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Abstract—Coclustering algorithms are an alternative to clas-
sic one-sided clustering algorithms. Because of its ability to
simultaneously cluster rows and columns of a dyadic data
matrix, coclustering offers a higher value-added information: it
offers column clusters besides row clusters, and the relationship
between them in terms of coclusters. Different structures of
coclusters are possible, and those that overlap in terms of rows
or columns still represent an open question with room for
improvements. In addition, while most related literature cites
coclustering as a means of producing better results from one-side
clustering, few initiatives study it as a tool capable of providing
higher quality descriptive information about this clustering. In
this paper, we present a new coclustering algorithm - OvNMTF,
based on triple matrix factorization, which properly handle
overlapped coclusters, by adding degrees of freedom for matrix
factorization that enable the discovery of specialized column
clusters for each row cluster. As a proof of concept, we modeled
text analysis as a coclustering problem with column overlaps,
assuming that given words (data matrix columns) are associated
with over one document cluster (row cluster) because they
can assume different semantic relationships in each association.
Experiments on synthetic data sets show the OvNMTF algorithm
reasonableness; experiments on real-world text data show its
power for extracting high quality information.

Index Terms—coclustering, matrix factorization

I. INTRODUCTION

In clustering analysis, we use similarity between data to
discover patterns that characterize them and their relationships
[1]. This process organizes the data points into clusters to
maximize the similarity between those in the same cluster
and minimize similarity between those organized into distinct
clusters [2]. One of the possible strategies to implement such
a process is to partition the rows of a data matrix [3] where
the rows represent the data under analysis and the columns
represent the data descriptive attributes. In principle, the
similarity analysis performed in clustering process considers
all attributes, resulting in a holistic analysis [4].

Alternatively, in a coclustering problems, we implement
pattern discovery through similarity analysis applied simulta-
neously to data and attributes [5], i.e., data clustering is based
on the distributions of attributes and attributes clustering is
based on distribution of data [6]. Coclustering gives greater
flexibility in defining clusters because it can perform partial
similarity analysis and offer more precise data clustering.
Besides, this process results in a cocluster structure that embed

more detailed data clusters descriptions. This way of formu-
lating descriptive data analysis has been promising for real
problems characterized by subjective patterns interpretations,
as in image and text data analysis [4], [5], [7]–[9].

In [7], the authors apply coclustering in text data to explore
the structure of coclusters and easily1 identify polysemic
words and their context. Considering that coclusters repre-
sent relationships between row clusters (document clusters)
and column clusters (word clusters) and recognizing that
a word can take on different meanings depending on the
context (document clusters), the usefulness of overlapping
coclusters becomes noticeable. In this paper, we present a
new algorithm OvNMTF (Overlapping Non-negative Matrix
Tri-Factorization) capable of finding a coclustering solution
that adequately addresses the coclusters overlap problem. This
algorithm represents an evolution of our previous one, the
BinOvNMTF (Overlapping Binary Non-negative Matrix Tri-
Factorization) algorithm [10], which we proposed earlier and
was restricted to making binary associations between row
clusters and column clusters.

Matrix factorization methods have been widely applied
in dyadic data analysis [5], [7], [11], [12], mainly for text
data analysis. Non-Negative Matrix Factorization (NMF) is
the basis of clustering and coclustering algorithms, such as:
NMF for partial similarities-based data analysis [4], NMF
for clustering [13], NMF for coclustering [14], Low Rank
NMF [15], Semi-NMF (SNMF) [16], Orthogonal NMTF
(ONMTF) [17], Graph regularized NMF (GNMF) [18], Fast
NMTF (FNMTF) [8], BinOvNMTF [10], Word co-occurrence
regularized NMTF (WC-NMTF) [19]. All of these algorithms
were presented accompanied by experiments involving text
data. The duality between rows and columns explored by
coclustering algorithms has been shown to be effective in
high dimensionality and sparse spaces [5], characteristic of
the vector representation used for text data.

The research related to this class of algorithms shows that
there is still room for improvement regarding the treatment of
overlapping coclusters. Figure 1 illustrates this with three data
matrices (I, II and III) with positive real values: the darker the

1In this case, “easily” means “with no further post-processing efforts”, since
in text coclustering results there is information about word clusters besides
information about document clusters.
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blue color the higher the value in the data matrix cell; and
the reconstruction of the original datasets by combining the
matrices resulting from matrix factorization carried out by:
the widely-known clustering algorithm k-Means [20] and the
coclustering algorithms ONMTF, FNMTF, BinOvNMTF and
OvNMTF. For this discussion, we have assumed that the algo-
rithms’ parameters should be established according to a priori
knowledge: the three datasets comprise data distributions with
three row clusters and three column clusters2.

Fig. 1. Capacity to reconstruct the original data matrices of clustering and
coclustering algorithms. The check symbol shows the proper reconstructions.

Figure 1 shows that both clustering algorithms have good
reconstruction capability if the hypothesis of row clusters
does not assume overlap (I and II). For these algorithms,
the hypothesis of overlapping column clusters (III) does not
matter because the problem is one-side (row) clustering. Under
such test conditions, the ONMTF and FNMTF coclustering
algorithms fail in reconstructing for both overlapping cases (in
rows (II) and columns (III)). The BinOvNMTF coclustering
algorithm can handle overlap in one dimension only (II).
The OvNMTF coclustering algorithm overcomes the diffi-
culties and presents good reconstruction in both overlapping
situations. Therefore, the contributions of this paper are: (i)
formalization for the non-negative triple matrix factorization
problem with row or column overlaps (the OvNMTF problem);
(ii) an algorithm, based on multiplicative update rules, for
solving the OvNMTF problem (the OvNMTF algorithm); and
(iii) a proof of concept for illustrating the effects of applying
the OvNMTF problem on real-world text datasets.

This paper is organized as follows: Section II presents the
theoretical background that supports the introduction of the
OvNMTF problem, whereas Section III presents the OvNMTF
algorithm; the experiments are discussed in Section IV; Sec-
tion V presents the conclusions.

II. THEORETICAL BACKGROUND

Let a data matrix X ∈ Rn×m, with n rows (datapoints)
and m columns (attributes), in which the set of rows (or
the set of datapoints) can be interpreted as a set of vectors
N = {x1·, . . . , xn·}. In a clustering problem, we expect

2For all algorithms, the parameters referring to the number of rows/columns
clusters sought were set to 3.

to find k parts of N , denoted by subsets K ⊆ N , being
p ∈ {1, . . . , k}. The set K = {K1, . . .Kk} is said to be the
resulting clusters of rows that solve the clustering problem.
From the standpoint of coclustering problems, X comprises a
set of row vectors N = {x1·, . . . , xn·} and a set of columns
vectors M = {x·1, . . . , x·m}, and we expect to find k × l
coclusters represented by submatrices in X denoted by XKpLq ,
being k subsets K ⊆ N , l subsets L ⊆ M , p ∈ {1, . . . , k}
and q ∈ {1, . . . , l}. In a solution to coclustering problems,
the cocluster XKpLq

is a cluster of datapoints in Kp, in
view of the attributes in Lq . In this section, we present the
theoretical background concerning clustering and coclustering
problems. Such problems are detailed for one of the following
reasons: the problem is the basis for developing OvNMTF; the
algorithm that solves the problem was used in the experiments.

A. K-Means

The k-means clustering problem is one of the most studied
problems in the clustering field. This problem is classically
solved by applying the Lloyd algorithm, also called the k-
means algorithm [21]. The goal is to find k prototype vectors
that quantize a dataset vector space, regarding a minimal
vector quantization error. Here, as in [22], we elaborate the
k-means clustering problem as the factorization of the data
matrix X into two matrices, U as a cluster indicator matrix and
C as a prototype vector matrix, so that X ≈ UC; ‖X−UC‖2F
gives a reconstruction error of the original data matrix (see
F1).

F1(U,C) = min
U,C

n∑
i=1

k∑
p=1

uip‖xi· − cp·‖2 = min
U,C
‖X − UC‖2F

subj. to U ∈ Ψn×k, C ∈ Rk×m,
∑k

p=1 uip = 1 ∀i,

in which Ψ = {0, 1} and ‖ · ‖F is the Frobenius norm for
matrices.

B. NMF

Two reasons motivate the use of Non-Negative Matrix
Factorization (NMF) for clustering problems resolution: the
possibility of applying it as a data analysis method capable
of extracting knowledge about an object from the study of
its parts [4], therefore implementing partial similarity-based
analysis; the adequacy of data representation used in various
clustering contexts to the factorization method requirements,
since such representations cover the relationship between pairs
of elements coming from two distinct finite sets (dyadic data)
[5]. For example, in text data clustering, two finite sets are
used to represent texts: documents and words. A positive
data matrix organizes information regarding the occurrence
or absence of a word in a document (a dyadic relationship),
allowing the use of the NMF method. NMF-based algorithms
have as input a data matrix X ∈ Rn×m

+ , with n rows
that constitutes a set of row vectors N = {x1·, . . . , xn·},
and m columns that constitutes a set of columns vectors
M = {x·1, . . . , x·m}. The relation between each row xi· and
each column x·j is represented by xij , with i ∈ {1, . . . , n}



and j ∈ {1, . . . ,m} [4]. NMF can be seen as a double factor
decomposition, in the form of the problem F2:

F2(U, V ) = min
U,V
‖X − UV T ‖2F ,

subj. to U ≥ 0, V ≥ 0,

in which U ∈ Rn×k
+ , V ∈ Rm×k

+ , ‖ · ‖F is the Frobenius
norm for matrices and ‖X−UV T ‖2F gives the reconstruction
error. The Frobenius norm and the reconstruction error are
also adopted in the other problems formulated in this and in
the following sections.

According to [7], the columns in the factor matrix V
correspond to basis vectors for the original data matrix re-
construction, while each row in the factor matrix U represents
an encoding that gives the extent to which each basis vector
will be used in the reconstruction process. Thus, the columns
in V can be seen as the prototype vectors for row clusters
extracted from the original data matrix.

C. BVD

Block Value Decomposition (BVD) searches for hidden
block structures in a data matrix and can be used for analysis
of dyadic data [5]. It is suitable for implementing coclustering
solutions because BVD considers both data dimensions (rows
and columns) simultaneously and explores their relationship
by decomposing the data matrix X ∈ Rn×m into three
matrices (F3): U as a row coefficient matrix, S as a block-
structured matrix and V as a column coefficient matrix.

F3(U, S, V ) = min
U,S,V

‖X − USV T ‖2F ,

subj. to U ≥ 0, V ≥ 0

in which U ∈ Rn×k
+ , S ∈ Rk×l and V ∈ Rm×l

+ .
The problem F3 is an alternative to the problem F2 be-

cause it uses triple factorization of matrices and can give
us a coclustering structure. The authors in [5] provide the
following interpretation: S is a compact representation of X ,
the matrix US contains basis vectors for the columns in X ,
the matrix SV T contains basis vectors for rows in X , and
the factor matrices U and V denote the extent to which rows
and columns are associated with their respective row/column
clusters. Thus, prototype vectors can be extracted for both
row and column clusters, and the notion of coclusters can be
explored by examining the information contained in the factor
matrix S, as in [7]. The BVD problem restricted to positive
data matrix, i. e., X ∈ Rn×m

+ , results in the NBVD (Non-
negative Block Value Decomposition) problem [5].

D. ONMTF

The problem F4 was proposed in [17]. In this problem,
in addition to the nonnegativity constraints used in the F2

and the triple factorization used in the F3, two orthogonality
constraints were added for row clusters and column clusters
matrices, respectively: UTU = I and V TV = I , in which
I is an identity matrix. These constraints restrict the problem
of factoring X ≈ USV T to a smaller number of possible
solutions with more rigorous interpretation.

Fig. 2. OvNMTF factorization process with five factor matrices

F4(U, S, V ) = min
U,S,V

‖X − USV T ‖2F

subj. to U ≥ 0, S ≥ 0, V ≥ 0, UTU = I, V TV = I,

in which U ∈Rn×k
+ , S ∈ Rk×l

+ and V ∈ Rm×l
+ .

III. OVNMTF

In this section, we formalize the Overlapping Non-negative
Matrix Tri-Factorization (OvNMTF) problem and introduce
an algorithm based on multiplicative update rules for solving
it. The OvNMTF problem (Problem F5) is based on the
assumptions established in NMF and BVD problems. We
formulate (F5) as:

F5(U, S, V(1), . . . , V(k)) =

min
U,S,V(1),...,V(k)

‖X − U
k∑

p=1

I(p)SV
T
(p)‖

2
F

subj. to U ≥ 0, S ≥ 0, V(p) ≥ 0, ∀p

in which U ∈ Rn×k
+ , S ∈ Rk×l

+ , V(p) ∈ Rm×l
+ , p ∈ {1, . . . , k}

as the index for the set of matrices {V(1), . . . , V(k)}, I(p) ∈
{0, 1}k×k are constant selector matrices with zero in all cells
except the unique cell (i(p))pp that assumes the value 1.

Each matrix SV T
(p) contains basis vectors for row clusters

in X . The set of selector matrices Ip organizes the basis
vectors by associating each one to a specific row cluster.
Thus, in the minimization process, each row cluster is op-
timized with respect to one specific matrix SV(p). Similarly,
the optimization of basis vectors for columns is oriented to
specific column clusters. The set of matrices V(p) adds degrees
of freedom in the factorization process. On the one hand,
the association between columns and rows becomes more
accurate, as illustrated in the experiments (Section IV); on
the other hand, the time complexity of the algorithm used
for factorizing X increases when compared, for example, to
ONMTF Figure 2 shows a graphical visualization of the matrix
factorization proposed in F5.

The derivation of the multiplicative update rules to imple-
ment the minimization process for F5 followed a gradient-
based approach. The F5 gradient calculation is as in [7], thus
∇F5 = [∇F5]+ − [∇F5]−. Expanding F5 using matrix trace
properties [23]:



F5 = tr
[(
X − U

∑k
p=1 I(p)SV

T
(p)

)T(
X − U

∑k
p=1 I(p)SV

T
(p)

)]
= tr

[
XTX

]
− 2tr

[
XTU

∑k
p=1 I(p)SV

T
(p)

]
+tr

[∑k
p=1 V(p)S

T I(p)U
TU

∑k
p′=1 I(p′)SV

T
(p′)

]
.

To calculate ∇UF5, consider [∇UF5]− and [∇UF5]+:

[∇UF5]− = −2∇U

(
tr
[
XTU

∑k
p=1 I(p)SV

T
(p)

])
= −2X

∑k
p=1 V(p)S

T I(p),

[∇UF5]+ = ∇U

(
tr(XTX) + tr

[∑k
p=1 V(p)S

T I(p)U
TU∑k

p′=1 I(p′)SV
T
(p′)

])
= U

∑k
p=1

∑k
p′=1 I(p′)SV

T
(p′)V(p)S

T I(p)

+U
∑k

p=1

∑k
p′=1 I(p)SV

T
(p)V(p′)S

T I(p′)

= 2U
∑k

p=1

∑k
p′=1 I(p)SV

T
(p)V(p′)S

T I(p′).

To calculate ∇SF5, consider [∇SF5]− and [∇SF5]+:

[∇SF5]− = −2∇S

(
tr
[
XTU

∑k
p=1 I(p)SV

T
(p)

])
= −2

∑k
p=1 I(p)U

TXV(p),

[∇SF5]+ = ∇S

(
tr(XTX) + tr

[∑k
p=1 V(p)S

T I(p)U
TU∑k

p′=1 I(p′)SV
T
(p′)

])
=
∑k

p=1

∑k
p′=1 I(p′)U

TUI(p)SV
T
(p′)V(p)

+
∑k

p=1

∑k
p′=1 I(p)U

TUI(p′)SV
T
(p′)V(p)

= 2
∑k

p=1

∑k
p′=1 I(p)U

TUI(p′)SV
T
(p′)V(p).

To calculate ∇V(i)
F5, consider [∇V(i)

F5]− and [∇V(i)
F5]+:

[∇V(i)
F5]− = −2∇V(i)

(
tr
[
XTU

∑k
p=1 I(p)SV

T
(p)

])
= −2∇V(i)

(
tr
[
XTUI(i)SV

T
(i)

])
= −2XTUI(i)S.

[∇V(i)
F5]+ = ∇V(i)

(
tr(XTX) + tr

[∑k
p=1 V(p)S

T I(p)U
TU∑k

p′=1 I(p′)SV
T
(p′)

])
= ∇V(i)

(
tr
[∑k

p=1

∑k
p′=1 V(p)S

T I(p)U
TUI(p′)SV

T
(p′)

])
= ∇V(i)

(
tr
[
V(i)S

T I(i)U
TUI(i)SV

T
(i)

])
+∇V(i)

(
tr
[∑

p 6=i∈{1,...,k} V(p)S
T I(p)U

TUI(i)SV
T
(i)

])
+∇V(i)

(
tr
[∑

p′ 6=i∈{1,...,k} V(i)S
T I(i)U

TUI(p′)SV
T
(p′)

])
= 2V(i)S

T I(i)U
TUI(i)S

+
∑

p 6=i∈{1,...,k} V(p)S
T I(p)U

TUI(i)S

+
∑

p′ 6=i∈{1,...,k} V(p′)S
T I(p′)U

TUI(i)S

= 2
∑k

p=1 V(p)S
T I(p)U

TUI(i)S

The final gradients for U, S, V(p),∀p ∈ {1, . . . , k} are:

∇UF5 = 2
(
−X

∑k
p=1 V(p)S

T I(p)+∑k
p=1 U

∑k
p′=1 I(p)SV

T
(p)V(p′)S

T I(p′)

)
∇SF5 = 2

(
−
∑k

p=1 I(p)U
TXV(p) +∑k

p=1

∑k
p′=1 I(p)U

TUI(p′)SV
T
(p′)V(p)

)
∇V(p)

F5 = 2
(
−XTUI(p)S +∑k

p′=1 V(p′)S
T I(p′)U

TUI(p)S
)

Algorithm 1 implements the minimization process for F5

by updating U , S and V using the multiplicative rule:

Xt+1 ← Xt � −[∇XF ]−

[∇XF ]+
.

In this algorithm, t is an iteration counter, U (t), S(t) and
V

(t)
(p) are respectively the U , S e V(p) matrices in the th-

iteration, U(0, 1) ∈ ]0, 1] is an uniformly distributed number
generator, � is the Hadamard product and stop conditions as
a maximum number of iterations tmax or the reconstruction
error convergence according to the limit ε (free parameter).

IV. EXPERIMENTS AND RESULTS ANALYSIS

We carried out two types of experiments:
• Experiment #1 (Section IV-A): We carried out this ex-

periment on synthetic datasets to verify the reconstruction
capacity provided by the OvNMTF algorithm in the pres-
ence of row or column overlapping cocluster structures.
Here, the K-means algorithm is a reference for cluster
capacity analysis; the ONMTF algorithm, based on mul-
tiplicative update rules [7], was chosen for illustration
because of its similarity to OvNMTF algorithm.

• Experiment #2 (Section IV-B): We carried out this ex-
periment on real-world text datasets to test the cluster
discovery capacity of OvNMTF, and its power to produce
information about topics (clusters of words) and how
these topics describe clusters of documents. The cluster
discovery evaluation was performed based on the Rand
Index (RI) [24]. The evaluation of information produc-
tion capacity was performed through the analysis of the
words that made up each cocluster. Since the evaluation
comprises cocluster analysis, only the results produced
by ONMTF and by OvNMTF were analyzed.

A. Experiment #1
a) Datasets: Synthetic datasets were built on three of the

eight data structure types [25]3. These datasets are shown in
the first column of Figure 1 and are relate to: (I) coclusters with
exclusive rows and columns; (II) coclusters with exclusive
rows and overlapping columns; (III) coclusters with exclusive
columns and overlapping rows. Structure I was chosen to
show the effectiveness of the algorithm in solving the classic
clustering problem. The structures II and III were chosen
to show the OvNMTF contribution. Each dataset has 150
datapoints (rows) and 150 attributes (columns).

3In [25], the biclustering problem is covered. Biclustering and coclustering
are similar problems. Although each has its own definitions, the latter can be
seen as an extension to the former [26], [27].



Algorithm 1 OvNMTF algorithm
1: input: data X , number of rows clusters k, number of columns clusters l, max iterations tmax

2: initialize: U (0) ← U(0, 1), S(0) ← U(0, 1), V
(0)
(p) ← U(0, 1),∀p e t← 0

3: while (no convergence) and (t ≤ tmax) do
4:

U (t+1) ← U (t) �
∑k

p=1XV
(t)
(p)S

(t)T I(p)∑k
p=1

∑k
p′=1 U

(t)I(p)S(t)V
(t)T

(p) V
(t)
(p′)S

(t)T I(p′)

5: for p← 1 : k do
6:

V
(t+1)
(p) ← V

(t)
(p) �

XTU (t+1)I(p)S
(t)∑k

p′=1 V(p′)ST I(p′)UTUI(p)S

7: end for
8:

S(t+1) ← S(t) �
∑k

p=1 I(p)U
(t+1)TXV

(t+1)
(p)∑k

p=1

∑k
p′=1 I(p)U

(t+1)TU (t+1)I(p′)S(t)V
(t+1)T

(p′) V
(t+1)
(p)

9: t← t+ 1
10: end while
11: return U (t), S(t), V

(t)
(1) , . . . , V

(t)
(k)

TABLE I
RECONSTRUCTION CAPACITY: ok - GOOD RECONSTRUCTION, CORRECT

INFORMATION ON OVERLAPPING ROWS/COLUMNS; × - GOOD
RECONSTRUCTION, NO INFORMATION ON OVERLAPPING COLUMNS; + -

POOR RECONSTRUCTION, PARTIAL INFORMATION ON OVERLAPPING
ROWS/COLUMNS; ◦ - BEYOND THE SCOPE OF THE ALGORITHM

k-means ONMTF OvNMTF
base (I) ok ok ok
base (II) ok,× + ok
base (III) ◦ + ok

b) Parameters setup: The following parameters setup
was set: k = 3 for k-means, according to the actual number
of clusters in the dataset, and k = l = 3 for ONMTF and
OvNMTF, according to the actual number of row clusters and
column clusters in the dataset; random initialization for C in
k-means, U , S, V in ONMTF, and U , S and Vk in OvNMTF;
stop conditions based on the maximum number of iterations
(300 for k-means, 1000 for ONMTF and OvNMTF) and
ε = 1e−04 for reconstruction error convergence in ONMTF
and OvNMTF; 10 runs of each algorithm in each dataset.

c) Reconstruction capacity: The reconstructions ana-
lyzed in this section concern the best result obtained for each
algorithm in each dataset. Table I shows a summary of the
results, and Figure 3 allows us a visual analysis.

In Figure 3, the first dataset (I) represents a classical
clustering problem, without overlapping rows/columns. All
algorithms tested could produce good reconstructions of the
original dataset. The dataset II was properly reconstructed by
k-means because if we analyze the problem represented in this
dataset from the row clusters standpoint, it is equivalent to
the classical clustering problem. In the datasets II and III, the
ONMTF algorithm could not correctly associate rows/columns

(a) k-means (b) ONMTF (c) OvNMTF

(d) k-means (e) ONMTF (f) OvNMTF

(g) k-means (h) ONMTF (i) OvNMTF

Fig. 3. Reconstruction capacity details with k = l = 3. The darker the
grayscale bar the bigger the reconstruction error

with over one row/column cluster with the chosen set of
parameters. The OvNMTF algorithm properly reconstructed
the datasets II and III, since it could properly organize the
degrees of freedom conferred by the multiple matrices Vk.

The reconstruction errors for the dataset I are similar. For
the dataset II, although the algorithm k-means offers a good
reconstruction, with error similar to that produced by OvN-
MTF, it cannot produce information about column clusters,
i.e. having a good reconstruction capacity does not guarantee
good descriptions for data clusters, the reconstruction error



TABLE II
QUANTITATIVE INFORMATION ON TEXT REAL-WORLD DATASETS

PNC PNC toy NIPS
# unique terms 6,710 36,342 6,881
# terms 69,301 1,187,334 746,826
# documents 300 4,575 555
# row clusters 3 13 9
% zeros in the data matrix 0.997 0.993 0.804

produced by ONMTF are about seven times bigger than that
produced by OvNMTF. In the dataset III, the reconstruction
error produced by ONMTF are about ten times bigger than that
produced by OvNMTF, and the k-means algorithm produced
a very high reconstruction error. The ONMTF reconstruction
errors can be improved if the parameter l is set to higher
values. However, in such a case, the discovered knowledge on
column clusters will differ from the a priori knowledge.

B. Experiments #2

a) Datasets: The text data analysis has been chosen to
illustrate the accuracy and added value of the information
that OvNMTF can extract. This experiment was carried out
on three text datasets, as in [10]; Table II lists quantitative
information about these datasets:

1) Portuguese news items collection (PNC): A collection
of Portuguese language news items. Each news item
consists of an url, title, subtitle, body and topic in which
the item was manually classified. The news items are
distributed on 13 unevenly classes.

2) Portuguese news items collection (PNC toy): A subset
of the PNC collection. It comprises 300 news items
distributed in a balanced way in three topics (sports,
games and activities for young people).

3) NIPS14-17 (NIPS): A dataset related to scientific papers
published in the Neural Information Processing Systems
Congress, 2001-2003 - volumes 14-17. The complete
dataset comprises scientific papers published in 18 vol-
umes, however, only the papers in the volumes 14 to 17
are labeled. Such documents are organized on topics that
cover 13 technical areas and are unevenly distributed;
documents from nine most voluminous areas were used.

b) Parameters setup: The following parameters setup
was established: k was set according to the actual number of
classes/topics in each dataset and l assumes a list of values,
since there is no a priori knowledge about the actual number
of word clusters, thus:
• PNC TOY: k = 3 e l ∈ {2, 3, 4, 5, 6};
• PNC: k = 13 e l ∈ {7, 10, 13, 16, 19};
• NIPS: k = 9 e l ∈ {6, 9, 12, 15, 18};
random initialization for factor matrices; stop conditions

based on the maximum number of iterations (1,000 for PDN
TOY, 10,000 for PNC and NIPS) and ε = 1e−04 for
reconstruction error convergence; 10 runs of each combination:
algorithm versus dataset versus k, l combination values versus
vector representations for text data.

TABLE III
AVERAGE RI FOR TEXT DATASETS, WITH k = 3 FOR PNC TOY, k = 13

FOR PNC AND k = 9 FOR NIPS AND THE BEST l VALUES FOR EACH
COMBINATION (DATASET × ALGORITHM × VECTOR REPRESENTATION)

k-means ONMTF OvNMTF

PN
C

to
y tf 0.7017 0.3372 : l = 5 0.7466 : l = 4

tfnorm 0.7086 0.6479 : l = 5 0.7487 : l = 3
tfidf 0.3869 0.1758 : l = 3 0.6674 : l = 6
tfidfnorm 0.4701 0.5717 : l = 3 0.6755 : l = 6

PN
C

tf 0.3137 0.1437 : l = 16 0.3384 : l = 10
tfnorm 0.3049 0.1802 : l = 19 0.3455 : l = 16
tfidf 0.2784 0.1279 : l = 7 0.3534 : l = 7
tfidfnorm 0.2750 0.1184 : l = 7 0.3554 : l = 16

N
IP

S

tf 0.1573 0.1579 : l = 6 0.1672 : l = 6
tfnorm 0.1527 0.1352 : l = 15 0.1641 : l = 9
tfidf 0.1368 0.1442 : l = 18 0.1711 : l = 9
tfidfnorm 0.1519 0.1318 : l = 9 0.1742 : l = 12

c) Vector space model for text data: We chose a count-
based distributional semantics model to build the vector space
model for text data [28], [29]. It uses the text data in each
document (news item) to produce a document-word matrix. In
the preprocessing phase, stopwords were dropped, documents’
token were stemmed [30] and then, tf and tf-idf scores [31]
and their respective normalized versions (tfnorm, tfidfnorm)
were computed for each document.

d) Clustering results: We evaluate clustering quality by
using the Rand Index (RI). The results are presented in terms
of: average RI for each combination of vector representations
and algorithms; distribution of the RI values for all runs of
each algorithm. Table III presents the best average RI values
for each algorithm in the different vector representations;
Figure 4 shows the distributions of the RI values.

OvNMTF presented the best average RI values in all cases
shown on Table III. As the complexity of the problem in terms
of the desired number of row clusters increased, all algorithm’s
performance declined and the superiority of the algorithm
OvNMTF over the others decreased. However, considering
another aspect of the complexity of the problem - the sparsity
of the data matrix (see Table II), OvNMTF has a positive
highlight. These results reveal the good clustering capability
presented by the algorithm introduced in this paper.

Considering all algorithms runs, OvNMTF stands out for
its stability. The RI distributions graphs shown in Figure 4
illustrate that the variability in the results presented by the
OvNMTF algorithm is smaller than the variability presented
by the other algorithms. Specifically, for PNC and PNC
toy datasets, the algorithm OvNMTF also achieves the best
maximum RI values and concentrate the results on high RI
values. For the NIPS dataset, the algorithm ONMTF has better
maximum RI values, but concentrates most of its RI values
around the lowest values presented by the algorithm OvNMTF.

The vector representation used meant a sensitivity issue for
cluster quality in the case of the PNC toy dataset (the dataset
with the most sparsity and least complexity in the number of
row clusters). For this dataset, k-means and OvNMTF per-
formed better with the vector representation purely based on



(a) PNC toy

(b) PNC

(c) NIPS

Fig. 4. Rand index distribution for all runs of each algorithm and dataset

frequencies (tf ), although the differences among the OvNMTF
results were smaller; ONMTF performed better for normalized
representations. Considering the RI values distribution, OvN-
MTF suggests greater stability, which puts it at an advantage
in terms of vector representation independence.

e) Semantic features extraction: To extract the semantic
features, we follow the ideas presented in [4] and [7]. In [4],
the authors argue that it makes more sense for a document
to be associated with a small set of topics than one or all
possible topics; [7] argues that words have different meanings
depending on the context in which they are used, and factor
matrices allow us to identify word clusters with words in
common but associated with different contexts.

Due to the addition of multiple matrices V(p) in OvNMTF,
and the use of each one as an independent basis for document
clusters, each one specializes in generating topics for one
document cluster. The association of this characteristic with
the ideas mentioned above motivate our hypothesis that the
feature extraction supported by OvNMTF will be more accu-
rate than that offered by ONMTF and will trustingly express
more reliable descriptions for document clusters. To test our
hypothesis, we compared the best runs (in terms of RI) of the
ONMTF and OvNMTF algorithms, for the PNC toy dataset.

Table IV shows the normalized factor matrix S resultant
from the ONMTF factorization. From this matrix, we iden-
tified coclusters of interest, i.e., document and word clusters
whose relations in matrix S have the highest values. Thus,
to extract semantic features to each cocluster of interest, we

TABLE IV
MATRIX S (NORMALIZED) GOT FROM A ONMTF RUN ON THE PCN TOY
DATASET, USING k = 3, l = 5 AND VECTOR REPRESENTATION tfidfnorm

WC#1 WC#2 WC#3 WC#4 WC#5
DC#1 0,0 0,5 0,1 0,0 0,4
DC#2 0,0 0,05 0,05 0,9 0,0
DC#3 0,4 0,1 0,5 0,0 0,0

(a) WC#1 (b) WC#2 (c) WC#3 (d) WC#4 (e) WC#5

Fig. 5. Top-20 words in each word cluster discovered by ONMTF

analyze them in terms of their 20 most relevant words. The
relevance of the words is given by the values in the matrix V
that associate them with the word clusters. Figure 5 shows the
words relevance through word clouds4. In the word cloud, the
bigger the word, the bigger its relevance.

The word GAMES is the only one that appears in more than
one cluster (WC#1 and WC#4). An informal interpretation of
the words organization in the clusters allows us to infer that:
WC#2 and WC#5 describe the news items in DC#1 as “soccer
news”; WC#4 describes the news items in DC#2 as “e-sport
news”; WC#1 describe the news items in DC#3 as “extreme
sports news”; and WC#3 does not bring easily interpretable
semantic information, imposing a degree of uncertainty about
the definition of the topic referent to DC#3.

A normalized factor matrix S, resultant from the OvNMTF
factorization, has each row associated with one matrix V(p),
that determines the subset of word clusters optimized for one
document cluster associated with that row in S. Thus, in the
run under analysis (PCN toy dataset, k = 3, l = 2 and tfnorm),
there are two word clusters for each one of the three document
clusters. For DC#1, WC#1 = 0.38 and WC#2 = 0.62; for
DC#2, WC#3 = 0.46 and WC#4 = 0.54; and for DC#3, WC#5
= 0.94 e WC#6 = 0.06. The semantic features extraction was
carried out and the wordclouds are shown in Figure 6.

(a) WC#1 (b) WC#2 (c) WC#3 (d) WC#4 (e) WC#5 (f) WC#6

Fig. 6. Top-20 words in each word cluster discovered by OvNMTF

From wordclouds, we can give the following description for
document clusters: WC#1 and WC#2 describe the news items
in DC#1 as “e-sports news”; WC#3 and WC#4 describe the
news items in DC#2 as “extreme sports news”; and WC#5 and
WC#6 describe the news items in DC#3 as “soccer news”. As

4Words used in word clouds were translated from English to Portuguese.
GAME means JOGO; GAMES refers to the use of the English language word
within the Portuguese language texts (commonly in the context of e-sports).



expected, the description of each document cluster is similar to
that obtained from the ONMTF but, we declare two advantages
arising from the OvNMTF coclustering framework:
• The arrangement of a subset of word clusters (for each

document clusters) is completely independent of another
subset, thus, OvNMTF can use the same word in different
word clusters subsets more often. This makes it possible
to better identify polysemic words.

• Each subset of word cluster concerns only one, document
cluster. Thus, the word clusters analysis give us more
accurate descriptions for document clusters. Moreover,
the actual role of a polysemic word can be more easily
identified in a context of more accurate interpretation.

V. CONCLUSION

In this paper, we formalize the overlapping non-negative
matrix triple factorization problem (the OvNMTF problem),
as an alternative to NMF-based problems. OvNMTF was
designed to naturally deal with overlapping row and columns
in coclustering analysis. To implement the OvNMTF problem
minimization process, we derived an algorithm based on
multiplicative update rules (the OvNMTF algorithm). The
reasonableness of the algorithm was tested on synthetic data
sets; its usefulness and its power to extract information were
attested in real-world text datasets. OvNMTF produced better
clustering results than k-means, and it was superior to ONMTF
considering the experimentation model and the limits imposed
for the variation of the parameters k and l. In terms of semantic
features extraction, the OvNMTF algorithm has also brought
benefits as it allows us to infer more accurate descriptions
for each document cluster. The results show that the proposed
algorithm implements an optimization process that allows the
use of degrees of freedom to efficiently compose coclusters.
However, the OvNMTF algorithm is more complex in terms
of runtime than ONMTF due to the larger number of matrices
involved in the factorization process. Therefore, its use in real-
world problems needs to consider this cost. This drawback is
the point of attention for the next steps of this research.
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