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Abstract—Continuously striving for cyberthreat awareness
is an essential task to secure an IT infrastructure. Analysts
must guarantee access to information on the most up-to-date
cybersecurity events and threats. This monitoring process is
often the job of a security information and event management
system, which relies on the timeliness and relevance of its
feeds. There has been growing interest in exploiting open source
intelligence for this purpose, mainly due to its timeliness and
volume. Social media sites such as Twitter, are capable of
aggregating numerous cybersecurity-related sources and act as a
stream of information that can be used to feed a cyberthreat
intelligence platform. In this paper, we present a multi-task
learning approach combining two Natural Language Processing
tasks for cyberthreat intelligence. Our pipeline is capable of
reading a stream of tweets from a set of Twitter accounts and,
through a shared deep neural network architecture, simultane-
ously identify relevant cybersecurity-related content and extract
indicators of compromise therein. We show that in comparison
to the traditional independent tasks baseline, one of the tasks
achieves a slight F1 score improvement, while the other task is
able to maintain its performance. Thus, the proposed approach
greatly simplifies the pipeline and the requirements for data and
online model adaptation over time, without sacrificing functional
performance.

I. INTRODUCTION

Cyber Threat Intelligence (CTI) is a component of cyber-
security which has been receiving an increasing amount of
attention, both from CTI researchers in academia as well as
from CTI practitioners in Security Operation Centers (SOCs)
and in security services providers.

Timely awareness is a challenging task for a SOC, given the
numerous attack vectors that may threaten an IT infrastructure.
Given a complex and diverse system incorporating all sorts
of hardware, software, and different operating systems, the
difficulty in acquiring, processing and selecting the relevant
cybersecurity information increases dramatically. As an infras-
tructure scales and new tools are introduced, vulnerabilities
and new attack vectors inevitably creep in, leading to an
increasing trend of successful attacks [1]. Although there is
the option of subscribing a paid service to receive curated
feeds, research has shown that Open Source Intelligence
(OSINT) provides useful information to create Indicators of
Compromise (IoC) [2]–[4].

In previous work [5], we presented a CTI pipeline that relied
on two Deep Neural Networks (DNN) laid out sequentially to
process Twitter data streams. As these OSINT streams provide
large amounts of heterogeneous data produced at a rapid rate,

the pipeline goals are: (i) to select only the IT infrastructure-
related content, and (ii) to extract relevant security-related
information therein to fill an IoC.

Given that both DNNs are trained on the same source of
data, they can be combined through a Multi-Task Learning
(MTL) approach which would allow for a more generalized
representation in the shared layers. MTL is an inductive
transfer learning mechanism where a model is trained on
multiple tasks, leveraging the knowledge acquired for one to
boost the performance of the other [6], [7]. Recent work in
NLP has shown that MTL can often boost the performance of
state-of-the-art models [8]. MTL methodologies have shown
not only to improve results on tasks that share a common
domain, but also that by learning multiple related tasks the
model improves its generalization capability, greatly reducing
chances of overfitting [9].

In this paper, we present a MTL approach that merges
the two previous models into an end-to-end pipeline for
cybersecurity-centric Natural Language Understanding (NLU).
The intended pipeline should be a complete end-to-end DNN
architecture with no requirement for feature engineering or
extra components in the processing pipeline.

Our MTL CTI pipeline uses Twitter as its OSINT data
stream source. This social media platform was chosen due
to its ability to act as a natural aggregator of multiple
sources [10], and its big data characteristics: large volume of
data, the highly diverse pool of users, high accessibility, and
timely production of new content. These properties remain true
in the cyber security domain, which resulted in a multitude of
work being develop over the years [5], [11], [12].

Our tool receives tweets, through the Twitter API, from a
predetermined set of accounts which have been selected based
on their likelihood of outputting security-related content about
a specified IT infrastructure. The tweets are filtered based on
the mention of IT infrastructure assets and then normalized
before they are fed to the DNN stage. For processing the text,
a MTL DNN model forks into two output modules: a binary
classifier and a Named Entity Recognizer (NER). Both share
character-level and word-level representation layers which can
either be a Convolutional Neural Network (CNN) [13] or a
type of Recurrent Neural Network (RNN) such as the Long
Short-Term Memory (LSTM) [14]. The combined result of the
output modules produces a concise artifact reporting a security
event, such as a vulnerability disclosure or security update, to
issue an alert.
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To train and evaluate our model, we used two sets of
tweets, one previously collected for our baseline work [5]
and another set collected over three months. We sought to
analyse the different combinations of CNN and LSTM layers
for the character-level and word-level representations for both
our baselines and MTL models. The resulting MTL model
provides an improvement on the binary classification task
while being able to maintain the NER component performance
on the testing set.

The remainder of the paper is organized as follows. Sec-
tion II presents an overview of related work. Details on
the baseline work to which we compare the proposed MTL
approach, described in Section IV, are provided in Section III.
The experimental set up is described in Section V and the
results are shown and discussed in Section VI. Section VII
presents a brief analysis and examples of IoCs that were
successfully built using the proposed approach. Finally, Sec-
tion VIII presents the conclusions taken from the experimental
work.

II. RELATED WORK

A. Multi-Task Learning

MTL is an approach where multiple tasks are learned in
parallel using a shared domain knowledge representation [7].
This methodology is used so that learning from the training
data of one task improves the learning of other tasks, thereby
improving generalization. Collobert et al. [6] proposed a model
with a weight-sharing capable of learning multiple tasks.
The proposed model follows a common approach in MTL
where earlier layers of the network are shared among tasks,
leaving the final layers to be task specific. Another common
component is the training schedule, where the network is
trained iteratively by one task at the time. Liu et al. [8]
proposed a multi-task methodology that leveraged a pre-
trained language model [15] to obtain an improvement in
ten Natural Language Understanding (NLU) tasks. Ruder et
al. [16] presented a meta-architecture for sequence tagging
problems. The architecture presented is capable of learning
what layers to share between the networks, which parts of
those layers to share and how much.

B. Machine Learning and Cyber Threat Intelligence in OSINT

There has been a considerable interest in previous works
to use Twitter as an information source for CTI. Sabottke et
al. [11] used Twitter to conduct a quantitative and qualitative
exploration of vulnerability-related information and proposed
a exploit detector using a Support Vector Machine (SVM)
classifier. The detector is capable of extracting vulnerability-
related information from Twitter, augment it with additional
sources and predict if the vulnerability is exploitable in a
real-world scenario. Subsequently, the authors also considered
adversarial scenarios to their pipeline. Le Sceller et al. [17]
proposed SONAR, an automatic keyword-centric self-learned
framework that can detect, geolocate and categorize cyberse-
curity on a Twitter stream. Liao et al. [18] developed iACE for

Fig. 1. Previous work Twitter-based threat detection pipeline architecture with
single-task DNN [5].

automatic IoC extraction from structured technical articles us-
ing context terms and grammatical relations. Alves et al. [12]
presented the design of a classifier model, a SVM and a Multi-
Layer Perceptron (MLP), for a Twitter-based threat monitor
for generating a summary of the threat landscape related to a
given monitored IT infrastructure. Zhong et al. [19] deployed
a Logistic Regression to analyze the severity of cybersecurity
threats based on the language that is used to describe them
online.

III. BASELINE DNN APPROACH

In our previous work [5], we proposed a CTI tool that
employed two sequential single-task DNN architectures to
process a data stream, one identifying relevant security-related
information and the other extracting relevant entities. The CTI
pipeline architecture used in Alves work is shown in Figure 1

The first stage collects tweets, filters them based on a set
of keywords and normalizes tweets to a specific format. In
the second stage, a binary classifier labels tweets as either
relevant, meaning they are likely to contain valuable informa-
tion about an asset of interest, or irrelevant. Finally, in the
information extraction stage, relevant tweets are processed by
a NER network. The information extracted can be used to
issue a security alert or to enrich an existing IoC in a threat
intelligence platform such as MISP [20].

As the DNN architecture components used in these models
form the basis of the MTL model proposed, we briefly describe
them in the next subsections. A more formal specification will
be given in section IV. The complete description of these
DNNs design experiments can be found in the paper [5].

A. Classification DNN

The classification stage aims to detect tweets containing
security-related information, so that only these proceed to
the NER stage. We implemented a binary classifier using a
CNN [13] whose architecture can be described by five layers:
input, embedding, convolution, max-over-time-pooling, and
output, as shown in Figure 2.

1) Input layer: The CNN receives sentences represented by
a sequence of integers, each representing a word token, just
as illustrated in Figure 2.

2) Embedding layer: Each integer corresponds to a numeric
vector accounting for the semantic value of the corresponding
word. These word vectors can be randomly initialized or
extracted from trained language models (e.g., GloVE [21] or
Word2Vec [22]). In both cases, the learning algorithm may
further adjust the word vector.



Fig. 2. Convolutional neural network architecture for sentence classification.

3) Convolution layer: With a set of learnable kernels, the
convolution operation will slide down these kernels producing
feature maps. The height and width of the filters correspond to
the number of words covered and to the dimension of the word
vectors, respectively. Given that this operation computes one
feature for each stride of the filter over the embedded matrix,
the convolutional layer outputs a set of feature map vectors.

4) Max-over-time-pooling layer: The feature values com-
posing a map denote how strong the feature is within a specific
input window. We reduce the feature map into a single value
providing information on the presence or absence of a feature,
through the max-pooling operation [23].

5) Output layer: Before using the selected features in the
output layer of the network, dropout [24] is applied to the
feature vector. Dropout acts as a form of regularization [25],
preventing overfitting and promoting generalization. Finally,
feature nodes are used by a fully-connected softmax layer
which outputs the probability of a tweet to contain relevant
information. If relevant, the tweet moves to the next stage of
the pipeline, otherwise it is dropped.

B. Named entity recognition DNN

In the NER phase, we aim to extract information from
tweets that have been considered relevant by the classifier. Our
model is based on a BiLSTM neural network [26], illustrated
in Figure 3.

This network locates and labels valuable security-related
entities such as monitored infrastructure assets, vulnerabilities,
attacks, and vulnerability repository IDs mentioned in tweets.
To the extent possible, we defined security-related entities
according to descriptions from the ENISA risk management
glossary [27]. Next, we briefly describe the network layers:
input, embedding, word-level BiLSTM, tweet-level BiLSTM,
and output.

1) Input layer: In addition to the integers representing the
word tokens applied to the input layer of the classifier, this
network receives secondary sequences of integers, one for each

Fig. 3. Bidirectional long short-term memory architecture for named entity
recognition.

word at the input, representing the characters that form the
word.

2) Embedding layer: This layer functionality is similar
to the classifier’s regarding the sequence of integers that
correspond to the words in tweets. Additionally, the integers
in each secondary sequence are also converted to numeric
vectors, providing a character-level representation of the tweet.
Therefore, besides the word-level embedded matrix, each word
has a corresponding character-level matrix representation.

3) Word-level BiLSTM layer: The embedded character ma-
trix corresponding to each word is fed to a BiLSTM network,
containing two cells that read the sequence of character vectors
in opposite directions. Both cells possess a hidden state vector
that is updated at every time step (i.e., at every character read).
After reading all the characters the cell states are extracted
and concatenated, forming vectors that hold a character-level
representation from both left-to-right and right-to-left readings.

4) Tweet-level BiLSTM layer: Similar to the process de-
scribed for the word-level BiLSTM, we feed this tweet repre-
sentation to another BiLSTM layer, word by word. However,
while the previous layer only retrieves the final hidden state,
in this layer we read it at every time-step (every word
representation read).

5) Output layer: In the final layer of the NER model,
we have a fully-connected neural network and a Conditional
Random Field (CRF) module [28].

IV. MULTI-TASK LEARNING APPROACH

The MTL CTI tool architecture is presented in Figure 4,
which depicts a high-level representation of the three main
stages. The first, collects tweets through the Twitter API,
filters them based on a set of keywords, which are defined
according to a specific IT infrastructure, and normalizes the
tweets representation. In the second stage, a Multi-Task DNN
model performs two tasks: (i) it classifies (relevant or not)
tweets according to their relevance to the cybersecurity of the
given infrastructure; and (ii) it processes relevant tweets to
extract useful entities that can be used to issue a security alert
or fill an IoC. In a final stage, these artifacts can feed a CTI



Fig. 4. MTL-based cyberthreat intelligence pipeline.

platform such as MISP [20]. In the following we give details
about the two first stages.

A. Data collection

The first stage focuses on data processes, including collec-
tion, filtering and pre-processing.

A manually curated set of Twitter accounts, selected on the
basis of their likelihood to share security-related information,
are used to query the Twitter’s streaming API.

By assuming that a tweet about an infrastructure asset has
to mention its properties and components, the filter module
employs a set of user-defined keywords describing the in-
frastructure being monitored to drop irrelevant tweets, further
decreasing the amount of information that flows through
the pipeline. For instance, an analyst wants to be informed
about potential threats to a web service hosted on a cloud
platform, the set of keywords used for system’s filter should
include operating systems, web server software (including
version numbers), the cloud platform being used and all other
components supporting the asset in question.

The final component in this stage is a simple pre-processing
function that standardizes the representation of tweets by con-
verting every character into lower-case, removing hyperlinks
and special characters, except for useful characters such as ‘.’,
‘-’, ‘_’, and ‘:’, as they are often used in IDs, version numbers,
or component names.

B. Multi-Task Learning Model

Figure 5 provides a high-level representation of our MTL
architecture and its eight components, described below.

1) Input Layer: As briefly explained before, the model
receives two representations of a text: a word-level sequence
of n tokens where each token represents a word, and nc
character-level tokens, where each token represents a character.
Each word token is converted to a randomly initialized dw-
dimensional vector, resulting in a n × dw matrix. Similarly,
each character token is also converted into a dc-dimensional
vector, leaving each word to be represented at the character-
level by a c× dc matrix where c is the number of characters
in a word.

Fig. 5. Multi-Task Learning model architecture.

2) Character-level CNN Layer: Following the input layer,
the CNN working at the character-level uses a set of kc
learnable kernels, each containing fc filters with a height hc,
which are variable from kernel to kernel, and a width of dc,
equal to the dc-dimensional vectors. During the convolutional
operation these filters stride down the vectors producing kc×fc
feature maps. These features are then passed by a max-pooling
function, resulting in a single value from each feature map,
leading to a total of fkc = kc × fc features. The resulting
character-level representation is a vector of fkc features for
each word, outputting a numerical matrix of n× fkc.

3) Character-level LSTM Layer: Alternatively, the
character-level representation can be produced by a
bidirectional LSTM layer that uses two hc-dimensional
vectors, called hidden states, which are modified as the input
is read. These vectors receive the input character-level vectors
in opposite directions and once the input is processed, the
resulting hc-dimensional vectors are concatenated. Thus, this
layer outputs a hc × 2 numerical vector for each word.

4) Word Representation: Once the character-level represen-
tation is ready, it is concatenated with the dw-dimensional
word-level representation. This leads to each word being
represented by a vector of length dw + kc × fc when the



character-level CNN is used, or of length dw + 2 × hc when
using the character-level LSTM. We denote this new vector
length as d.

5) Word-level CNN Layer: The word-level CNN layer is
similar to the character-level CNN layer, except that it receives
a composed word representation from the previous layer. It
uses kw kernels, each with fw filters of height hw and width
d (dimension of the word representation vector). The process
of computing the feature maps is equivalent to the character-
level CNN layer. However, in this case we pad the input before
the convolution to keep the original dimensions. As so, we do
not perform any pooling operation at this stage and thus output
a n× kw × fw matrix.

6) Word-level LSTM Layer: The word-level LSTM layer
requires less modifications to its character-level counterpart. It
receives the n×d input, initializes its hw-dimensional vectors
for both directions, and processes the input at each time-step.
The only modification necessary to the workflow described
before consists in keeping the state of the hidden vectors at
each time-step as opposed to keeping only the last vectors.
This leads to an output of a n× hw × 2 matrix.

7) Binary Classification: The output layer of the first task
produces a binary classification on the basis of the shared
layers described above. Since we intend to classify the sen-
tence as a whole, we reduce the dimension of the received
input by performing a max-pooling operation. The resulting
features are flattened into a final feature vector and passed to
a fully-connected sigmoid layer.

8) Named Entity Recognition: For our second task, instead
of classifying the sentence globally, we intend to label each
of the words as one of t possible entities. The output from
the shared layers is passed through a fully-connected neural
network containing t neurons, providing a n × t matrix.
This acts as a score matrix, where the activation of the t
neurons produces a score for each label. These could be passed
through a softmax function, leaving the prediction to be made
independently, or a CRF module which is beneficial in cases
of dependency between the target values. Based on previous
experimental works [29], we chose to use a CRF layer to
produce the NER stage predictions.

V. EXPERIMENTAL SET-UP

This section describes the experimental work designed to
establish a baseline among the single-task models and subse-
quently the evaluation of the multi-task model on both tasks.

A. Datasets

For model training and evaluation, we collected a total
of 31281 tweets across two time periods, T1 and T2, as
displayed in Table I. These tweets were collected through
a selection of manually curated accounts and passed through
a filter, as previously described in Section IV-A. Once the data
was gathered, we manually labeled the tweets as relevant or
not relevant, depending on the security-related content found.
Afterwards, the subset of tweets labeled as relevant were
selected for the NER task. The words in these tweets where

TABLE I
DATASETS USED FOR TRAINING AND EVALUATION.

Dataset Time Interval Positives Negatives Entities

T1
21/11/2016 to

27/03/2017
8093 12954 42793

T2
01/06/2018 to

01/09/2018
2980 7254 13694

TABLE II
NAMED ENTITIES TO BE EXTRACTED FROM A TWEET.

Label Description

O Does not contain useful information.

ORG Company or organization.

PRO A product or asset.

VER A version number, possibly from the identified asset or product.

VUL May be referencing the existence of a threat or a vulnerability.

ID An identifier, either from a public repository such as the National
Vulnerability Database (NVD) [30], or from an update or patch.

then labeled using the labels shown in Table II. The ENISA
risk management glossary [27] was used to define the entities,
although we adopted broad definitions so that the labels
become more distinguishable by the network. For example,
the label VUL includes both vulnerabilities and threats.

B. Training and Evaluation

For the training stage we used dataset T1 and the first month
of T2. The remaining samples of T2 were used for testing.
During training, we randomly sampled 20% of the data to
form a validation set for early stopping purposes. For single-
task models, the early stopping criteria focused on the F1-score
not improving for a predetermined amount of steps. Regarding
multi-task models, we used the F1-score of the two tasks F1-
scores, as we weight both tasks equally.

One of the objectives of our evaluation was to analyze the
impact that each module has in the model performance. Thus,
for both tasks, we evaluated each combination of the character-
level and word-level modules, including the absence of one
of these representations. This resulted in eight variations as
displayed in Table III.

The models were implemented in PyTorch [31] using the
Adam optimizer [32], and trained with batches of 256 data
points, using a learning rate of 0.001 for both the binary and
the NER training steps.

A grid-search was conducted to tune hyper-parameters and
model design variables. The following alternatives were con-
sidered in the search:

• Character vector dimension: 50, 100, 200.
• Word vector dimension: 100, 200, 300.
• Character-level CNN used a single kernel with height 2,

3, or 4, and number of filters within {64, 128, 256}.
• Word-level CNN used 1 to 3 kernels with height 2, 3, or

4, and number of filters within {64, 128, 256}.



TABLE III
MODEL ARCHITECTURE VARIATIONS.

Model Description

WordCNN + CharCNN Uses a CNN for the word-level representation and character-level representation

WordCNN + CharRNN Uses a CNN for the word-level representation and RNN for the character-level representation

WordRNN + CharCNN Uses a RNN for the word-level representation and CNN for the character-level representation

WordRNN + CharRNN Uses a RNN for the word-level representation and character-level representation

Only WordCNN Uses only a CNN for the word-level representation

Only WordRNN Uses only a RNN for the word-level representation

Only CharCNN Uses only a CNN for the character-level representation

Only CharRNN Uses only a RNN for the character-level representation

• Charecter-level RNN used a single bidirectional LSTM
cell with hidden vector dimensions varying within {100,
200, 300}.

• Word-level RNN used a single bidirectional LSTM cell
with hidden vector dimensions varying within {100, 200,
300}.

• Dropout probability before the output layer: 0.0, 0.3, 0.5.
For the Multi-task cases we opted to only evaluate the

architectural variations that used both types of input represen-
tations (word and character). The multi-task training schedule
is presented in Algorithm 1.

Further details on the parameters and design of the models
can be seen in the JSON files available with the source code1.

Algorithm 1: Multi-Task Learning schedule.
Initialize model parameters θ randomly.
Set the stopping criteria : stopTrain
Set mini-batches for each task
while not stopTrain do

for t in Tasks do
Get batch for task t: bt
Compute loss for task t: Lt(θ, bt)
Compute gradient : ∇t(θ)
Update model weights : θ = θ − ε∇t(θ)

end
end

VI. RESULTS

For evaluation of the binary classification task, we chose to
measure the F1-score between the True Positive Rate (TPR)
and the True Negative Rate (TNR). Similarly, for the NER
task we calculated the F1-score between Precision and Recall.
Each result presented corresponds to the best case found in the
grid-search conducted for each modular architectural variation.

A. Single-Task Models

Tables IV and V show the single-task models results ob-
tained with the validation and testing sets (separated by a /),
for the binary classification and NER tasks, respectively.

1https://github.com/ndionysus/multitask-cyberthreat-detection

TABLE IV
SINGLE TASK MODEL BINARY CLASSIFICATION RESULTS (VALIDATION /

TEST).

CharCNN CharRNN No Char

WordCNN 0.947 / 0.916 0.944 / 0.901 0.909 / 0.883

WordRNN 0.946 / 0.917 0.939 / 0.902 0.902 / 0.887

No Word 0.932 / 0.900 0.938 / 0.903

TABLE V
SINGLE TASK MODEL NAMED ENTITY RECOGNITION RESULTS

(VALIDATION / TEST).

CharCNN CharRNN None

WordCNN 0.971 / 0.939 0.979 / 0.940 0.915 / 0.883

WordRNN 0.979 / 0.940 0.977 / 0.937 0.880 / 0.867

None 0.971 / 0.938 0.959 / 0.931

TABLE VI
MULTI-TASK MODEL RESULTS (VALIDATION / TEST).

Binary NER
WordCNN + CharCNN 0.945 / 0.915 0.967 / 0.936

WordRNN + CharCNN 0.951 / 0.918 0.973 / 0.938

WordCNN + CharRNN 0.949 / 0.921 0.968 / 0.932

WordRNN + CharRNN 0.951 / 0.922 0.973 / 0.940

In the binary classification model, the combination of
character-level CNN and word-level RNN or CNN, presented
the best results (comparable for word-level RNN or CNN).
Regarding the NER model, two different variations achieved
the best results, indicating that the best solution is to use
a combination of CNN and RNN, regardless of the type of
each specific layer. The analysis of the results presented in
both tables also leads to the conclusion that the usage of
both representation levels, character and word, is beneficial for
the model. This is likely due to the fact that by additionally
using the character representation, the model becomes less
dependent on the training set vocabulary.

B. Multi-Task Models

Table VI shows the results obtained by the four Multi-Task
DNN models in both tasks. As previously observed, using



TABLE VII
SAMPLE OF THREE INDICATORS OF COMPROMISE PRODUCED BY THE TEST SET.

Tweet NVD date Tweet date CVSS
Microsoft Windows - Advanced Local Procedure Call (ALPC) Local Privilege Escalation Exp (...) 09/12/2018 28/08/2018 7.9

Adobe Flash - AVC Processing Out-of-Bounds Read Exploit CVE-2018-12827 (...) 29/08/2018 28/08/2018 7.5

Vuln: Adobe Flash Player CVE-2018-12828 Unspecified Privilege Escalation Vulnerability (...) 29/08/2018 16/08/2018 9.8

both character-level and word-level representations provides
better results when compared to the absence of any of these.
Therefore, we focused on obtaining results only for these four
variations of the model architecture. The configuration of the
best models obtained from the grid-search is the following:

• WordCNN + CharCNN: character embedding dimensions
are set to 50. The CharCNN component uses 1 kernel
with height of 3 and 128 filters. The resulting features
are concatenated with a word embedding with dimension
of 300. These features are then sent to the WordCNN
component with 3 kernels, with heights of 2, 3, and 4,
all having 128 filters.

• WordRNN + CharCNN: character embedding dimensions
are set to 100. The CharCNN component uses 1 kernel
with height of 3 and 128 filters. The resulting features
are concatenated with a word embedding vector with
dimension of 200. These features are then sent to the
WordRNN component with 1 bidirectional LSTM cell
with hidden vectors dimension of 300.

• WordCNN + CharRNN: character embedding dimensions
are set to 100. The CharRNN component uses 1 bidi-
rectional LSTM cell with hidden vectors dimension of
200. The resulting features are concatenated with a word
embedding with a dimension of 200. These features are
then sent to the WordCNN component using 1 kernel with
height of 2 and 128 filters.

• WordRNN + CharRNN: character embedding dimensions
are set to 100. The CharRNN component uses 1 bidirec-
tional LSTM cell with hidden vectors dimension of 100.
The resulting features are concatenated with a word em-
bedding with a dimension of 200. These features are then
sent to the WordRNN component with 1 bidirectional
LSTM cell with hidden vectors dimension of 300.

For the binary task, a slight improvement of 0.5% was
observed on both validation and test results when compared to
the best single-task results. The MTL model which obtained
the best results, uses a combination of character and word level
layers that previously displayed worse results when compared
to the other three single task variations.

The NER task results did not achieve an equivalent improve-
ment. Nonetheless, the best model variant obtained comparable
performance to the best single-task model variations. We argue
that the reason why only the binary task achieved a slight
improvement is twofold. First, as the problem consists of
predicting a label for each separate word, the NER task is more
detailed and specific. This leads the model to exploit local re-
lationships and build representations that favor this specificity,

which can also be helpful to predict if a tweet is mentioning
security-related information or not. However, the opposite
may not be true. The binary task is more general, leading
the model to learn representations of the overall semantic
value of a whole sentence. As the NER task focuses more
on local relations than global ones, this global information is
likely to be less useful. Second, given that neural networks
are data-hungry models, more importantly than the network
architecture or the training process, the current size of the
dataset may be a limitation. For the NER task, its size is only
a fraction of the whole dataset used for the binary task, since
only the positive entries are used to train.

VII. EXAMPLES OF INDICATORS OF COMPROMISE

To demonstrate the usefulness of Twitter as a source for
CTI, we simulated a real-world scenario by passing the test
set tweets through the deployed pipeline (Figure 4). Table
VI-B presents a sample of tweets found in the testing set
that were available on Twitter prior to their official disclosure
in the NVD [30]. Each row displays a tweet, the NVD
disclosure date, the earliest reference found in the testing
set to the vulnerability, and the severity score according to
the Common Vulnerability Scoring System (CVSS) [33]. The
first tweet displayed in the Table VI-B refers to a zero-day
vulnerability in Microsoft Windows’ task scheduler. This was
a case where a Twitter user published a vulnerability, paired
with a proof-of-concept exploit, before the official disclosure
by the product owner. The other two cases mention Adobe
products vulnerabilities with high or critical severity. These
three examples demonstrate the timeliness and relevance of
the information extracted by the pipeline.

VIII. CONCLUSIONS

In this paper we report the merging of two separate deep
neural network architectures developed in previous work, used
for two distinct tasks of a cyberthreat intelligence tool. The
resulting (upgraded) tool receives a stream of tweets which are
processed by a single multi-task deep neural network model.
We have shown that the multi-task model could achieve similar
results regarding named entity recognition and binary classifi-
cation tasks. Consequently, the complexity of the information
pipeline of the cyberthreat intelligence tool can be greatly
reduced, and the procedures required for online update of the
dataset and model parameters are also simplified. In future
work, the pipeline can be further enhanced by the usage of
recent pre-trained language models that can be further fine-
tuned with cybersecurity domain-specific text.
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