Expose Your Mask: Smart Ponzi Schemes Detection
on Blockchain

Shuhui Fan!, Shaojing Fu'?*, Haoran Xu' and Chengzhang Zhu?
LCollege of Computer, National University of Defense Technology, Changsha, China
{fanshuhuil8,xuhaoran12} @nudt.edu.cn
2Sate Key Laboratory of Cryptology, Beijing, China
shaojing1984@163.com
3Institute of War, Academy of Military Sciences, Beijing, China
kevin.zhu.china@ gmail.com

Abstract—The anonymity of blockchain has caused Ponzi
schemes to be transferred to smart contract platforms by scam-
mers. These Ponzi schemes wearing the mask of smart contracts
caused huge losses to people, which makes the detection of
smart Ponzi schemes attract people’s attention. Recent methods
mainly focus on machine learning technology to enable automatic
detection for smart Poniz schemes. However, there are some prob-
lems with their methods. Firstly, the gradient boosting algorithm
in machine learning they used have the problem of prediction
shift due to target leakage when processing category features
and calculating gradient estimates. Secondly, they ignored the
imbalance and repetitiveness of Ponzi schemes on smart contract
platforms. These problems can directly lead to model overfitting
and affect the generalization ability of trained models.

This paper proposes a novel Ponzi schemes detection method
on smart contract platform for blockchain. Our method addresses
the above issues with the following strategies. Firstly, we leverage
ordered target statistic (TS) to process the category features
of smart contract. Secondly, we solve the imbalance of dataset
through a data augmentation method. Thirdly, with the idea of
ordered boosting algorithm, we train a PonziTect model to fight
prediction shift caused by target leakage. Based on the above
ideas, the experimental results fully manifest the effectiveness
and reliability of our model in detecting smart Ponzi schemes
on the blockchain. Specifically, our model achieves 98% F-score
on the real-world dataset, which significantly outperforms the
existing methods. Using our method, we estimate that there are
about 532 Ponzi schemes on Ethereum.

Index Terms—blockchain, smart contract, ponzi schemes,
ethereum, machine learning, data mining.

I. INTRODUCTION

Blockchain has the characteristics of decentralization,
anonymity, immutability, and security. Its appearance has
provided a breeding ground for Ponzi schemes. Due to the
lack of effective regulatory mechanisms on the blockchain and
the general lack of awareness among many investors, some
scammers see the potential profit prospects of operating frauds
on the blockchain platform.

According to [1], the Ponzi schemes operating on Bitcoin
from September 2013 to September 2014 has collected more
than $7 million. M. Bartoletti et al. [2] found 191 Ponzi

This work is supported by the National Nature Science Foundation of China
(NSFC).
*Corresponding Author

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

schemes on Ethereum, which have collected approximately
$400,000 from August 2015 to May 2017. Ponzi schemes on
Bitcoin are mainly posted through forums, e.g., bitcointalk.org,
where scammers advertise Ponzi schemes as “high-yield in-
vestment programs” (HYIP), or as gambling games, while
Ponzi schemes on Ethereum hidden under the mask of smart
contracts. Due to the popularity of Ethereum, many smart
contract platforms such as EOS, RSK and Echo have appeared.
Their smart contracts are written in a high-level programming
language, and they all adopt an Ethereum-like design that
can implement any application. Once a smart contract is de-
ployed on blockchain, it cannot be changed and automatically
stopped. However, investors who have little knowledge of
blockchain can hardly distinguish the true face of these smart
contracts disguised as HYIP.

This work focuses on the problem of detecting Ponzi
schemes on smart contract platform for blockchain. Early
detection methods mainly through manual analysis [2] [3]
which primarily rely on etherscan.io to retrieve verified con-
tracts which are associated with a name, identifying Ponzi
schemes by manually inspecting their source codes (including
comments) and project website if available. Such detection
poses the challenge of analyzing billions of non-open source
smart contracts on the blockchain. According to [4], 77.3%
of the smart contracts on Ethereum are non-open source, so
it is impossible to judge the type of contract only by manual
analysis. Another method is comparing contract similarities
[2] by using the normalized Levenshtein distance (NLD) as
a measure of contract’s bytecode in an attempt to discover
hidden Ponzi schemes from a large number of non-open source
contracts. This method quantifies the difference between two
strings by calculating the number of character edits that
convert one string to another. However, this method is limited
by the number of known smart Ponzi schemes and can only
find the Ponzi schemes with the same code as the known Ponzi
schemes. The recent methods [5] [6] base on the contract’s
bytecode and transaction data using machine learning technol-
ogy to enable automatic detection for smart Poniz schemes.
However, the gradient boosting algorithms they used have the
problem of prediction shift (the conditional distribution for
a training contract is shifted from the distribution for a test

contract) due to target leakage (gradients used at each step are
estimated using the target values of the same data points the
current model was built on) when processing category features
and calculating gradient estimates.

Also, they ignored the fact that 96% of the smart contracts
on Ethereum were duplicated according to [7], leaving the
existing Ponzi scheme’s dataset small and unbalanced. These
problems will cause overfitting and weak generalization ability
of their models. A potential solution to the above problems is
to process the category features of smart contract by ordered
TS and calculate gradient estimation by ordered boosting
algorithm [8], since we need unbiased residuals for all training
contracts that we maintain a set of models differing by
contracts used for their training. Then, for calculating the
residual on an contract, we use a model trained without it,
which ensures that the target of the contract is not used for
training the model (neither for TS calculations nor for gradient
estimation). In addition, the number of Ponzi schemes can be
increased by using a data augmentation methods.

In this paper, we propose a novel Ponzi schemes detec-
tion method on smart contract platform to solve the above
problems. Our method leverages a few labeled contracts to
train a model. That is, with the bytecodes of the contracts as
inputs, we use data mining and machine learning technology to
automatically detect smart Ponzi schemes as soon as they are
deployed on blockchain. Specifically, we process the category
features of smart contract by ordered TS, which relies on
ordering principle that the values of TS for each feature base
only on the prior history, and then increase the number of
smart Ponzi schemes by using a data augmentation method.
Lastly, we train a PonziTect model with the idea of ordered
boosting to fight prediction shift caused by target leakage when
calculating gradient estimates.

Accordingly, this paper makes the following major contri-
butions.

« We propose a novel Ponzi schemes detection method on
smart contract platform for blockchain. In contrast to the
previous methods of manual analysis or other methods
based on gradient boosting algorithm, we use the idea of
ordered boosting to train the PonziTect model, in which
the ordered target statistics approach can directly deal
with category features and avoid prediction shift caused
by target leakage. Therefore, smart Ponzi schemes can be
detected as soon as they are deployed on the blockchain,
based only on the bytecode of smart contract.

o We use a data augmentation method to solve the problem
of imbalanced data set. We prefer to strengthen the
proportion of smart Ponzi schemes at the boundary,
and increase the randomness of artificially synthesized
contracts to generate dataset closer to the real contract.
This indirectly improves the quality and performance of
our model.

o We show that our method is suitable for detecting Ponzi
schemes in smart contract platforms for blockchain. Our
model is generally superior to four competing models
by greatly improving the recall rate while ensuring the

precision rate. Using our model, we estimate that there
are about 532 Ponzi schemes on Ethereum.

In the rest of this paper, we discuss the related work in
Section II. Our method is detailed in Section III. Experiments
are introduced in Section IV, followed by an evaluation in
Section V. We conclude this work in Section VI.

II. RELATED WORK

Existing smart Ponzi schemes detection methods on
blockchain mainly include manual analysis, comparison of
contract similarity and machine learning.

A. Manual Analysis-based Method

These manual analysis methods include following online
forums [1] [2] [3], retrieving contracts and human analysis
[2]. They normally search for ads claiming high return on
investment manually on Reddit and bitcointalk.org, and then
hunt for their Bitcoin addresses. Or they use etherchain.org
to retrieve keywords like e.g. "Ponzi”, "HYIP”, “pyramid”,
”scam”, “fraud”, etc., and examine the declared interest rates.
After that, they use etherscan.io to retrieve validated contracts
with source code, and manually analyze the code, comments,
and project website to confirm the type of contract. This
method provides us with the most original labeled dataset.
However, facing with hundreds of millions of contracts, we
can no longer analyze them through time-consuming and
inefficient manual methods.

B. Contract Similarity Comparison-based Method

In contrast to manual analysis methods, contract similarity
comparison method [2] works on the bytecode of contract.
This method generally has substantially better efficiency than
manual analysis methods, since it use the normalized Leven-
shtein distance (NLD) to calculate the number of character
edits that convert one bytecode to another as a measure of
contract similarity. Some researchers also use this method
to discriminate smart honeypots [9] on Ethereum. However,
this method is limited by the number of known smart Ponzi
schemes and can only find the Ponzi schemes with the same
code as the known Ponzi schemes. What’s more, when the
amount of contract code is large, the speed of calculating the
number of character edits in string conversion decreases.

C. Machine Learning-based Method

The very recent efforts [5] [6] to learn account features and
code features of smart Ponzi schemes are based on gradient
boosting algorithm and decision trees in machine learning.
However, the gradient boosting algorithm XGBoost they used
has the problem of target leakage that the gradients used at
each step are estimated using the target values of the same
data points the current model was built on, which results in
prediction shift that the conditional distribution for a training
contract is shifted from the distribution for a test contract. In
addition, neither of their methods takes into account imbalance
in the dataset, nor removes duplicate contracts. All of these
can lead to overfitting and weak generalization ability of their
models.

III. METHODS

In this section, we introduce the methods used in this
work, including the overall workflow, the dataset used, data
preprocessing, how to obtain features from the smart contracts,
how to augment data, the proposed PonziTect model, and data
preparation for models and classification.

A. Workflow

The overall workflow of this work is illustrated in Fig. 1. To
build an effective model for detecting smart Ponzi schemes on
blockchain, we first obtain the bytecodes of all the smart con-
tracts in the dataset from Google BigQuery [10], a RESTful
web service that supports interactive analysis of large dataset
on the Ethereum blockchain. After removing the duplicate
contracts, the data is then pre-processed by decompiling the
bytecode of the smart contract into opcode. Later, we capture
the category features of the opcode based on Bag of n-grams.
In order to balance the dataset, we use a data augmentation
method to synthesize more smart Ponzi schemes to match
the number of non-Ponzi schemes. After that, a better model
named PonziTect is proposed compared with other methods.
Finally, the model is applied to detect potential smart Ponzi
schemes on Ethereum.

B. Data Acquisition and Pre-processing

We download 3,660 verified non-Ponzi scheme contracts
from the website! provided by W. Chen et al. [5], and 184
verified Ponzi scheme contracts from the website’ provided
by M. Bartoletti et al. [27%, making a total of 3,844 con-
tracts. However, the published dataset does not contain any
bytecode, and part of the contracts have been self-destructed
and their bytecodes are not available. Thus we get timestamp
as input to execute SQL statements for interactive analysis
with the Google BigQuery and download the bytecodes for
3,647 contracts, of which 3,394 are unique in terms of exact
bytecode match. Eventually, we get 155 Ponzi schemes and
3239 non-Ponzi schemes. In the end, we do the conversion
of these bytecodes into opcodes using disassembly tool called
pyevmasm library*, and remove the operands from the data.

C. Feature Extraction and Data Augmentation

During feature processing, we transform the opcode of every
contract into eigenvectors by using Bag of Words (BOW) [11]
on n-gram. To operate feature extraction, we create a Python
dictionary of n-grams from the opcode sequence, which
applies information metrics of the opcode context to the
n-gram list. Our feature selection method filters out those
frequently repeated opcodes such as PUSH, DUP and SWAP
by specifying stop words in BOW.

Usually, these stop words have no effect on understanding
the semantics of the entire logic of smart contract. For other

libase.site/scamedb

2900.g1/CvdxBp

3The original dataset collected in [2] contained 137 Ponzi schemes, and
the authors added more to the dataset in 2019.

“https://github.com/crytic/pyevmasm

opcode features, we choose those in our data that contribute
most to the target variable by computing ANOVA F-value,
which is used for classification task, for the provided sample
to remove the less important features in the dataset and
achieve the purpose of feature selection. As a final step,
our feature construction method generate a feature vector for
each contract, and all the vectors are combined into a word
frequency matrix. These category features will be processed
without target leakage by ordered target statistics.

Since the contracts on the borderline and the ones nearby
are more apt to be misclassified than the ones far from the
borderline, we use Borderline-SMOTE 2 [12] oversampling
technology as data augmentation method to synthesize more
smart Ponzi schemes to match the number of non-Ponzi
schemes in order to achieve better prediction. It only generates
new contracts for the Ponzi schemes that have more than
half of the non-Ponzi schemes in the K nearest neighbors,
which can strengthen the presence of smart Ponzi schemes at
the boundary and make the new contracts closer to the true
contract.

D. PonziTect Training

To reduce overfitting, we use all the data in the training
set for training. Suppose there are n smart contracts in the
dataset D = {(xg, &) tk=1,... n- According to some unknown
distribution P(-,-), contracts (x,yx) are independently and
identically distributed. xj, = (9311@’ e ka) is a random vector
of m category features extracted from the opcode of the
contract. y, € R is a label value. When y; = 1, the
smart contract is marked as a Ponzi scheme. Let arrangement
o = (o1,...,0,) be used to randomly arrange the dataset. For
each contract we compute average label value for the contract
with the same category value placed before the given one in
the permutation. ., i is expressed by ordered target statistics:

Z?;ll ['rUj»k = J;o'p,k:l YUJ' ta- p

721 [0, = 7o,] +a

(1)

Where [-] indicates Iverson brackets, i.e., [T,k = To, k]
equal to 1 if z,, . = Ty, k. Otherwise equal to 0. p is a priori
value, the parameter a > 0, which is the weight of p.

We convert every category feature to numerical features
according to (1). Then we train the function F' : R™ — R
to minimize the expected loss:

L(F):=EL(y, F(x)) 2

Where L (-, -) is a smooth loss function and (x,y) is a test
contract sampled from P, independent of training set D.
Further, we use the gradient boosting program to iteratively

construct a series of approximations ¢ : R™ — R,t =
0,1,... in a greedy way:
F'=F""1+ah' 3)

Feature
Extraction

Data
Pre-processing

Data
Acquisition

Augmentation

PonziTect
Training

Data

Ponzi Scheme
Detection

Fig. 1. The overall workflow of this work.

Where « is the step size and h! : R™ — R (basic
predictor) is selected from the function family H to minimize
the expected loss:

h' = argmin L(F'"! 4 ah?)
heH

= argmin EL(y, F'~1(x) + h(x))
heH

4)

We approximate the minimization problem with a negative
gradient step by using least-squares approximation:

h' = argminE(—g" (x,y) — h (X))2
heH

&)

Where the gradient step h! (x) approximates —g° (x,y):

OL (y, s
gt (Xa y) : ;y)
s s=Ft—1(x)

(6)

We use a binary decision tree as the base predictor. The
decision tree recursively divides the category feature space R™
into a number of disjoint regions R;(tree nodes) according to
the segmentation attribute a, and b; is the leaf value. a =
T k) 1s used to determine whether the category feature ¥
exceeds the threshold ¢. The decision tree h can be written as:

J
h(x) =Y bjlixcr,))
j=1

Finally, we assign a value to each final region (leaf of the
tree), which is an estimate of the predicted class label in Ponzi
schemes detection.

The pseudocode of PonziTect training algorithm is shown in
Algorithm 1. In the BuildTree function, we train a separate
model M, for each contract x; and the model M} is never
updated using a gradient estimate for this contract, so as to
use unbiased estimates of the gradient step. With My, we
use CalcGradient function to calculate the gradient on xj
and use this estimate to score the resulting tree. The function
GetLeaf (x,T,0,) is used to calculate the leaf lea f, (x) that
matches the contract x, and o serves for choosing the leaf
values b; of the obtained trees. In line 20, ApplyMode is
used to replace a permutation ¢ in GetLea f, which makes it
practical to apply the training model to the new contract using
all training data.

IV. EXPERIMENTS AND EVALUATION

In this section, we validate our method on Ethereum and
measure the overall prevalence of smart Ponzi schemes cur-
rently active on the Ethereum. We first give the experimental
environment configuration parameters and experimental re-
sults. Then, we evaluate the correctness and validity of our
model.

Algorithm 1: PonziTect Training

Input: A set of contracts D = {(xy,yx)}7_,, the
number of trees I, loss function L, step size «,
s, boosting mode Mode = Ordered
Output: F (x)
1 Generate o, for random arrangement of dataset
D = {(xk,yx)} 7y for r =0..s;
2 Initialize the model My (xx) = 0 for k = 1..n;
3for j=1—ndo
4 | M, (xx)=0forr=1.5k=1.2""
sfort=1—1do
Ti, M, = BUildTree({MT}izlv {(xkv yk)};cl:lv .
o, L, {Ui}le) ’
7 leafy (xx) = GetLeaf (xx, Ty, 00) for k = 1..n;
8 go = CalcGradient (L, My, y);
9 foreach leaf j in T, do
10 L b = —avg (go (xx) for xj : leafo (xx) = j);
| My (xk) = Mo (xk) + bjoop, () for b =1,.1;

6

I
12 return F' (x) = >

t
=15 abj]l{GetLeaf(xyTt,ApplyIWode):j}
=17

A. Experimental Settings

After augmenting the minority data, the number of Ponzi
schemes is increased to 3239, which is equal to the number of
non-Ponzi schemes. To leverage the ability of PonziTect for
detecting smart Ponzi schemes effectively, we make cross vali-
dation on the data to avoid overfitting and underfitting. We also
find the best parameters through automatic hyperparameter
tuning. Firstly, we randomly select 80% of the data as a train-
ing set and 20% of the data as a test set. Secondly, we adopt
5-fold cross-validation on the training set and use the average
value of F-score to characterize the performance of PonziTect
model. Finally, we take 1—F'—score as the objective function
that needs to be minimized by using Optuna [13], an open
source automatic superparameter optimization frameworks. All
experiments are conducted on a 64-bit Ubuntu 16.04 with
kernel version 4.13.0-36.

For the PonziTect model, the combination optimiza-
tion of five important parameters includes iterations, depth,
learning_rate, 12_leaf reg and bagging_temperature, where
12_leaf_reg means the coefficient at the L2 regularization
term of the cost function and bagging_temperature means
using the Bayesian bootstrap to assign random weights to
objects. The best combination with 1-gram opcodes is iter-
ations=553, depth=7, learning_rate=0.1809, 12_leaf_reg=183,
and bagging_temperature=0.0102, with other parameters are

0.98 —#- Precision
Recall
—e— F-score

0.97

0.96

0.95

0.94

0.93

1-gram 2-gram 3-gram 4-gram

Fig. 2. The performance of PonziTect model with n-gram opcode for smart
Ponzi schemes detection.

default values. We evaluate the performance of our model
on n-gram opcodes for smart Ponzi schemes detection with
different n. In addition, the evaluation indicators frequently
used in the industry include Precision, Recall and F-score,
etc. Our model will also be evaluated using the above three
metrics. The calculation formula is as follows:

o precision: the ratio of actual Ponzi schemes to those
classified as Ponzi.

. true positive
Precision =

true positive + false positive

« recall: the ratio of correctly classified Ponzi schemes to
all smart Ponzi schemes.

true positive

Recall = — :
true positive + false negative

o F-score: the weighted harmonic average of precision and
recall.

Precision x Recall

F—s =2X
seore Precision + Recall

B. Classification Results

We apply the proposed method with the experimental con-
figurations defined before to test 679 contracts, including 642
non-Ponzi schemes and 37 Ponzi schemes. We first show the
performance of PonziTect model with n-gram opcodes for
Ponzi schemes detection, and then reproduce other methods
for comparative experiments on the same data set.

In many task of malware detection [14], [15], n-gram
opcode-based methods have proven to be more advantageous
than traditional malicious detection methods. Therefore, op-
code features can also play a role in the detection of Ponzi
scheme contracts. Fig. 2 depicts the overall performance of
the PonziTect model with n-gram opcodes for Ponzi scheme
detection. With the value of n ranging from 1 to 4, we
repeatedly tune the parameters of the PonziTect model in
order to obtain a good performance. However, one interesting
observation is that PonziTect shows a best performance with
F-score as high as 98% when n is 1 compared to the others.
The recall rate increases as n is increased but declines when
n is greater than 3. At the same time, the precision rate goes

—4— Ponzi scheme

10 non-Ponzi scheme

Y
i
¥
/I

GAS |
CODESIZE {

!

MOD - ¥

LT
DIv

CALLVALUE
L0G3 | 1}

EQ
BALANCE 1 |

SSTORE
GT
CALLER
INVALID

EXP
RETURN

Jump
OR
SLOAD
JUMPDEST
ADD
JUMPI
MSTORE
MLOAD
SuB
CALL
AND
ISZERO
MuL
CODECOPY
SHA3
STOP
REVERT
CALLDATASIZE
GASLIMIT
ADDRESS | |
EXTCODESIZE 1 |
TIMESTAMP - 1|
LOG1

CALLDATALOAD
CALLDATACOPY

Fig. 3. Stacked bar chart with opcode ratios greater than zero for both the
Ponzi schemes and the non-Ponzi schemes in our dataset.

down after n is greater than 1. This indicates that with the
increase of n, the false positive rate of the model also increases,
resulting in the decrease of precision rate. Affected by recall
and precision at the same time, the overall value of F-score
has a downward trend.

In order to further confirm that our model’s performance is
reliable when n equals to 1, we conduct detailed statistics on
the frequency of each opcode appearing in the dataset. The
statistical results are shown in Fig. 3. Based on the statistical
results, it is hard to tell the type of a smart contract. However,
we observe that smart Ponzi schemes involve more SLOAD
and SSTORE than non-Ponzi schemes. Actually, SSTORE is
used to save all contract’s fields and mappings in storage to
create persistent associative maps and SLOAD is used to read
data from storage. Smart Ponzi schemes also contain more
logical operation codes such as EXP, NOT, DIV, LT and
MUL, while non-ponzi schemes contain more jump-related
instructions such as JUMP, JUMPI and JUMPDEST.

With the same dataset and opcode features, we compare
our method with other competing methods. The important
parameters used by the competing methods have also been
tuned by Optuna. A brief description of the competitive
method is given below:

e M1: a method proposed by Chen et al. [6] that uses
Random Forest algorithm [16] to create independent
decision trees, each of which spits out a class prediction
and the class with the most votes becomes the model’s
prediction. We reproduce this method for comparative
experiments on the same data and features, because this
method is also based on decision trees and has been
applied to detect smart Ponzi schemes.

e M2: a method proposed by Chen et al. [S] that uses
a gradient boosting algorithm called XGBoost [17] to
create gradient boosted decision trees in sequential form,
and then ensemble these individual classifiers to provide a
strong model. We reproduce this method using the same
data and features and regard this method as a baseline
because it has been applied to detect smart Ponzi schemes
but has a problem of prediction shift due to target leakage.

e M3: a method leverages gradient boosting framework

100 I
S DN % s
[JT2]1]
80 1
(]
()]
8 60
c
[J]
o ; A 4
O 40 6
a
201 5 True
I3 False Positive
[XJ False Negative
. P

PonziTect M1 M2 M3 M4

Method

Fig. 4. The detection number of true, false positive, and false negative Ponzi
schemes per method.

named LightGBM [18] based on decision tree algorithm.
We choose this method for comparative experiments on
the same data and features, because this method also has
the same problem in M2.

e M4: a method using SVM algorithm [19] aims to find
a hyperplane in an N-dimensional features space that
distinctly classifies the data points. We choose this
method for comparative experiments on the same data
and features, because this method has been early applied
in binary classification problems.

Fig. 4 depicts the detection results of smart Ponzi schemes
under the optimal combination parameters of the models
trained by each method. Out of the 679 analysed contracts,
PonziTect has correctly labeled 641 as non-Ponzi schemes and
35 as Ponzi schemes, with two false negatives and one false
positive. M2 has labeled 36 as Ponzi schemes with only one
false negative. However, it has a very high number of false
positive, with a total of 9.

Similarly, although M3 only has one false negative, the
number of false positive is 5, which is higher than PonziTect
and MI1. For M4, the number of false positive and false
negative is 4 and 11, respectively, and it has the lowest
accuracy compared with other methods. M1 performs better,
but its performance is still a bit poor compared to PonziTect.
Table I lists the evaluation metrics per method.

Several conclusions can be made from the table. First,
PonziTect has the highest F-score and shows the best per-
formance. Because it guarantees a high precision rate with
only a small loss of recall, which shows that it can effectively
distinguish Ponzi schemes and non-Ponzi schemes. However,

TABLE 1
A PERFORMANCE COMPARISON.

Method Precision | Recall | F-score
PonziTect 0.98 0.97 0.98

Ml 0.97 0.96 0.96

M2 0.90 0.98 0.94

M3 0.94 0.98 0.96

M4 0.87 0.94 0.90

311

300

250
»n 200
]
c
>
O 150
O 126

100

50 43 37
15
|
2015 2016 2017 2018 2019
Year

Fig. 5. The estimated number of surviving smart Ponzi schemes on Ethereum.

the performance of M1 is slightly weaker then PonziTect.
Second, M2 and M3 both have higher recall rates but lower
precision, indicating that both of them have a high false
positive rate. Third, M4 has the lowest F-score, which implies
that its performance is the worst, not only the precision rate
is low, but also the false positive rate is high.

C. Validation and Application

In order to confirm the correctness of our model, we perform
a manual inspection of the source code of the contracts that
have been misclassified. We verify the contracts by contract
name, source code, code comments and transactions data. For
example, the false positive contract named EthOne has no
code comments but from the source code it defines a tree-
based structure to record the address, amount and the order of
investors. When the investment amount is less than a certain
value, the investor’s information will not be recorded and the
investor has no return. If the investment amount is greater than
that the contract will pay different returns to each investor
depending on their order, and the earlier the order, the greater
the payoff. We consider this contract to be indeed a smart
Ponzi scheme since the code clearly shows the logic of Ponzi
scheme. Therefore, the classification result of this contract is
correct and it’s not a false positive. We also review the two
false negative contracts in the same way and confirm that they
are indeed false negatives.

To further apply our model to the actual smart contract plat-
form, we download over 9.26 million contracts from Ethereum
from 1/1/2015 to 11/30/2019. After removing the contracts
with duplicate bytecode, we get 245,346 unique contracts and
apply our model on them to detect smart Ponzi schemes.

Fig. 5 shows the quantity of surviving smart Ponzi schemes
on Ethereum in each of the past five years. Our results show
that a total of 532 surviving Ponzi schemes and 244,814 non-
Ponzi schemes were detected. In fact, the number of smart
Ponzi schemes should be more than that, because some of
the Ponzi scheme contracts have been self-destructed and
their bytecodes are not available for detecting. In terms of
quantity, there have been a small number of smart Ponzi
schemes since the birth of Ethereum in 2015. However, since
2016, the number of smart Ponzi schemes has reached a peak,

with a total of 311 active contracts on Ethereum, accounting
for more than half of all the detected smart Ponzi schemes.
After entering 2017, the number of smart Ponzi schemes
has dropped sharply and gradually increased again in 2018.
However, the trend is down again in 2019.

V. CONCLUSION

In this work, we present a method that combines data min-
ing and machine learning technology for automated detection
of Ponzi schemes on smart contract platform for blockchain. In
contrast to the previous methods based on gradient boosting
algorithm in machine learning, we use the idea of ordered
boosting to train the PonziTect model, in which the ordered
target statistics approach can directly deal with category fea-
tures and avoid prediction shift caused by target leakage. We
also use a data augmentation method to solve the problem
of imbalanced dataset in order to improve the quality and
performance of our model. Therefore, smart Ponzi schemes
can be effectively detected as soon as they are deployed on the
blockchain, based only on the bytecode of smart contract. By
comparing the performance of multiple competing methods,
we prove that PonziTect not only achieves high precision, but
also has a low rate of false positive. In a large-scale analysis of
more than 17 million smart contracts on Ethereum, our model
detects 532 surviving contracts to be smart Ponzi schemes. At
the same time, our method can also be used to detect Ponzi
schemes on other smart contract platforms or even be used to
detect cryptocurrency-based frauds hidden under the mask of
smart contract like phishing attacks [20] as long as enough
data is collected. Also, other types of fraud based on smart
contract may also be tracked and studied in a similar way.

In addition, Ponzi schemes have also been discovered in
decentralized applications (dapp) [21] as well as Bitcoin [22],
and new types of fraud have also emerged, such as “honeypot”
smart contracts [9], which pretend to leak funds to victims
through loopholes and eventually capture the victim’s funds.
There are also famous “pump and dump” (P&D) frauds in
the stock market that have been transferred to the Bitcoin by
scammers [23]. The above frauds may be just a tip of the
iceberg on the blockchain platform. More types of fraud are
waiting to be discovered. All of these studies have highlighted
the urgent need for automated techniques to detect illegal
cryptocurrency activity.

ACKNOWLEDGMENT

This work is supported by the National Nature Sci-
ence Foundation of China (NSFC) under grant 61572026,
Open Foundation of State Key Laboratory of Cryptology
(No:MMKFKT201617), and National Key Research and De-
velopment Program of China (No. 2018 YFB0204301).

REFERENCES

[1] M. Vasek and T. Moore, “There’s no free lunch, even using bitcoin:
Tracking the popularity and profits of virtual vurrency scams,” in
Financial Cryptography and Data Security. Springer, 2015, pp. 44-61.

[2] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting ponzi
schemes on ethereum: identification, analysis, and impact,” Future
Generation Computer Systems, vol. 102, pp. 259-277, 2020.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

M. Vasek and T. Moore, “Analyzing the bitcoin ponzi scheme ecosys-
tem,” in International Conference on Financial Cryptography and Data
Security. Springer, 2018, pp. 101-112.

Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller, and
M. Bailey, “Erays: reverse engineering ethereum’s opaque smart
contracts,” in 27th USENIX Security Symposium (USENIX Security’18).
USENIX Association, 2018, pp. 1371-1385. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity 1 8/presentation/zhou
W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting
ponzi schemes on ethereum: Towards healthier blockchain technology,”
in Proceedings of the 2018 World Wide Web Conference. International
World Wide Web Conferences Steering Committee, 2018, pp. 1409—
1418.

W. Chen, Z. Zheng, E. C. . Ngai, P. Zheng, and Y. Zhou, “Exploiting
blockchain data to detect smart ponzi schemes on ethereum,” [EEE
Access, vol. 7, pp. 37575-37 586, 2019.

N. He, L. Wu, H. Wang, Y. Guo, and X. Jiang, “Characterizing
code clones in the ethereum smart contract ecosystem,” arXiv preprint
arXiv:1905.00272, 2019.

L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“Catboost: unbiased boosting with categorical features,” in Advances in
Neural Information Processing Systems 31. Curran Associates, Inc.,
2018, pp. 6638-6648.

C. F. Torres and M. Steichen, “The art of the scam: Demystifying hon-
eypots in ethereum smart contracts,” arXiv preprint arXiv:1902.06976,
2019.

Google, “Google bigquery -
https://bigquery.cloud.google.com/dataset/bigquery-public-
data:ethereum_blockchain, 2018.

Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding bag-of-words model:
a statistical framework,” International Journal of Machine Learning and
Cybernetics, vol. 1, no. 1-4, pp. 43-52, 2010.

H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new over-
sampling method in imbalanced data sets learning,” in International
conference on intelligent computing. Springer, 2005, pp. 878-887.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 2019, pp. 2623-2631.

I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and
P. G. Bringas, “Idea: Opcode-sequence-based malware detection,” in
International Symposium on Engineering Secure Software and Systems.
Springer, 2010, pp. 35-43.

B. Kang, S. Y. Yerima, S. Sezer, and K. McLaughlin, “N-gram opcode
analysis for android malware detection,” International Journal on Cyber
Situational Awareness, vol. 1, no. 1, pp. 231-255, 2016.

V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and
B. P. Feuston, “Random forest: a classification and regression tool
for compound classification and qsar modeling,” Journal of chemical
information and computer sciences, vol. 43, no. 6, pp. 1947-1958, 2003.
T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. ACM, 2016, pp. 785-794.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye,
and T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting
decision tree,” in Advances in Neural Information Processing
Systems 30. Curran Associates, Inc., 2017, pp. 3146-3154. [Online].
Available: http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-
gradient-boosting-decision-tree.pdf

M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Sup-
port vector machines,” IEEE Intelligent Systems and their applications,
vol. 13, no. 4, pp. 18-28, 1998.

A. A. Andryukhin, “Phishing attacks and preventions in blockchain
based projects,” in 2019 International Conference on Engineering Tech-
nologies and Computer Science (EnT). 1EEE, 2019, pp. 15-19.

K. Wu, “An empirical study of blockchain-based decentralized applica-
tions,” arXiv preprint arXiv:1902.04969, 2019.

M. Bartoletti, B. Pes, and S. Serusi, “Data mining for detecting bitcoin
ponzi schemes,” in 2018 Crypto Valley Conference on Blockchain
Technology (CVCBT). 1EEE, 2018, pp. 75-84.

W. Chen, Y. Xu, Z. Zheng, Y. Zhou, J. E. Yang, and J. Bian, “Detecting
“pump & dump schemes” on cryptocurrency market using an improved
apriori algorithm,” in 2019 IEEE International Conference on Service-
Oriented System Engineering (SOSE). 1EEE, 2019, pp. 293-2935.

ethereum,”

