4
changes all the input features.

Experiment 5: Here the linear classifier in m1 is replaced
by a two-layer feed forward Multi-Layer Perceptron.

Experiment 6: The linear classifier in m2 is replaced by
a boosted tree classifier. Figure 3 demonstrates the outcome
of experiments 5 and 6. The MLP did not change the model
performance compared to the linear model (<1% difference
in accuracy on testing set), but we can still see a change in the
distribution of the final model output with KL-divergence of
∼ 0.14. The boosted tree does actually increase the accuracy
of the m2 by ∼ 10%. The AUC of the solution has increased
by 4% with KL-divergence ∼ 0.16.

Experiment 7: In order to test the impact of m1, and m2

on the overall performance of the solution, we separately re-
train them using randomly assigned labels and measure the
respective KL-divergence and change in AUC. Figure 4 shows

Fig. 3. Normalized histograms of the solution output in the toy example as
a result of the experiments 5-6 compared against the baseline distribution.
In exp 5 the linear classifier m1 is replaced by a neural network, while the
linear m2 is swapped by a boosted tree in exp 6.

the impact of this test. Replacing m1 with an, essentially,
random classifier does not seem to have made a significant
change to the output of the solution: KL-divergence ∼ 0.11
and a ∼ 2% drop in AUC. On the other hand m2 has a
significant influence on the solution output, KL-divergence is
very large (∞) and the AUC showed a drop to chance level at
50%. This clearly suggests that m2 is much more important
for the overall solution performance compared to m1, which
is supported by the results of Experiment 6.

B. Fraud Detection Example

To test the framework on a more realistic dataset, we
used the BankSim dataset [33]. BankSim is “an agent-based
simulator of bank payments based on a sample of aggregated
transactional data provided by a bank in Spain”. The simulator
is designed to generate synthetic data that can be used for the
study of fraud detection. The dataset contains approximately
six months worth of data and an average of two fraudulent
transactions per day. In total there are 594,643 records with
587,443 normal payments and 7,200 fraudulent transactions.

There are 7 features in the data:



Fig. 4. Normalized histograms of the solution output in the toy example as a
result of experiment 7 compared against the baseline distribution. In the top
panel the m1 linear classifier is re-trained using randomly assigned labels. In
the bottom panel the same is repeated for m2.

• step: time step
• customer: the customer ID
• age: a numeric value 0-7 representing the age category

of the customer
• gender: the gender of the customer
• merchant: the ID of the merchant in a given transaction
• category: the nature of business of the merchant
• amount: transaction amount
To solve the challenge in fraud detection in Banksim

we have applied some background knowledge of the AML
investigation process and developed a classification hierarchy
that consists of three models:

• The Nature of Business Risk classifier (m1): assesses
the risk of transacting with the merchant and rates the
transaction as low, medium, high risk.

• Transaction Frequency classifier (m2): assesses the fre-
quency of the transaction with the merchant in the cus-
tomer data. The classifier predicts whether the transaction
is rare, infrequent, regular.

• Decision classifier (y): uses the engineered features and
m1 and m2 to predict whether the transaction is fraudu-

lent or not.
To support the models several new features are engineered,
in particular for the Transaction Frequency classifier. Table
I summarizes the features X = {x1, ..., x9}, and Figure 5
demonstrates the DAG representing the classification hierar-
chy.

All models M = {m1,m2, y} are trained as linear clas-
sifiers. To reduce the impact of imbalanced data (98% of
transactions are not fraudulent) the majority class is down-
sampled when training the Decision classifier so we have an
equal number of samples for both classes. To train m1 and
m2 a randomly selected subset of the data is selected and
manually labelled. Note that the choice of a linear classifier is
not significant to the problem and may not necessarily be the
best choice for the problem, however this experiment was not
to find the best classifier, but was to display how the hierarchy
of models can be utilised in a Bayesian framework.

y

m1 x1 x2 x3 m2

x4 x5 x6 x7 x8 x9

Fig. 5. Bayesian network represented as a DAG for Fraud Detection Example

TABLE I
DESCRIPTION OF THE NODE TYPES IN THE BAYESIAN NETWORK OF THE

FRAUD DETECTION EXAMPLE

Node Details Distributions
x1 Normalized Transaction Amount Truncated Normal
x2 Customer Age Categorical
x3 Customer Gender Categorical
x4 Category OneHot Categorical
x5 Average Time Between Transactions with

a merchant
Gamma

x6 Standard Deviation of Time Between
Transactions with a merchant

Gamma

x7 Average Transaction Amount with a mer-
chant

Gamma

x8 Standard Deviation of Transaction
Amount with a merchant

Gamma

x9 Ratio of the number of transactions with
a merchant to the number of transactions
the customer has

Truncated Normal

m1 Nature of Business Risk Classifier OneHot Categorical
m2 Transaction Frequency Classifier OneHot Categorical
y Decision Classifier OneHot Categorical

Similar to the toy example, we ran a number of experiments
to demonstrate the potential use cases of the framework.
We will focus on the distribution of the “Fraud” class as,
from our experience in the domain, this is a key factor for



Fig. 6. Normalized histograms of demonstrating the change in the distribu-
tions of input features Age (x2) and Transaction Amount(x1), and the resulted
change in the output distribution.

the investigating banks. High number of predicted fraudulent
transactions will lead to a large false positive rate which in
turn leads to significant operational overhead to the bank. On
the other hand low predictions might lead to missing true
fraudulent activity. Naturally a high f1 score is the preference
but if a compromise to be made then a higher recall is usually
preferred to high precision.

Experiment 8: The distribution of customer’s age (x2)
is modified. We performed 100 repetition of the sampling
(5000 samples) and joint probability estimation (Eq. 1). The
difference in x2 distribution and the resulted distribution of
the “Fraud” class is shown in Fig. 6 (upper panel). KL-
divergence is 0.024 between the baseline and the resulted
“Fraud” probability distribution.

Experiment 9: The distribution of the normalized transac-
tion amount (x1) is modified to produce much smaller values.
As in Experiment 8, we performed 100 repetition of the
sampling and joint probability estimation. The change in x1
distribution and the output “Fraud” probability is shown in Fig.
6 (lower panel). KL-divergence is 0.007 between the baseline
and the resulted “Fraud” probability distribution indicating
little change in the predicted risk.

Experiment 10: Here we are trying to understand the
relevant importance of the Nature of Business Risk classi-
fier m1 and the Transaction Frequency classifier m2 to the
overall solution performance. Both models are retrained with
randomly assigned labels to the training data in order to
produce experimental chance level results. The new models
are then, separately, replaced by the baseline models and a
100 repetition of the simulations are ran. Fig. 7 uses box
plots to show the resulted probability of “Fraud” in the three
scenarios: baseline, m1 with randomly assigned labels, and
m2 with randomly assigned labels. It is clear from the figure
that an unreliable Nature of Business Risk classifier leads to an
increase in the predicted fraudulent transactions as the median
of the fraud probability significantly shifts upwards. This,

Fig. 7. Box plot of the fraud probability as a result of training the nature
of business classifier m1 on randomly labelled data and the training of the
frequency classifier m2 on random labels. The median value of each case is
overlaid on the box plots.

however, results in a 9% reduction in recall indicating that the
overall performance of the solution has dropped significantly.
On the other hand a random Transaction Frequency classifier
results in a 6 % drop in the median of the “Fraud” probability
with a 9% reduction in recall. This implies that in this case
the solution is significantly underestimating risks.

Figure 8 demonstrates further the impact of changes in
Experiment 10 on the output of the solution. It is clear from
the top panel that a poorly performing Nature of Business
Risk classifier leads to an increase in reported fraud (mostly
incorrectly), while a poorly performing Transaction Frequency
model has the opposite impact. This demonstrates the power
of the proposed framework as it allows a decision maker to
understand the behaviour of their fraud detection system. It
also empowers the risk managers to define the types of risks
that might occur as a result of adopting a machine learning
solution and then enforce the required measures and processes
to mitigate those risks.

IV. DISCUSSION

In this work we proposed a general purpose framework for
stress testing machine learning based solutions. The frame-
work takes a Bayesian approach to modelling a hierarchy of
classifiers as a Bayesian network with directed links between
nodes indicating probabilistic dependencies. This allows the
use of the full Bayesian framework for parameter estimation
and inference. After defining the model, we demonstrated how
the framework can be used by applying it on a simplified toy
example, and then on a realistic problem: fraud detection in
banking systems.

The main purpose of the framework is to increase the trust
in the deployed machine learning solution before going live
and during the ongoing maintenance. In real-life applications,
labelled data is very difficult to obtain and even if labels
are available they usually come after a lengthy labelling
process. Subject matter experts are usually used to evaluate



Fig. 8. The bi-variate distribution of the probability of fraud of baseline
solution against the models in Experiment 10. Random m1 is the result of
replacing m1 with a classifier trained on randomly permuted labels of nature
of business risk. Random m2 is the result of replacing m2 with a classifier
trained on randomly permuted labels for frequency.

periodically and retrospectively the outcome of the machine
learning solution. This leaves a gap of uncertainty regarding
the performance of the solution especially in highly risky
environments, for example, in fraud detection and anti-money
laundering.

The proposed framework provides decision makers with
directional evidence of how their deployed solution will most
likely behave in extreme edge cases, or as a result of re-
deploying the system in a different region with different data
distributions. This is extremely valuable information for risk
stewards, operation managers, and data science teams, as
it provides insight to the solution performance in different
scenarios whilst also minimising the risk involved.

In the examples provided here we assumed, without loss
of generality, that the input features X are independent,
hence no links between them in Fig. 1 and Fig. 5. During
the engineering of the machine learning solution, features
are preferred to be independent. However this is not always
possible, and in some situations dependencies are not very
clear. The framework presented here is not impacted by any
dependencies among the features as they are treated as any
other node in the Bayesian network and the same Bayesian
chain rule will apply. For highly complex problems, it might
be more efficient to simulate the features independently and
provide the simulation data to the framework here. This can
be for example using agent-based simulations similar to [33].

The built Bayesian model can be used as a basis for a causal
model [34]. This will help provide further stress testing of
the solution and potentially more robust interrogation of the
models through interventions. In the future, this is the direction
where we want to drive and build upon this work.

REFERENCES

[1] P. Gainza, F. Sverrisson, F. Monti, E. Rodolà, D. Boscaini, M. Bron-
stein, and B. Correia, “Deciphering interaction fingerprints from protein
molecular surfaces using geometric deep learning,” Nature Methods, pp.
1–9, 2019.

[2] S. M. McKinney, M. Sieniek, V. Godbole, J. Godwin, N. Antropova,
H. Ashrafian, T. Back, M. Chesus, G. C. Corrado, A. Darzi et al.,
“International evaluation of an ai system for breast cancer screening,”
Nature, vol. 577, no. 7788, pp. 89–94, 2020.

[3] Z. Chen, E. N. Teoh, A. Nazir, E. K. Karuppiah, K. S. Lam et al., “Ma-
chine learning techniques for anti-money laundering (aml) solutions in
suspicious transaction detection: a review,” Knowledge and Information
Systems, vol. 57, no. 2, pp. 245–285, 2018.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016, pp. 265–283.

[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems, 2019, pp. 8024–8035.

[7] M. Sachan, K. A. Dubey, T. M. Mitchell, D. Roth, and E. P. Xing,
“Learning pipelines with limited data and domain knowledge: a study
in parsing physics problems,” in Advances in Neural Information Pro-
cessing Systems, 2018, pp. 140–151.

[8] R. C. Bunescu, “Learning with probabilistic features for improved
pipeline models,” in Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing. Association for Computational
Linguistics, 2008, pp. 670–679.



[9] Y. Zhang, M. T. Bahadori, H. Su, and J. Sun, “Flash: fast bayesian
optimization for data analytic pipelines,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2016, pp. 2065–2074.

[10] J. R. Finkel, C. D. Manning, and A. Y. Ng, “Solving the problem of cas-
cading errors: Approximate bayesian inference for linguistic annotation
pipelines,” in Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing. Association for Computational
Linguistics, 2006, pp. 618–626.

[11] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data lifecycle
challenges in production machine learning: a survey,” ACM SIGMOD
Record, vol. 47, no. 2, pp. 17–28, 2018.

[12] J. Howard, M. Zwemer, and M. Loukides, Designing great data prod-
ucts. ” O’Reilly Media, Inc.”, 2012.

[13] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann, “Software engineering for
machine learning: a case study,” in Proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice.
IEEE Press, 2019, pp. 291–300.

[14] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “The ml test score:
A rubric for ml production readiness and technical debt reduction,” in
Proceedings of IEEE Big Data, 2017.

[15] B. A. S. H. J. Faith and A. Enshaie, “Trusting machine learning
in anti-money laundering: A risk-based approach,” Caspian Learning,
Newcastle Upon Tyne, UK, Tech. Rep., 2019. [Online]. Available:
http://caspian.co.uk/rba/RBA.pdf

[16] T. Marciniak and M. Strube, “Beyond the pipeline: Discrete optimization
in nlp,” in Proceedings of the Ninth Conference on Computational
Natural Language Learning (CoNLL-2005), 2005, pp. 136–143.

[17] Z. Zhang, E. R. Sparks, and M. J. Franklin, “Diagnosing machine
learning pipelines with fine-grained lineage,” in Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed
Computing. ACM, 2017, pp. 143–153.

[18] D. Bruckner, “Ml-o-scope: a diagnostic visualization system
for deep machine learning pipelines,” CALIFORNIA UNIV
BERKELEY DEPT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCES, Tech. Rep., 2014. [Online]. Available:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a605112.pdf

[19] B. Nushi, E. Kamar, E. Horvitz, and D. Kossmann, “On human intellect
and machine failures: Troubleshooting integrative machine learning
systems,” in Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[21] M. Simon, E. Rodner, and J. Denzler, “Imagenet pre-trained models with
batch normalization,” arXiv preprint arXiv:1612.01452, 2016.

[22] D. Barber, Bayesian reasoning and machine learning. Cambridge
University Press, 2012.

[23] J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter, “Bayesian
optimization with robust bayesian neural networks,” in Advances in
Neural Information Processing Systems, 2016, pp. 4134–4142.

[24] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[25] J. S. Denker and Y. Lecun, “Transforming neural-net output levels to
probability distributions,” in Advances in neural information processing
systems, 1991, pp. 853–859.

[26] J. Platt et al., “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in large
margin classifiers, vol. 10, no. 3, pp. 61–74, 1999.

[27] J.-N. Sulzmann and J. Fürnkranz, “A study of probability estimation
techniques for rule learning,” FROM LOCAL PATTERNS TO GLOBAL
MODELS, p. 123, 2009.

[28] K. Dembczyński, W. Kotłowski, and R. Słowiński, “Maximum likeli-
hood rule ensembles,” in Proceedings of the 25th international confer-
ence on Machine learning. ACM, 2008, pp. 224–231.

[29] M. A. A. Turkman, C. D. Paulino, and P. Müller, Computational
Bayesian Statistics: An Introduction. Cambridge University Press, 2019,
vol. 11.

[30] G. O. Roberts, J. S. Rosenthal et al., “General state space markov chains
and mcmc algorithms,” Probability surveys, vol. 1, pp. 20–71, 2004.

[31] M. Johnson, T. Griffiths, and S. Goldwater, “Bayesian inference for pcfgs
via markov chain monte carlo,” in Human Language Technologies 2007:
The Conference of the North American Chapter of the Association for

Computational Linguistics; Proceedings of the Main Conference, 2007,
pp. 139–146.

[32] J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore,
B. Patton, A. Alemi, M. Hoffman, and R. A. Saurous, “Tensorflow
distributions,” arXiv preprint arXiv:1711.10604, 2017.

[33] E. A. Lopez-Rojas and S. Axelsson, “Banksim: A bank payments
simulator for fraud detection research,” in 26th European Modeling and
Simulation Symposium, EMSS, 2014, pp. 144–152.

[34] J. Pearl and D. Mackenzie, The book of why: the new science of cause
and effect. Basic Books, 2018.




