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Abstract—Compiler fuzzing is a technique to test the func-
tionalities of compiler. It requires well-formed test cases (i.e.,
programs) that have correct lexicons and syntax to pass the
parsing stage of a compiler. Recently, advanced compiler fuzzing
methods generate effective test cases by deep neural networks,
which learn the language model of regular programs to guarantee
test case quality. However, most of these methods fail to capture
long-distance dependencies of syntax (e.g., paired curly braces)
in a program. As a result, they may generate test cases with
syntax errors, which cannot pass the parsing stage to test the
compiler functionality. In this paper, we propose a framework,
namely DSmith, to capture long-distance dependencies of syntax
for a robust test case generation. Specifically, DSmith memorizes
the hidden state of each token in a program and leverages the
interactions of these hidden states to embed the long-distance
dependencies between tokens. It then adopts an encoder-decoder
architecture with the embedding of these long-distance depen-
dencies to build a language model of regular programs. Finally,
DSmith uses the built language model to generate test cases
according to four novel generation strategies, which significantly
increase the diversity of test cases. Extensive experiments show
that DSmith increases the parsing pass rate of the generated
programs by an average of 19% and significantly improves the
code coverage of the compiler, compared with state-of-the-art
methods. Benefiting from the high pass rate and broad code
coverage, DSmith has found eleven brand new bugs in currently
supported GCC compiler versions.

Index Terms—fuzzing, compiler, neural network, attention,
syntax

I. INTRODUCTION

Compiler is one of the most central components in a
software development tool chain. Compilers like GCC and
clang/llvm are not only typical representatives of open source
software but also important basic software of the open source
community. Various efforts have been invested to improve
the correctness and reliability of compilers. Fuzzing is an
effective technique for finding bugs and security vulnerabilities
in compilers. It is an automated testing technique that aims
to trigger unintended compiler behaviors by feeding a large
number of test programs to the target compiler. The quality of
the input programs significantly influence the effectiveness of
the fuzzers.

Effective compiler fuzzing requires well-formed test pro-
grams with correct lexicons and syntax to pass the parsing
stage of a compiler, after which the complex functionalities
can be tested. To comprehensively discover bugs, fuzzing
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methods need to generate test cases with a high parsing pass
rate.

Recently, lots of methods adopt deep neural networks to
learn correct syntax from regular programs. For example, Liu
et al. [1] used a sequence-to-sequence (seq2seq) architecture
based on recurrent neural networks (RNN) to build a gen-
erative model for fuzzing C program generation. These deep
neural network-based fuzzing methods can automatically learn
syntax from a large number of regular programs. Accordingly,
these methods do not rely on complex syntax rules provided
by human, which is more time-saving and labor-saving com-
pared with the traditional rule-based fuzzing methods, such as
CSmith [2].

Although the existing deep neural network-based methods
learn the syntax automatically, most of them may fail to
generate programs with correct syntax when facing the long-
distance dependencies problems that commonly exist in pro-
gram syntax. During the generation process, these methods
receive a code sequence as the conditional input and predict
subsequent codes. They then append the generated code to
the end of the input to form a new code sequence, which
will be used as the conditional input to generate the following
code. These methods repeat this generation and appending
process until generating a complete program. However, when
the length of the program is long (e.g., over 100 tokens), the
existing methods are hard to generate the correct syntax, such
as curly braces, at the end of the generated program because
they overlook long-distance dependencies. For example, a side
of a brace at the end of a program may depend on another side
of the brace at the beginning of the program. When existing
several opening braces in a long conditional input, the existing
methods may not generate the correct number of closing braces
for matching.

In this paper, we propose a novel fuzzing framework,
namely DSmith, to tackle the long-distance dependencies
problem in the existing compiler fuzzing methods. The DSmith
framework memorizes the hidden state of each token (e.g.,
keyword, identifier, variable, and constant) in a program and
leverages the interactions of these hidden states to embed the
long-distance dependencies. Accordingly, it can generate an
appropriate token that depends on other tokens even their
locations have a long distance. To achieve this goal, DSmith
introduces a long short-term memory (LSTM) unit [3] and an
attention mechanism to memorize hidden state and capture
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1 int sub_0 ( void ) {
2 int var_0 [ 4 ] = { 30 , 2 , 10 , 5 } ;
3 int var_1 [ 2 ] ;
4 int var_2 , var_3 , var_4 ;
5

6 for ( var_2 = 2 ; var_2 < 4 ; var_2 ++ ){
7 if ( var_0 [ var_2 ] < var_5 ){
8 var_1 [ var_4 ] = var_0 [ var_2 ] ;
9 var_4 = 0 ;

10 var_5 = var_1 [ 0 ] ;
11 for ( var_3 = 1 ; var_3 < 2 ; var_3 ++ )
12 if ( var_1 [ var_3 ] > var_5 ){
13 var_4 = 0 ;
14 }
15 // The above code is used as conditional input
16 // Following code is produced by model
17 }
18 }
19 }
20 }
21 }
22 }

Listing 1. Program produced by seq2seq model

1 int sub_0 ( void ) {
2 int var_0 [ 4 ] = { 30 , 2 , 10 , 5 } ;
3 int var_1 [ 2 ] ;
4 int var_2 , var_3 , var_4 ;
5

6 for ( var_2 = 2 ; var_2 < 4 ; var_2 ++ ){
7 if ( var_0 [ var_2 ] < var_5 ){
8 var_1 [ var_4 ] = var_0 [ var_2 ] ;
9 var_4 = 0 ;

10 var_5 = var_1 [ 0 ] ;
11 for ( var_3 = 1 ; var_3 < 2 ; var_3 ++ )
12 if ( var_1 [ var_3 ] > var_5 ){
13 var_4 = 0 ;
14 }
15 // The above code is used as conditional input
16 // Following code is produced by model
17 }
18 }
19 return 0;
20 }

Listing 2. Program produced by DSmith

Fig. 1. The two programs shown in this figure are the test programs generated by the seq2seq model and DSmith respectively. The seed program comes
from the GCC test suite and has been pre-processed. The details of the preprocessing are described in the third part of the paper. Taking the code from lines
1 to 17 as conditional inputs for the generative model, we use the seq2seq model and DSmith to predict the subsequent code. As shown in Listing 1, the
code sequence predicted by the seq2seq model contains too many closing brackets, which results in a syntax error and the program cannot pass through the
parsing of compilers. The code sequence predicted by DSmith matches the conditional input well, guaranteeing the generated program can pass the parsing
stage successfully.

their interactions, respectively. It then adopts an encoder-
decoder architecture [4] with the embedding of these long-
distance dependencies to build a language model of regular
programs. Based on the built language model, DSmith can
generate programs given a conditional input (e.g., a piece
of a program). To increase the fuzzing program diversity for
broader coverage, we further propose four different program
generation strategies. According to these strategies, DSmith
can generate various effective test programs by its built lan-
guage model.

To demonstrate the effectiveness of DSmith, we adopt
DSmith for C compiler fuzzing. We illustrate this effectiveness
on a toy example compared with a seq2seq-based fuzzing
method [1] in Fig. 1. As shown in Fig. 1, the code sequence
generated by the seq2seq-based method contains too many
closing brackets, which results in a syntax error, and thus,
this code cannot pass the parsing stage. In contrast, the code
sequence generated by DSmith matches the conditional input
well, guaranteeing the test program can pass the parsing stage
successfully.

We summarize the contributions of this paper as follows:

• We capture long-distance syntax dependencies in pro-
gramming language to further generate effective compiler
fuzzing inputs. We use the attention mechanism to cap-
ture the long-distance syntax dependencies in programs.
Experiments show that programs generated by DSmith
are more syntactically correct.

• We present DSmith, a framework consists of attentive
learning a language model of C programs, automatic
generation of new test cases, and performing fuzz testing.

According to the four novel generation strategies, DSmith
can generate various effective test programs by its built
language model. It has been applied to the fuzzing of
GCC on all currently supported versions. We have found
and reported eleven bugs.

Extensive experiments show that: (1) the parsing pass rate
of the test cases generated by DSmith can reach a maximum of
78%, which improves by an average of 19% compared with
the state-of-the-art methods; (2) the test cases generated by
DSmith cover more compiler code based on the same seed
programs as other competitors; and (3) DSmith has found
eleven brand new bugs in four GCC compiler versions.

II. BACKGROUND

A. Recurrent Neural Network and Sequence-to-Sequence
Models

In recent years, deep learning has achieved great success in
generation tasks such as machine translation [4] and language
modeling [5]. Compared with traditional rule-based and prob-
abilistic model-based methods, deep neural networks-based
methods do not rely on expert engineering and have better
scalability.

Many generation tasks involve sequential data. Recurrent
neural networks (RNNs) are designed to model sequential
data [6]. When operating on a variable-length input sequence
X = (x1, . . . , xT ), RNNs use a hidden state to carry informa-
tion to later time steps. At each time step, the RNNs receive



Fig. 2. encoder-decoder architecture

an input and update their hidden state. The hidden state ht

and optional output are updated by

ht = fh(xt, ht−1) (1)
yt = fo(ht) (2)

where fh is a non-linear activation function, and fo is the
output function. Different gating mechanisms have been pro-
posed to improve the performance. LSTM was introduced
by Hochreiter et al. [3] and was better at learning long-term
dependencies. Cho et al. [7] proposed a gated recurrent unit
to adaptively capture dependencies of different time scales.

Encoder-decoder architecture [4] with RNNs was introduced
for machine translation. The architecture has become an ef-
fective model for seq2seq prediction, since it has the ability
to handle variable-length input and output sequences. The
schematic view of the encoder-decoder architecture is shown
in Fig. 2.

There are two RNNs in encoder-decoder architecture. The
first one is the encoder, which learns to encode a variable-
length inputs into a context vector representation. The decoder
decodes the vector back into a variable-length output.

The encoder reads each symbol of the inputs xt and updates
the hidden state ht sequentially. By the time the last symbol is
processed, the final hidden state contains all the information
of the input sequence. The decoder is trained to predict the
next symbol yt given the hidden state ht. Both yt and ht are
conditioned on yt−1 and the context vector c

ht = f(ht−1, yt−1, c) (3)

The encoder-decoder model learns a probability distribution
over a sequence of symbols to predict the next symbol. The
conditional distribution of the next symbol is

P (yt|yt−1, yt−2, . . . , y1, c) = g(ht, yt−1, c) (4)

where g is usually a softmax function to produce valid
probabilities.

Fig. 3. seq2seq model with attention mechanism

B. Attention mechanism

A potential issue with the encoder-decoder architecture is
that the encoder compresses all necessary information of the
input sequence into a fixed-length vector representation, called
context vector c. When decoding, the decoder always uses
the same context vector for each output step. The fixed-
length vector becomes a bottleneck in this encoder-decoder
architecture. Cho et al. [7] showed that the performance of
the basic encoder-decoder model decreases with the increase
of sequence length.

Attention mechanism was first introduced in natural lan-
guage processing for machine translation task by Bahdanau
et al. [8]. Many recent works showed that attention could
be successfully used in various tasks. These include, but
not limited to, image caption [9], summarization [10], and
document classification [11].

As a component of the network architecture, attention
mechanism is based on the concept of assigning higher weights
to important and relevant elements in the input sequence
to enhance the accuracy of output prediction. Bahdanau et
al. proposed a model which stored all the encoder RNN’s
outputs and used them together with the decoder RNN’s
state ht−1 to compute the context vector. The context vector
was then used to compute the state ht. Luong et al. [12]
presented a generalization of the attention mechanism. In this
instance ht rather than ht−1, along with the outputs of the
encoder was used to compute a context vector. This vector was
concatenated with ht to make the next prediction. Recently, Yu
et al. [13] showed the ability of a seq2seq model with attention
mechanism to learn context-free language grammars.

An overview of the seq2seq model with attention mech-
anism is provided in Fig. 3, where hs denotes all encoder
hidden states, ht denotes the decoder state at time step t.
Unlike using a fixed context vector c in traditional encoder-
decoder approach, this attentional model infers a alignment
weight based on ht and hs. Source-side context vector is then
computed as a weighted average according to the alignment
weight over all the source hidden states. Lastly, we get a new



Fig. 4. An overview of DSmith

form of yt:
yt = fdecoder(ct, ht) (5)

III. DSMITH

In this section, we provide an overview on the overall design
and implementation details of DSmith.

A. Design Overview

The architecture overview of DSmith is depicted in Fig. 4.
There are three main components in DSmith. The learning
component learns the language model from many regular pro-
grams that are syntactically correct. The generation component
generates as many valid programs as possible according to
the four strategies. The generation component then sends the
generated programs to the testing component. The testing
component checks whether these new test cases trigger bugs
in target compiler.

B. Attentive Neural Network Model

a) Dataset: We use the test suite in the compiler source
releases as the original dataset. We collect grammatically
correct programs from these test suites.

b) Preprocessing: In order to remove the influence of
noise factors, we preprocess these test cases. We remove all
the comments, and expand all macros. Considering that the
inclusion of header files will introduce a large number of
duplicate standard library headers, we remove the source files
containing include preprocessing directive from the dataset.
The processed dataset has about 14000 test programs.

c) Tokenization and simplification: The smallest individ-
ual grammatical unit in C programs is token. As we aim
to build the language model at token level, there are some
challenges to overcome. Due to the diversity of identifier
naming in programming languages, the vocabulary size would
be very large if we use the token sequence in the dataset
directly as input.

To facilitate the model to learn the syntax of C programming
language, we further process the source files in the dataset,

trying to reduce the number of tokens.We simplify the number
of tokens in two ways. First, we rename identifiers in the
programs. Renamed identifiers include function name, variable
name, parameter name, structure name, enumeration name,
union name, type definition name, and field name inside a
composite data type. For example, for all function names in a
source file, we name them from sub_0, and rename them one
by one according to the pattern of sub_n. For all the variable
names in a source file, we name them from var_0.Second, we
rename the literals in the programs. Renamed literals include
character literals, string literals, and floating point literals. We
rename character literals to a same value of "C", string literals
to a same value of "STRING", and floating point literals to
a fixed floating point number like 1.1. Changing the value
of literals might change the execution flow of the original
program, we think it is a tradeoff to reduce the vocabulary.
Finally, we unify the use of blank characters. Only a single
space is used as blank character. After this, we process each
source file into 1 line of code.

d) Attention mechanism: We extend the encoder-decoder
architecture with attention mechanism in DSmith. The neural
network we employ in the encoder and decoder model is
LSTM.

After processing all the input data, the encoder generates
hidden state for each element in the input sequence. Unlike
traditional seq2seq model which only use the hidden state at
the final time step, we collect all the hidden states. In the
decoder part, the previous decoder output and hidden state is
passed through the decoder LSTM, and a new hidden state
ht for that time step is produced after that. We then calculate
alignment scores using the new decoder hidden state and all
encoder hidden states:

score(ht, hs) = ht
>Wahs (6)

where hs denotes each encoder hidden state.
The alignment scores for every encoder hidden state are

combined and represented to a single vector. We use the
softmax function to normalize it into a probability distribution.

at(s) = align(ht, hs) =
exp(score(ht, hs))∑
s′ exp(score(ht, hs′))

(7)

where at(s) is the alignment weight of sth location at step t
in the input sequence.

The alignment weights and their respective encoder hidden
states are multiplied to form the context vector. We then use
the context vector concatenated with decoder hidden state to
produce an attentional hidden state passed through a fully
connected layer.

h̃t = tanh(Wc[ct;ht]) (8)

where ct denotes the source-side context vector, h̃t denotes
the attentional hidden state.

Lastly, we use the attentional hidden state to produce the
target output:

p(yt|y<t, x) = softmax(Wsh̃t) (9)



Considering the complexity and efficiency of the generative
model, DSmith has two layers of LSTM networks at the
encoder and decoder side, and the number of hidden units
in each layer is set to 512. Embedding size is set to 128. We
set the dropout rate of 0.2.

C. Generating new test programs

Once the model training is finished, we send token se-
quences to the model and ask the model to predict subsequent
tokens of the program. The generated outputs are then added
to the code prefix and this process is repeated several times.
This loop can generate a code sequence of any length.

During this process, how to select the conditional token
sequence and sample the next token is crucial. We randomly
select program fragments from a seed program as input to the
model instead of using a fixed starting prefix. At this stage, we
still use the test cases we used when training the model as seed
programs. Our goal is to increase the diversity of generated
programs.

1) Generation strategy: To make full use of generative
models to produce diverse test programs, we propose four
generation strategies: source code completion, lines of code
insertion, guided conditional branch insertion, and guided
function definition addition. Generation strategies are flexible,
we focus on applying and testing these four strategies.

Source code completion. This strategy refers to selecting
a starting point of code completion from the source file,
discarding the code after the position, and using the code
sequence before that position as the conditional input to the
model for new code generation. In this way, the proportion of
newly generated code in the test program may be high, thus
giving the model a large room for creativity.

Lines of code insertion. This strategy refers to selecting
a code insertion point from the source file, using the code
sequence before that position as the model’s input, and inter-
cepting a certain number of lines of code from the model’s
output and inserting it back into that position. Because this
strategy does not remove code from the source code, it is less
disruptive to the seed program, making it easier to generate
syntactically compliant test programs.

Guided conditional branch insertion. This strategy refers
to selecting a code insertion point from the source file, adding
the two tokens of if and the left parenthesis ( to the code
sequence after that position, and using them as input to
the model. Finally, a certain number of lines of code are
intercepted from the model’s output and inserted back to that
location. Since the two tokens have been added at the end
of the prefix for guidance, the model will generate at least
one conditional statement, thereby adding branches and new
scopes to the seed program.

Guided function definition addition. This strategy refers
to guiding the generative model to add function definitions
to the seed program. In order to facilitate processing, we add
a token sequence at the end of the source file to guide the
generation of a new function, such as void sub_x ( and
int sub_x (. The value of x is determined by the number

of functions defined in the seed program. We then pass the full
code sequence to the model to generate subsequent code. We
truncate a certain length from the model’s output to construct
new test programs. This strategy adds new function definitions
and new scopes to seed programs.

For each generation strategy, we use the code sequence
before the starting/insertion point as the starting prefix. The
model generates new tokens until token EOS which marks the
end of a source file. When the generation is completed, we
select the truncation points from the output code sequence,
and append/insert the part before the truncation point to the
original insertion point. For the first three generation strategies,
the starting/insertion points are not unique. We choose the
position after the semicolon token as an optional insertion
point. For the fourth generation strategy, we only add code
sequence to the end of the seed program, so the insertion point
is unique. For the first strategy, we append all the code before
EOS token to the starting point, so the truncated position is
unique. For the latter three strategies, we use a certain length
from the generated sequence, and the truncated position is
determined based on the tokens ; or }.

2) Sampling method: We sample the next token from the
probability distribution of the model’s outputs. A simple
method is greedy sampling, which always selects the next to-
ken with the greatest possibility. The token sequence produced
by this approach is well-formed. However, the resulting pro-
gram lacks variety. Also, the same conditional input produces
deterministic output.

Another sampling method is stochastic sampling which
randomly selects the next token based on the probability
distribution. Rather than completely random sampling, a more
reasonable way is to sample from a multinomial distribution.
When sampling from a multinomial distribution, the output
with the greatest probability can be selected with high proba-
bility. Moreover, there is a certain probability to explore other
outputs. Temperature can be used to control the randomness
of the stochastic sampling process. A lower temperature value
means that the sampling will be more conservative and the
generated program is more likely to be well-formed. A higher
temperature will bring more variety, but will also bring some
syntactically incorrect outputs. For fuzz testing, on the one
hand, we need to produce well-formed input to pass the
validity check of the parsing stage. On the other hand, we
want to produce as diverse an output as possible to trigger
unexpected behaviors. In DSmith, we use both of these two
approaches.

IV. EXPERIMENTS AND EVALUATION

In this section we assess the effectiveness of DSmith via an
empirical analysis and demonstrate its usefulness in fuzzing
real-world compilers.

Experiment Setup. All experiments were conducted on our
high-performance workstation. The workstation has 2 Intel
Xeon 4114 CPUs with 10 cores each, running a 64-bit Ubuntu
16.04 with kernel version 4.13.0-36. For the compilation we
set a timeout of 60 seconds per source file.



Evaluation metric. We use three metrics to measure the
effectiveness of DSmith: compilation pass rate of generated
test programs, code coverage improvements of the target
compiler, and unique bugs found in compilers.

The compilation pass rate of generated code is the propor-
tion of syntax valid program among all generated test case.
We use this metric to measure how well the model learns the
syntax of the input data. When fuzzing compilers like GCC,
the ability to generate syntax-compliant input files is critical.
The test programs produced by the generative model conform
to the syntax of the programming language, which means that
the test case could pass the legitimacy check of the parsing
stage, such as the lexical analysis and syntax analysis, so as to
reach the more complex and vulnerable parts of the compiler.

For software testing, code coverage is a common evaluation
indicator. It is a metric that describes the degree of which the
source code of the program has been tested. Many popular
fuzzers are guided by code coverage, like AFL [14], Hongg-
Fuzz [15], and libFuzzer [16]. Although our fuzzing approach
is not coverage-guided, the coverage information can still help
us evaluate and analyze our fuzzing process. We use gcov1 and
lcov2 to gather the coverage information for analysis.

We apply DSmith on real-world compilers and use the num-
ber of found bugs as one of the criteria for the effectiveness
of this tool. Compilers like GCC has defined a special kind of
error called “internal compiler error”, commonly abbreviated
as “ICE”. An internal compiler error is an error that occurs
not due to erroneous source code, but rather due to a bug
in the compiler itself. When the test input triggers a internal
compiler error in GCC, GCC prints out the function stack to
help the developer resolve the problem.

A. Compilation pass rate

The compilation pass rate indicates the effect of the gener-
ative model to learn patterns in C programming language. In
this part, we will analyze how the attention mechanism, four
generation strategies, and different sampling methods affect
the compilation pass rate of the generated programs.

As long as no error occur during compilation, we assume
that the test program has been compiled successfully. In our
experiments of collecting pass rates, all the inputs that caused
the compilation to fail are due to syntax errors in the generated
test program, rather than triggering a compiler bug.

1) Comparison between different models and generation
strategies: To compare the pass rates between different gen-
eration strategies, we use DSmith to generate 10000 test
programs under different generation strategies, and compared
the pass rates of these programs. To analyze the performance
of DSmith, we use the seq2seq-based method [1], also token
level, as the baseline. We use greedy sampling to perform this
comparison.

The results are shown in the Fig. 5. In summary, the
introduction of attention mechanism significantly increases the

1https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
2http://ltp.sourceforge.net/coverage/lcov.php
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Fig. 5. Pass rate of different strategies

compilation pass rate of programs generated under each gener-
ation strategy. Especially for the fourth generation strategy, the
pass rate of the program generated by DSmith is 30% higher
than that of the ordinary seq2seq model.

For different generation strategies, strategy 2 has the highest
compilation pass rate. This is because the way of inserting has
less influence on the structure and logic of the original seed
program, so it is easier to generate test programs that conform
to the syntax. Besides, the insertion point of the original code
sequence and the truncation point of the generated sequence
are not unique. Therefore, the number of test programs that can
be generated for each seed program is also greater. Among all
strategies, the pass rate of the code generated by strategy 1 is
the lowest. As we mentioned earlier, the generation method of
source code completion provides a large creative space for the
generative model. The generated test program may have a large
proportion of new code. This makes the generated program
prone to problems that do not meet the grammar specification.

2) Comparison between different sampling temperatures:
Stochastic sampling can bring diverse output to generative
models, which is important for fuzzing. To analyze the influ-
ence of the temperature value on the pass rate of the generated
code during stochastic sampling, we select 5 different temper-
ature values of 0.25, 0.5, 0.75, 1.0, and 1.25, to compare the
pass rate of the program generated by DSmith with strategy
2.

The results are shown in the Fig. 6. As temperature values
rise, the generative model becomes more aggressive. This may
bring unexpected but useful test inputs to trigger compiler
vulnerabilities. However it also makes it harder for programs
generated by the DSmith to conform to the input syntax,
thereby reducing the compilation pass rate of these test cases.
When the temperature value is 0.5, the pass rate is reduced by
about 9% compared to greedy sampling. When the temperature
value increases to 1.25, the pass rate drops below 40%.

B. Code Coverage

In this part, we compare the effect of DSmith and seq2seq
method on improving the code coverage of the compiler. And
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we compare the effect of different generation strategies and
different sampling methods on improving the code coverage.

Although DSmith is not coverage-oriented, we collect cov-
erage information to help measure the test effect of DSmith.
Software code coverage is closely related to software compile-
time options, especially for large programs like compilers.
In order to make a meaningful comparison, we choose the
increment of 3 indicators for measurement, including the
number of covered lines, the number of covered functions,
and the number of covered branches. We use GCC-7 as the
fuzzing targets.

We randomly select 200 test programs from the dataset.
After that we compile them using GCC and collect compiler
coverage as a baseline. Then DSmith uses these test programs
as seed programs, and applies four generation strategies for
one round of generation. During the generation process, every
possible starting/insertion point is used to generate once, and
truncation is performed at every possible truncation points
to generate as many different test programs as possible.
In addition to the baseline, we also compare the result of
DSmith with the seq2seq model. We perform three repeated
experiments using different seed programs, and predict the
next tokens with greedy sampling. The average of the results
is taken as the final result.

The results of the coverage improvement brought by test
programs are shown in Fig. 8. The numbers of valid programs
generated with each strategy are shown in Fig. 7. Overall, each
of our generation strategies brings code coverage improve-
ments. Since more valid test inputs are generated, DSmith is
more efficient than the seq2seq method. When using strategy
1, although the seq2seq model generates more valid inputs, the
code coverage improvements brought by these test programs
are not as effective as those generated by DSmith. The number
of valid test programs generated with strategy 2 is the largest
of the four strategies, which ultimately leads to the largest
increase in code coverage. It is worth noting that strategy 4
produces far fewer valid test cases than strategies 2 and 3, but it
is efficient in improving code coverage due to the introduction
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TABLE I
REPORTED BUGS.

ID Affected versions
bug-93160 7/8/9/10
bug-93072 7/8/9/10
bug-92799 7/8/9/10
bug-92725 7/8
bug-92615 7/8/9/10
bug-92478 8
bug-92469 7/8/9/10
bug-92377 7/8
bug-92368 7
bug-92355 7/8
bug-92352 7/8/9/10

of new function definitions.

C. Bugs

We apply DSmith to the fuzz testing of GCC. Bugs in
obsolete compiler versions are generally not interesting. We
test three GCC versions that are still supported by the GCC
development team. The three versions are GCC-7, GCC-8 and
GCC-9. In addition, we test GCC-10.0, which is currently
under development and will be released soon.

We have found 11 bugs, 6 of which even affected all the
supported versions, including GCC-10.0. The bug numbers
and the affected versions are shown in Table.I. All bugs
information has been submitted to the GCC team. To our
knowledge, this is the first time a bug has been found in
the latest version of GCC using a deep neural networks-based
generative model.

We list three test inputs generated by DSmith that success-
fully triggered bugs in GCC to further illustrate the usefulness
of DSmith.

a) Bug-93160: This bug affected all GCC supported
versions, including GCC-10.0. The test input was generated
during source code completion process. Raw seed program
does not trigger any bug. DSmith selected the beginning of
line 3 as the starting point for the completion of this program,
so lines 3 to 16 were discarded. DSmith generated lines 17 to
22, which then triggered a crash. This example demonstrates
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(a) Improvement of Lines Numbers
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(b) Improvement of Functions Numbers
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(c) Improvement of Branches Numbers

Fig. 8. Improvements of Compiler Code Coverage

the effectiveness of the source code completion strategy in
fuzz testing.
1 extern long unsigned int sub_0 ( const char * )

;
2 extern void sub_1 ( long unsigned int ) ;
3 - extern int sub_2 ( void ) ;
4 - void sub_3 ( int arg_0 ) {
5 - char * var_0 = "STRING" ;
6 - if ( arg_0 ) {
7 - var_0 = "STRING" ;
8 - goto label_0 ;
9 - }

10 - label_1 :
11 - sub_2 ( ) ;
12 - label_0 :
13 - if ( sub_2 ( ) )
14 - goto label_1 ;
15 - sub_1 ( sub_0 ( var_0 ) ) ;
16 - }
17 + extern int var_0 ;
18 + void * var_1 = & var_0 ;
19 + register int var_0 asm ( "%ecx" ) ;
20 + char * sub_2 ( char * arg_0 ) {
21 + return sub_1 ( sub_0 ( arg_0 ) + 1 ) ;
22 + }

b) Bug-92377: This test case was generated during lines
of code insertion process. Raw seed program does not trigger
any bug. After selecting line 9 as the insertion position,
DSmith generated three lines of code and inserted them into
that location. The added 3 lines of code caused a compiler
segmentation fault. The bug affected GCC-7 and GCC-8. This
case shows the effectiveness of the lines of code insertion
strategy.
1 int sub_0 ( void ) ;
2

3 int __attribute__ ( ( returns_twice ) ) sub_1 (
void ) ;

4

5 void sub_2 ( ){
6 int var_0 ;
7 + if ( var_0 > 10 )
8 + exit ( 0 ) ;
9 + return 0 ;

10 var_0 = sub_0 ( ) + 2 + ( sub_1 ( ) + 1 +
sub_1 ( ) ) ;

11 }

c) Bug-92469: This test case was generated during
guided conditional branch insertion process. Raw seed pro-

gram does not trigger any bug. First, DSmith selected line
6 as the insertion point. Then it added two tokens if and
( at the end of the previous code, and passed them to the
generative model. Following the two tokens if and (, a
conditional statement was introduced. The addition of these
two new lines eventually led to an internal compiler error.
This example demonstrates the usefulness of guided branch
insertion strategy for C compiler fuzzing. The shown program
triggered an internal compiler error in GCC-9 and GCC-10.0.
If we change “19” in line 3 to “20”, it will also trigger a
similar crash in older versions of GCC.

1 void sub_0 ( void ){
2 register int var_0 asm ( "19" ) ;
3

4 + if ( var_0 )
5 + return 0 ;
6 }

V. RELATED WORK

a) Fuzzing techniques.: Fuzzing was introduced by
Miller et al. [17] in 1990. Researchers have been using fuzzing
as a standard method for software testing and bug finding.
Fuzzing has been used to test UNIX utilities [17], compilers
[1], [2], [18], runtime engines [19]–[22], and other kinds of
applications. When fuzzing, fuzzers create a large number of
inputs and run the target software with these inputs. In order
to be effective, the generated inputs must be“valid enough” to
bypass the early validation stage. Besides, the fuzzed inputs
must be “invalid enough” to expose unexpected behaviors,
such as an incorrect result, a freeze, or a crash.

For complex input formats, generation-based approaches
prevent generated inputs from being rejected immediately by
the target software. CSmith [2] generates random programs
guided by a probabilistic grammar which covers a subset of
the C programming language. It randomly selects an allowable
rule from the grammar to generate C programs avoiding
undefined and unspecified behaviors. LangFuzz [19] learns
code fragments based on the given grammar. It generates new
test programs by recombining fragments from a given test
suite. LangFuzz has been successfully applied on JavaScript
interpreter and PHP interpreter. However, several studies have



mentioned the difficulties of providing a fuzzer with syntax
specifications for specific input formats [2], [22].

Various efforts have been invested to learn syntax from
exsiting samples. To generate semantically-valid inputs, Sky-
fire [22] learns a probabilistic context-sensitive grammar
(PCSG) from a large corpus of samples. The learned PCSG is
then used to generate well-distributed seeds for fuzzing pro-
grams that process highly-structured inputs. This approach still
requires providing a context-free grammar for the input format.
TreeFuzz [20] uses learned probabilistic language models of
structured data for generating test input data. TreeFuzz focus
on input data that can be represented as a labeled, ordered tree.
Although TreeFuzz does not require priori knowledge of the
input format, complex model extractors have been designed to
infer generative models from a given corpus of example data.

b) Deep Learning in fuzzing.: Deep learning has made
significant breakthroughs in various fields of artificial intel-
ligence. Advantages of deep learning include the ability to
capture highly complicated features, weak involvement of
human engineering, etc.

V-Fuzz [23] uses a neural network-based vulnerability
prediction model to give a prior estimation on which parts
of the software are more likely to be vulnerable. Then, a
vulnerability-oriented evolutionary fuzzer is used to generate
inputs which tend to arrive at these vulnerable locations.

Generation-based fuzzing is effective for fuzzing softwares
with complex structured inputs. However, as we mentioned
earlier, providing such grammars for fuzzers is a tedious
task. Learn&Fuzz [21] use neural network-based statistical
learning methods to learn input formats from a number of
sample inputs. Godefroid et al. presented and evaluated the
seq2seq model to automatically learn a generative model of
PDF objects. Cummins et al. presented DeepSmith [18] for
OpenCL compiler fuzzing. They used LSTM to model the
programs. Liu et al. [1] proposed DeepFuzz, a fuzzing tool for
C compilers based on a a character-level generative seq2seq
model.

VI. CONCLUSION

In this paper, we design and implement DSmith to capture
the long-distance syntax dependencies in programs for a robust
compiler fuzzing inputs generation. We apply token-level
neural language model of C programs to fuzzing. Attention
mechanism is used to enhance the capabilities of the neural
generative model to capture the long-distance syntax depen-
dencies. According to the four novel generation strategies,
DSmith can generate various effective test programs by its
built language model.

Experiments show that DSmith increases the parsing pass
rate of the generated programs by an average of 19% and
significantly improves the code coverage of the compiler,
compared with existing deep neural networks-based fuzzing
methods. In our experiments, DSmith has found eleven brand
new bugs in GCC compiler.
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