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Abstract—Hierarchical Recurrent Neural Networks (HRNN) is
an important advance in improving efficiency and performance of
sequence classification in recent years. The intuition behind this
approach is to slice long sequences into many short sub-sequences
and process them in parallel, then capturing the long-term
dependencies between those sub-sequences by deeper layers of the
networks. In this paper, we propose a novel architecture called
Sliding Hierarchical Recurrent Neural Network (SHRNN). We
introduce a new sliding mechanism on the input sequence of each
layer, named recursive block, so that SHRNN can process the
input sequence effectively. We also introduce layer-wise attention
and multi-layer regularization for further improvements. We
perform large-scale experiments in sequence classification task of
both text and image on 8 datasets. As result, we not only achieve
new start-of-the-art performance on all datasets by SHRNN,
but also investigate effects of different components of SHRNN
systematically and thoroughly, which provides best practice for
the usage of SHRNN.

I. INTRODUCTION

Sequence classification is one of the fundamental tasks in
natural language processing (NLP) , that is, given a sequence,
the task is aiming to assign a class label to this sequence
[1]. It has board applications including text classification [2],
sentiment analysis [3] and natural language inference [4], [5].
Most researchers use recurrent neural networks (RNNSs) to
solve the above problems because RNNs have the ability to
capture the order information from sequential data, building
connection between current input and its context. However,
due to the recurrent structure, RNNs suffer from vanishing
(and exploding) gradient problem, and lack of ability to
capture the long-term dependencies [6], leading effectiveness
problem. Besides, RNNs are difficult to be processed in
parallel, resulting in the training efficiency problem.

Researchers have done lots of efforts to solve the drawbacks
of RNNs. On the one hand, some works try to increase
the speed of RNNs by simplifying the recursive unit, such
as minimal gated unit (MGU) [7] and simple recurrent unit
(SRU) [8]. These models can achieve much higher speed than
standard RNNs with slightly improved results. On the other
hand, a lot of previous work has been done to improve the
ability of capturing long-term dependencies. Gate mechanism
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is used in Long short-term memory networks (LSTMs) [9]
and gated recurrent units (GRUs) [10]. Researchers have also
proposed various models based on tree-LSTM [11], [12],
skip-connection [13], [14], auxiliary loss [15], reinforcement
learning [16]. However, these improved models are often much
more time-consuming than standard RNNs, and do not always
have a remarkable improvement in results.

Building Hierarchical RNN (HRNN) is an important ad-
vance in improving efficiency and performance of sequence
classification [17]-[19]. The intuition behind this approach
involves two aspects. The first is to divide the long sequence
into many short sub-sequences, which can be processed in
parallel to improve efficiency. And the other one is to capture
the long-term dependencies between those sub-sequences by
deeper layers of the neural networks. Representation with
increasing levels of abstraction in deeper layers can usually
improve the overall performance. There are some varieties of
HRNN proposed in recent year. For example, Hierarchical
RNN Autoencoder [20] shows that hierarchical RNNs can
obtain a better sequence representation. Hierarchical attention
networks (HAN) [2] divides the long sequence by sentences
and paragraphs to realize a hierarchical recurrent neural net-
work of 2-layers with attention mechanism. Sliced Recurrent
Neural Networks (SRNN) [21] and BPIE-BiSRNN [22] slices
the input sequence into many fixed length sub-sequences to
realize parallel processing.

In this paper, we propose a novel architecture called Sliding
Hierarchical Recurrent Neural Network (SHRNN) to better
parse sequential data. We introduce a new sliding mechanism
and apply layer-wise attention and multi-layer regularization
to process the input sequence in a more effective way. Mean-
while, we want to investigate best practices of how to use these
components in SHRNN. In a sense, this is similar to how
to construct efficient convolutional Neural Networks (CNN)
using convolutional layer and pooling layer of various sizes
and types.

Just like each element of a sequence is processed by a
recursive unit in a vanilla RNN, in SHRNN each sub-sequence
can be viewed as being processed by a recursive block,
which is the fundamental concept of SHRNN. We note that
temporal convolutional network (TCN) [23] employs a similar
approach ,which captures long-term dependencies by enlarging



receptive fields of deeper layers with a novel usage of dilated
convolutions. This inspires us that sub-sequences are like 1-D
receptive field of TCN, so we borrow the conception of stride
to describe the interval of sub-sequences.

Meanwhile, since there are multiple layers in SHRNN, the
information flow between layers can have different variants.
We know that in CNN the output of one layer is usually
average-pooled or max-pooled before being sent to next layer.
Similarly, for the hidden states of SHRNN generated by re-
cursive blocks can be refined(e.g. by self-attention [2]) before
being sent to next layer. In SHRNN, we call the process Inter-
Layer Connection.

Usually, the output of the top layer is used as the final
sequence representation. Inspired by fasttext [24], we think
simply averaging over all hidden states of one middle-layer
may generate good representation. So we propose a layer-
wise attention mechanism (LAM) to integrate intermediate
representation of middle-layers. The intermediate representa-
tion can also be used for classification individually, serving
as a regularization term for the loss function. We call this
mechanism multi-layer regularization (MLR).

We will describe the design of components involved above
in detail, and explore the best practice of SHRNN by large-
scale experiments on multiple datasets of text and image
classification. Our contributions are mainly composed of two
parts:

e We propose a novel model called SHRNN which can
outperform the start-of-the-art models in both text and
image sequence classification tasks on 8 datasets.

o In order to have a better understanding of SHRNN, we
perform extensive experiments to investigate different
components of SHRNN and discuss them deeply. These
researches provide best practice to construct SHRNN.

II. SLIDING HIERARCHICAL RECURRENT NEURAL
NETWORK (SHRNN)

A. Model Overview

Figure 1 shows the overview of the SHRNN architecture.
SHRNN mainly consist of 4 parts: 1) Recursive Block, which
is the fundamental part of SHRNN, it can slice the input
sequence into many sub-sequences, and use RNN (we use
LSTM in this paper) to process sub-sequences; 2) Inter-layer
Connection, which receives the output from the recursive block
of lower layer and transforms them into high-level features by
some ways as input of higher layers; 3) Layer-wise Attention,
which is used to enhance the interaction between layers; 4)
Multi-layer Regularization, which is served as a regularization
term for loss function to further improve model’s performance.
In the following, we will introduce these four components in
details.

B. Recursive Block

Recursive Block is the key component of SHRNN, with
the help of recursive block, our model can work like CNN
in parallel. In SHRNN, the input sequence will be sliced into
many sub-sequences, each of which is processed by a recursive

block. The size of a recursive block is defined as the length
of sub-sequence it processes. As shown in Fig 2, for a given
sequence S € R we set the length of sub-sequence as b,
the stride as s, then the overlap between sub-sequence is b—s.
Tokens which overlap are the repetitive information between
the current sub-sequence and previous one, and they are useful
to enhance the context information. Intuitively, processing of
recursive block is similar to sliding a window in a CNN with
some stride.

If a SHRNN has & layers, for the ith layer (i € [1, k]) with
sub-sequence size is b;, stride is s;, the input sequence from
previous layer is M, the length of M is [;_;, recursive block
can segment the input sequence into I; sub-sequences, the
length of each sub-sequence is b;, and the I; can be calculated
as follows:
lici—0,—-1

Si

l; = Max(| ] +1,0) +1, (1)

where Max is the maximum number between two given
numbers, [] is rounding down. Then for the jt/h sub-sequence
in ith layer sub € R'>*"i-1 a LSTM layer with h; hidden
units will encode the sub], getting the encoding representation

sub!, where sub] € Rbi*hi:

subl = LSTM (subl). @)

C. Inter-layer Connection

Inter-layer connection determines what kind of information
can be passed to the next layer. We propose four different
ways for inter-layer connection: Average Operation (also can
be seen as 1D-AveragePooling), Max Operation (also can be
seen as 1D-MaxPooling), Operation (which is to use the output
from subg with attention mechanism as the representa}ion),
and Last Operation (which is to use the last vector of subg as
the representation).

After inter-layer connection, the jth recursive block in ith
layer will output a high-level feature f/, and finally generate
a feature matrix F;, where F; € R'*" as shown in the
following equation, where ; is vector concatenation by row:

F=] o 1], 3)

The feature matrix F; will be passed to the next layer.

1. r2,

irJi

D. Layer-wise Attention

The layer-wise attention is designed to reuse each layer’s
output to enhance the interaction within layers. The feature
matrix of each layer F; not only passes to the next layer, but
an average pooling is also used to compress its information to
calculate attention weights:

F, = AveragePooling(F;),i € [1, k], 4)

where F,- € R which is the compressed feature obtained
from ¢th layer. Then SHRNN concatenates all the com-
pressed features into a compressed feature matrix C, where
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recursive block size, stride and overlap.

C € R¥*h_ Next, the soft attention mechanism is used to
extract the important information on C. SHRNN computes the
unnormalized attention weights with the following equation.
e; = Tanh(ﬁi oul),ie [1, k], 5)
u is the weight vector that we use to compute the unnor-
malized attention weights. It is randomly initialized and will
be adjusted during training. e; is the unnormalized attention
weights, © is the dot product between the two given vectors.
Besides, in this equation, we use T'anh as the activation func-

tion. Next, we use softmax to get the normalized attention
weights.

Exp(e;)

=0 (6)
Sy Baple;)

o ,Z'E[l,k'},

where «; is the normalized attention weights, and then con-
catenate «; as normalized weight vector W = (e, ea, ..., €),
where W € R'**, Finally we use matrix multiplication to get
the output from the attention mechanism.

Outt =W x C, (7
where W € R'* and C € R¥*" 50 Ogyy € R**". SHRNNs
use O,y to predict the final results.

(®)

prediction = softmax(Oqgtt).

E. Multi-layer Regularization

We use multi-layer regularization as a regular term for the
loss function to further improve the model’s performance.
Multi-layer regularization uses F} from each layer to predict
the results, which can reduce the overfitting risk and give
SHRNN a stronger generalization ability. The total loss func-
tion in SHRNN is as follows:

k
Loss = aplossgee + Z a;loss;.i € [1, k],

i=1

)

where [0ssq; is the loss when Oy is used to predict the
results, and loss; is the loss when Fi is used to predict the
results. ag, aq, ..., ap are the weights of the k£ 4 1 losses. In
our experiments, we find that ag = a3 = ... = ay, yields the
best results.

FE. Description of SHRNN Variants

For better understanding, We termed SHRNN without LWA
and MLR as base-SHRNN. It is worth noticing that HAN [2],



SRNN [21] and BPIE-SRNN [22] are the particular cases of
base-SHRNN. If base-SHRNN divides the the long sequence
by sentences and paragraphs and set the inter-layer connection
as Attention, it can be used as HAN. In this case, the recursive
block is dynamically adjusted. In order to express this slice
type, block size is set to -1 and stride is set to 0. If base-
SHRNN has equal block size and stride, it can be treated as
SRNN. Similarly, base-SHRNN can be used as BPIE-SRNN
if we set stride smaller than block size.

III. DATASETS AND EXPERIMENTAL SETTINGS
A. Datasets

o Yelp reviews. Yelp Reviews datasets are obtained from
the Yelp Dataset Challenge. The datasets Yelp_2013
and Yelp_2014 include 468,608 and 670,440 documents
respectively. They all have 5 different labels. We also use
the polarity dataset which contains 598,000 documents
with binary sentiment labels, named as Yelp_P. Following
[21], we used 80% data for training, 10% for validation
and 10% for testing. As for Yelp_F, there are 650,000 as
training set and 50,000 as test set with 5 different labels.

o« Amazon_F reviews. Amazon_F is a dataset aiming to
predict the evaluation scores of E-commerce reviews,
the labels fall into five different classes. Amazon_F has
3,000,000 training documents and 650,000 test docu-
ments.

« IMDB. IMDB [29] is a movie review dataset for binary
sentiment classification, which consists of 50,000 reviews
from the Internet Movie Database, with 25,000 training
instances and 25,000 test instances.

o Sequential MNIST and P-MNIST. MNIST [30] is a
classical dataset for image classification, with 60,000
hand-written digits as training set and 10,000 as test set.
Each digit is a 28 x 28 image. In Sequential MNIST task,
MNIST images are presented as a 784 x 1 sequence for
digit classification, which is frequently used to evaluate
a model’s ability to retain information from the distant
past. P-MNIST is a more challenging setting of Sequen-
tial MNIST, in which the sequential order is permuted
randomly. P-MNIST also has 60,000 training instances
and 10,000 test instances.

B. Experimental Settings

In order to reduce the randomness of the results, all the
experimental results are the average value after five times
training. All models are implemented using Keras, and trained
on a GPU server with an NVIDIA GTX 1080Ti GPU. The
model parameters and the training settings are as follows: (1)
for text data sequence classification tasks, we padded the input
sentence length as 256. In SHRNN with 2 blocks, the recursive
block sizes are [12, 8], and the strides are [3, 2]. In SHRNN
with 3 blocks, the recursive block sizes are [12, 8, 8], and the
strides are [3, 2, 2]. In SHRNN with 4 blocks, the recursive
block sizes are [12, 12, 8, 8], and the strides are [3, 3, 2,
2]; (2) for sequential MNIST and P-MNIST tasks, because
the sequence is much longer (768 each) than text data, we

implemented SHRNN with 5 blocks, the recursive block sizes
are [12, 12, 8, 8, 8], and the strides are [4, 3, 3, 2, 2]; (3) pre-
trained Glove embeddings (300-D Glove 840B) [31] are used
to initialize the word embeddings; (4) all the recurrent units
are set as bidirectional LSTM with 250 hidden units, and we
set 2 layers LSTM as a baseline; (5) all models are learned
using the RMSProp optimizer with learning rate o = 0.001,
dropout rate = 0.2 for the fully connected-layer, and the batch
size is 200 for all.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first have a comprehensive result analysis
on different sequence classification tasks. Then according to
experimental results, we discuss them deeply by focusing
on 5 aspects, that is, the ablation experiments of different
components, the relation between recursive block size and
stride, the impact of different inter-layer connection types, the
analysis of slicing type of recursive block, and the trade-off
between efficiency and effectiveness.

A. Main Results on Different Sequence Classification Tasks

In this subsection, we compare the performance of differ-
ent SHRNNs and previous models on a range of sequence
classification tasks, including text classification (document
classification task and sentiment analysis task), and sequential
image classification (sequential MNIST and P-MNIST tasks),
which are the most comprehensive sequence classification
tasks to evaluate the performances of different models.

o Text Classification Tasks.

Table I shows the accuracies between SHRNNs and the
state-of-the-art models on 6 different text datasets. From
it we can see that 4L-SHRNN outperform all the previous
models, including CNN-based model, RNN-based model
and attention-based model among all text data sequence
classification tasks. The best accuracies finally reach up
to 69.6% for Yelp_2013, 72.4% for Yelp_2014, 97.0%
for Yelp_P, 67.0% for Yelp_F, 63.8% for Amazon_F and
91.7% for IMDB. It is obvious that SHRNNS can capture
a more accurate representation of sequence.

From Table I we find that SHRNNSs can achieve a much
better performance than LSTMs, which means SHRNN
is a better choice than LSTM for sequence classification
tasks. We also find that with the increase of layer number,
the SHRNNs can achieve better results in all datasets.
That means deeper SHRNN can obtain more useful and
abstract representation, leading a better results.

o Sequential Image Classification Tasks.

Table II shows the accuracies of SHRNNs and the state-
of-the-art models on sequential MNIST and P-MNIST
datasets. For the sequential MNIST task, even if TCN
already reaches 99.0% accuracy, SHRNNs can still im-
prove the accuracy by 0.2%. As for the more difficult task
P-MNIST, both 4L-SHRNN and 5L-SHRNN can achieve
better results than the start of the art, and SL-SHRNN can
obtain the best result with the accuracy is 97.5%. The



TABLE I

ACCURACIES OF SHRNNS AND THE STATE-OF-THE-ART MODELS ON 6 DIFFERENT TEXT DATASETS. (¥*) MEANS THIS MODEL IS IMPLEMENTED BY THE
AUTHORS TO EVALUATE THE PERFORMANCE ON THE GIVEN DATASET. IN THIS TABLE, 2L-SHRNN MEANS SHRNN WITH 2 LAYERS. RESULTS BETTER
THAN THE STATE-OF-THE-ART ARE IN BOLD, AND THE VALUE IN BRACKET IS THE IMPROVEMENT COMPARED TO SOTA.

Model Yelp_2013 | Yelp_2014 Yelp_P Yelp_F Amazon_F IMDB
LSTM 66.7 70.5 94.7 65.5 61.4 89.3
HAN [2] 68.2 70.5 95.8 (*) 64.7 (*) 63.6 -
LSTM, fixed skip [25] - - - - - 89.6
Discriminative-LSTM [26] - - 95.7 63.0 61.6 -
Self-Attention [27] - - 94.9 63.4 59.8 -
Densely Connected CNN+Multi-scale
Feature Attention1001[28] ) ) 96.5 66.0 630 )
LSTM with dynamic skip [14] - - - - - 90.1
SRNN [21] 67.0 70.8 96.0 64.9 (*) 61.6 89.6(%)
BPIE-BiSRNN [22] 68.0 71.6 96.8 65.2 (*) 62.4 (*) 89.9(%)
2L-SHRNN (ours) 68.7(+0.7) | 71.9(+0.3) 96.6 65.7 63.2 90.8(+0.9)
3L-SHRNN (ours) 69.1(+1.1) | 72.2(+0.6) | 96.8(+0.0) | 66.2(+0.2) 63.3 91.2(+1.3)
4L-SHRNN (ours) 69.6(+1.6) | 72.4(+0.8) | 97.0(+0.2) | 67.0(+1.0) 63.8(+0.2) 91.7(+1.8)

TABLE 11
ACCURACIES OF SHRNNS AND THE STATE-OF-THE-ART MODELS ON
SEQUENTIAL MNIST AND P-MNIST DATASETS. ACCURACIES HIGHER
THAN THE STATE-OF-THE-ART ARE IN BOLD, AND THE VALUE IN
BRACKET IS THE IMPROVEMENT COMPARED TO SOTA.

Model mnist p-mnist
LSTM 98.3 91.5
uRNN [32] 95.1 914
Zoneout [33] - 959
Dilated GRU [34] 99.0 96.7

Skip GRU [13] 97.6 -

r-LSTM Full BP [15] 98.4 95.2
TCN [23] 99.0 97.2

4L-SHRNN(ours) 98.9 97.2(+0.0)

5L-SHRNN(ours) 99.2(+0.2) 97.5(+0.3)

TABLE III

THE ABLATION EXPERIMENTS OF DIFFERENT COMPONENTS IN
4L-SHRNN USING 5 DIFFERENT TEXT CLASSIFICATION DATASETS, LWA
MEANS LAYER-WISE ATTENTION, MLR MEANS MULTI-LAYER
REGULARIZATION, AND RB MEANS RECURSIVE BLOCK. VALUE IN
BRACKET IS THE DECREMENT COMPARED TO SHRNN

Model | Yelp_2013 | Yelp_2014 | Yelp_P | Amazon_F | IMDB
SHRNNs 69.6 72.4 97.0 63.8 91.7
- MLR | 69.3(-0.3) | 72.1(-0.3) | 96.6(-0.4) | 63.3(-0.5) | 91.4(-0.3)
- LWA | 68.6(-1.0) | 71.8(-0.6) | 96.3(-0.7) | 63.0(-0.8) | 90.9(-0.8)
-RB 66.9(-2.7) | 70.4(-2.0) | 94.5(-2.5) | 61.4(-2.4) | 89.6(-2.1)

results prove that SHRNN is able to handle sequential
image classification tasks really well.

B. Ablation Experiments

To explore the effectiveness of recursive block, layer-wise
attention and multi-layer regularization, we conduct various
experiments using 4L-SHRNN with 5 different text classifica-
tion datasets, the results are shown as bellow.

From Table III we can see that recursive block (RB) plays
the most important role in SHRNN, without the help of
recursive block, the performances reduce obviously on all
datasets, this indicates that recursive block can process the
input sequence better than simple LSTM layer. Besides, layer-
wise attention (LWA) and multi-layer regularization (MLR)
also help SHRNN obtain better results, since LWA can reuse

the information from different layers, and MLR can solve
the problem of gradient problem in some extend and help
optimization of parameters better.

C. Size of Recursive Block and Stride

In this section, we will analyze the effect of recursive block
size and stride. As we can see, the recursive block sizes and
strides are independent for each layer, so there are too many
possible combinations. In order to have a clear and reasonable
comparison, we built various kinds of 2-layer SHRNNs. In
details, we conducted a series of experiments whose block
sizes are fixed. As shown in Table IV, for a given SHRNN,
the parameters are the same within layers, the values of block
size are 10, 20, 30, and the values of overlap are 0%, 20%,
40%, 60% and 80% of recursive block size.

o For a given recursive block, we can see the accuracy
increases at first, which is due to the benefit of retaining
some context information from previous sub-sequence in
overlap. However, if the stride is too large, it will bring
redundant information, and produce a slightly negative
effect on SHRNNs. According to the results, when the
values of overlap are 40% or 60% of recursive block size,
we can always get the best results with a intermediate
value of stride.

o The recursive block size is like the kernel size in CNN,
which should have a best practice value. In Table IV
we find that for the medium length sequence data (like
Yelp_F, which we padded the text length to 256), the
recursive block size should not be too large. In contrast,
for the long sequence data (like P-MNIST whose length
is 768), we set a large recursive block size to obtain more
precise long-term dependencies.

¢ In fact, if the recursive block size is too small, too many
sub-sequences will be generated, leading to a risk of
memory overflow; and the last layer will receive too many
sub-sequences, which results in a poor ability of cap-
turing long-term dependencies after average-pooling. In
contrast, if the recursive block size is too large, SHRNN



TABLE IV
THE ACCURACIES USING DIFFERENT SIZES OF RECURSIVE BLOCK AND
STRIDE ON DIFFERENT DATASETS. THE RATIO IS THE PROPORTION OF
OVERLAP TO RECURSIVE BLOCK SI1ZE. THE BEST RESULTS ARE IN BOLD.

Block size Stride Overlap (Ratio) | Yelp_F | P-MNIST
10,10 [10,10] 0 (0%) 65.2 95.9
10,10 8,8 2 (20%) 65.4 95.8
10,10 6,6 4 (40%) 65.2 96.1
10,10 4,4 6 (60%) 65.7 96.0
10,10 2,2 8 (80%) 65.4 95.5
20,20 20,20 0 (0%) 65.2 96.0
20, 20 16,16 4 (20%) 65.5 96.1
20, 20 12,12 8 (40%) 65.8 96.6
20, 20 8,8 12 (60%) 65.7 96.5
20, 20 4,4 16 (80%) 64.6 95.6
30, 30 30, 30 0 (0%) 65.1 96.5
30, 30 24,24 6 (20%) 65.4 96.8
30, 30 18,18 12 (40%) 65.6 96.5
30, 30 12,12 18 (60%) 65.6 97.1
30, 30 6, 6] 24 (80%) 65.5 96.0

TABLE V

THE ACCURACIES ON VARIOUS DATASETS USING DIFFERENT
INTER-LAYER CONNECTION WAYS, OTHER SETTINGS ARE THE SAME. THE
BEST RESULTS ARE IN BOLD.

c Inter-layer Iy, 1 2013{IMDB|MNIST|P-MNIST
onnection Ways
Average 69.1 90.9 | 98.9 96.4
Max 687 | 914 | 988 | 939
Attention 693 | 91.0 | 99.0 | 97.0
Last 696 |97 ] 992 | 975

is very shallow (generally two layers), and performance
is also affected.

D. Different Types of Inter-layer Connection

In this subsection, we will discuss the impact of different
connection types between layers. We have an evaluation of
4 different inter-layer connection ways, which are Average
Operation, Max Operation, Attention Operation, and Last
Operation.

We evaluated these four different ways on 4 different
sequence classification tasks. All the models in this subsection
have the same parameters except the inter-layer connections.
From Table V we can see that the Last Operation always
achieves the best results among them, which indicates that
the Last Operation is the best and reliable way. As for the
Attention Operation, it has competitive results compared with
the Last Operation on some tasks. We think the reason why
Last is better than Attention Operation in inter-layer connec-
tion is that the sub-sequences in SHRNN are usually short, and
the Last Operation can obtain enough information without the
problem of long-term dependencies, but Attention Operation
needs to compute the weights attribution, which may be not
reliable when dealing the short sub-sequences sliced from the
input sequence. Moreover, we applied LWA to get the high
level information between layers, which can be treated as using
attention mechanism in a higher level. And for the results of
the Max Operation and Average Operation, although they have
satisfactory results in document classification and sentiment

analysis task, but resulting a poor performance on MNIST
and P-MNIST, which shows these ways are unstable.

E. Slicing Type of Recursive Blocks

In terms of text processing, in order to analyze the difference
of slicing type between sentence-length based and fix-length
based, we selected various 2L.-SHRNNs, and compare it with
HAN, on two text datasets Yelp_P and Yelp_F, as shown in
Table VI. For a fair comparison, we set recursive block size
of SHRNNs to be the average length of sentences, stride to
be the same as the recursive block size, so that there is no
overlap between recursive blocks, which is the same as HAN.
The experimental results show both recursive blocks sliced
by sentence and by fixed length achieve similar performance,
which is 95.7% vs 95.8% for Yelp_p, and 64.6% vs 64.7%
for Yelp_F. It can be seen that although the fixed partition
will form an incomplete sequence segment, it does not affect
the semantics of itself. The flexible sliding settings allow us
to further compensate for the impact of sentence breaks. For
example, if we reduce stride by half, the performance of this
2L-SHRNN might increase to 96.0% and 65.0%

F. The Trade-off between Efficiency and Effectiveness

At last, we will discuss the trade-off between efficiency and
effectiveness for different LSTMs and SHRNNs architectures
using P-MNIST dataset. The setting of recursive block size and
stride can affect the efficiency of the SHRNN directly. Since
the block size is usually not too large or too small, basically
we adjust its efficiency by changing the number of layers,
which is similar to CNN. So we did experiments with different
number of layer. The parameters of LSTMs and SHRNNs in
this subsection are the same as mentioned above. We report
on five indexes: (1) accuracy, (2) time consumption per epoch,
(3) epoch number of convergence for each model, and (4)
acceleration ratio between each SHRNNs and LSTM (2 layer).
From Table VII we can find that:

« It is obvious that SHRNNs have much better performance
than LSTMs among all architectures. And as the number
of layers increases, both LSTMs and SHRNNs need more
time per epoch, but the time consumption of LSTMs has
increased significantly, while SHRNNs only have a slight
increment. This indicates that SHRNN is applicable to
build a deeper architectures for much better results with
less time consumption than LSTM;

o As for the epoch number of convergence, we can see that
SHRNNs need much less epochs than LSTMs to obtain
best results, so the total training time of SHRNNs are
much smaller than LSTMs, which is very important in
practice;

o For acceleration ratio, the comparison is between each
SHRNN and LSTM (2 layer). As we can see in Table
VII, we can obtain nearly 3x acceleration ratio compare
2L-SHRNN with LSTM (2 layer), and SHRNN can get
a much better result. Even comparing 5SL-SHRNN with
LSTM (2 layer), we can also have a more than 2x
acceleration ratio. From the above all we can see that



TABLE VI
THE ACCURACIES USING DIFFERENT SLICING TYPES IN RECURSIVE BLOCK ON DIFFERENT DATASETS. THE -1 IN HAN MEANS SLICING THE SEQUENCE
BY SENTENCES AND PARAGRAPHS. THE AVG-LENGTH MEANS THE BLOCK SIZE IS THE AVERAGE LENGTH OF SENTENCES IN THE GIVEN DATASET.

Model Block Size Stride Inter-layer Connection | Yelp_P | Yelp_F
HAN -1 0 Attention 95.8 64.7
2L-SHRNN | Avg-length Avg-length Attention 95.7 64.6
2L-SHRNN | Avg-length | 0.5*Avg-length Attention 96.0 65.0
2L-SHRNN | Avg-length Avg-length Last 95.9 64.5
2L-SHRNN | Avg-length | 0.5%Avg-length Last 96.1 65.2
TABLE VII [2] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical

THE TRADE-OFF BETWEEN EFFICIENCY AND EFFECTIVENESS BASED ON
DIFFERENT LSTMS AND SHRNNS USING P-MNIST DATASET. TIME IS
THE TIME CONSUMPTION PER EPOCH, # EPOCH IS THE EPOCH NUMBER
OF CONVERGENCE FOR EACH MODEL, ACCEL. RATIO IS THE
ACCELERATION RATIO BETWEEN EACH SHRNN AND LSTM (2 LAYER).

Model Accracy | Time | # Epoch | Accel. Ratio
2L-LSTM | 91.53 |242s | 10.67 -
3L-LSTM | 9191 |368s| 11.00 -
4L-LSTM | 92.15 | 454s | 12.67 -
SL-LSTM | 92.00 |570s | 12.33 -

2L-SHRNN| 96.78 | 84s 6.67 2.88x
3L-SHRNN | 97.03 | 92s 6.00 2.63x
4L-SHRNN | 97.22 | 100s | 7.00 2.42x
SL-SHRNN | 97.54 | 110s | 5.33 2.20x

SHRNN can obtain much better performances and less
time used compared LSTM;

Generally speaking, SHRNN has a satisfactory ability to
achieve the efficiency and effectiveness at the same time.
Compared with LSTM, SHRNN brings a huge improvement
of performance with less time consumption.

V. CONCLUSION AND FUTURE WORK

We have demonstrated the novel architecture of SHRNN
in details, which consists of four collaborative components
of Recursive Block, Inter-Layer Connection, Layer-wise At-
tention and Multi-Layer Regularization. Based on these four
components, SHRNN can easily gain improvement over the
state-of-the-art models in all 8 datasets for sequence classifi-
cation tasks. We also showed how to leverage these compo-
nents by extensive and systematic experiments. Best practices
of SHRNN usage can be found in the analysis of each
experiment. These best practices will be integrated into a
open-sourced and well-encapsulated development library to
facilitate the research and usage of SHRNN. Meanwhile, going
deeper with RNN, SHRNN provide a novel architecture to
handle deeper layers, which termed as main work in our future
research.
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