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Abstract—Visual Question Answering (VQA) is to reason out
correct answers based on input questions and images. Significant
progresses have been made by learning rich embedding features
from images and questions by bilinear models. Attention mech-
anisms are widely used to focus on specific visual and textual
information in VQA reasoning process. However, most state-of-
the-art methods concentrate on fusing the global multi-modal
features, while neglect local features. Besides, the dimension is
reduced excessively (from K×2048 to 2048) in general visual
attention, which causes a mass of visual information loss. In this
paper, we propose a novel multi-channel co-attention network
(MC-CAN), which integrates multi-modal features from global
level to local level. We design different multi-channel attention
mechanisms separately for visual (from K×2048 to M×2048)
and textual features at different level of integrations. Additionally,
we further improve our proposed approach by combining it with
the complementary modules such as the MLB and the Count
modules. Experiments on benchmark datasets show that our
approach achieves better VQA performance than other state-
of-the-art methods.

Index Terms—VQA, Multi-Channel Co-Attention Network,
Multi-Hierarchical Fusion

I. INTRODUCTION

The Visual Question Answering (VQA) [1] is a task to

answer questions which are posed in natural language about

images. The answers can be either selected from multiple pre-

specified choices or generated by a model. Existing VQA ap-

proaches usually consist of three stages: feature representation,

feature fusion and answer classification.

Feature representation. Pre-trained ResNet [2] and

VGG [3] are commonly used in VQA visual feature extraction.

The work in [4] shows that post-processing CNN with

region-specific image features such as Faster R-CNN [5] can

lead to an improvement of VQA performance. In contrast,

Long Short-Term Memory (LSTM) and word embedding [6]

are commonly used to generate textual features from either

sentence-level or word-level. Lu et al. [7] further proposed to

model the question from word-level, phrase-level, and entire

question-level in a hierarchical fashion.

Feature fusion. At this stage, visual and textual fea-

tures are aligned with each other. Except traditional methods

such as concatenation, element-wise addition and element-
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Fig. 1. The Up-Down model [4] vs. MC-CAN.

wise product, a large number of new fusion methods (e.g.,

MCB [8], MLB [9], MUTAN [10], MFB [11]) have recently

been proposed for finer-grained integration of multi-modal

features. Additionally, attention mechanisms [12], [13] are

adopted to force the system to look at informative regions

in text or vision.

Answer classification. The most popular method for

answer classification is to utilize the integrated image-question

features to learn a multi-class classifier which can predict the

best-matching answer.

With respect to multi-modal feature fusion, the visual atten-

tion mechanism has been widely used in VQA. Teney et al. [4]

proposed a bottom-up and top-down (Up-Down) attention

model (Fig.1(a)) which enables attention to be calculated at

the level of objects and other salient image regions, and ob-

tained the best results in the 2017 VQA Challenge. However,

this model only concatenates visual and textual features but

neglects the textual attention. Fortunately, bilinear pooling

methods and co-attention mechanisms are complementary to

this work [4].
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Fig. 2. Comparison between competitive selection (CS) strategy and tradi-
tional counterpart for image features screening. Note that X denotes global
features, Xci denotes local features, SSi denotes global screening, and the
process with Catt denotes local screening.

Most existing VQA approaches, including Up-Down model,

just integrate the global original features of images and

questions once in visual attention, while neglect the fusion

of local features. However, directly using global integrated

image-question features may introduce noisy information and

lose detail information for given questions. Another problem

is that the dimension of image features, with visual attention

employed, is reduced excessively (from K×2048 to 2048)

(Fig.1(a)), which results in most visual detail information

losing.

Thereby, we propose a novel competitive selection (CS)

strategy for screening features from different modalities. As

illustrated as Fig.2, we compare CS strategy with traditional

counterpart in visual features screening. Given image features

of K regions X , in contrast to single selection strategy such as

region attention used in traditional methods, our proposed CS

strategy is divided into two steps, namely global screening and

partial screening separately. At first step, a variety of different

selection strategies are utilized to select image features from

different perspectives. Note that the generated features Xci

by i-th selection strategies are similar to the representation of

an image channel, so we call Xci i-channel representation of

X . At second step, all channel features {Xc1, Xc2, · · · } are

further screened by channel attention Catt to obtain the final

normalized features Xtoken. Analogously, the CS strategy can

also be used to screen textual features.

Based on the CS strategy and co-attention mechanism, we

separate the whole multi-modal feature fusion into multiple

processes to strengthen the correlation between image and

question gradually by different level of selections from global

to local. Different from traditional simple global screening

for multi-modal features (Fig.1(a)), we firstly implement

multiple global screenings, then implement multiple partial

screenings, and finally calculate the correlation weights of

each part to obtain the normalized fused features for the

given question. Furthermore, we propose the multi-channel

co-attention network (MC-CAN) (Fig.1(b)), which integrates

multi-modal features from global level to local level. For

feature screening, we design different multi-channel attention

mechanisms separately for visual (from K×2048 to M×2048)

and textual features at different level of integrations, which

can not only reduce the loss of detail information, but also

make the multi-modal integration finer-grained. Note that the

“channel” means one of different representations of an object.

For instance, we use multiple projections of text features to

get multi-channel features.

In summary, the contributions of this paper are as follows:

• We propose a novel competitive selection (CS) strategy

for screening multi-modal features, and further propose

the multi-channel co-attention network (MC-CAN) for

VQA, which integrates multi-modal features from global

level to local level.

• We design different multi-channel attention architectures

separately for visual and textual features at different level

of integrations.

• We further improve our proposed MC-CAN by com-

bining it with the state-of-the-art VQA methods (e.g.,

MLB [9], Count [14]) and achieve better performance

on VQA v2 and VQA-CP v2 benchmarks.

II. RELATED WORK

A. Multi-modal Bilinear Models

Multi-modal feature fusion plays a crucial role in VQA.

In early studies, the common frameworks employed simple

linear fusion methods such as concatenation, element-wise

addition and element-wise product to integrate the multi-

modal features. Since the distributions of multi-modal fea-

tures might vary dramatically, the integrated image-question

representations obtained by such linear models can not be

sufficiently expressive to fully capture complex associations

between visual and textual modalities.

Fukui et al. [8] first introduced the compact bilinear pooling

method [15] called Multi-modal Compact Bilinear (MCB)

pooling for the multi-modal feature fusion in VQA. To

break through the bottleneck of high-dimensional features

(e.g. 16000-d) obtained by MCB for computationally com-

plex models, Kim et al. [9] proposed the Multi-modal Low-

rank Bilinear (MLB) pooling method, employing Hadamard

product of two feature vectors to generate feature vectors

with low dimensions, and thereby to produce deep models

with fewer parameters. Based on MLB, Yu et al. [11] further

proposed the Multi-modal Factorized Bilinear (MFB) pooling,

which computes a fused feature with a matrix factorization

trick to reduce the number of parameters and to improve the

convergence rate. At the same time, Ben-younes et al. [10]

proposed the Multi-modal Tucker Fusion (MUTAN), which

unifies MCB and MLB into the same framework, and decom-

poses the weight tensor for bilinear pooling according to the



Tucker decomposition. MUTAN achieves better performance

than MLB and MCB with fewer parameters.

To summarize, these bilinear models have greatly improved

the interactions between visual and textual modalities. For

the same purpose, we design the multi-hierarchical fusion of

multi-modal features from global to local. Our fusion model

is expected to be complementary to these bilinear methods,

And by integrating with them, our method could further boost

the VQA performance.

B. Attention Mechanism

Attention Mechanism (AM) was originally proposed to

solve language-related tasks, and then became popular in

image captioning [12] and VQA [1]. The AM assumes that

specific parts of the input (image or question) are more

effective than others for VQA reasoning.

Earlier studies mainly considered question-guided attention

on image regions. Yang et al. [13] developed stacked attention

networks (SANs) which use semantic representation of a

question as query to search for the regions in an image

which are related to the answer. Kim et al. [16] extended the

SANs by incorporating the network into a residual architecture

to produce better attention information. The works in [17]

and [18] calculate the correlation score for visual features of

each bounding box according to textual features. Moreover,

in [19], the cross-region relation of image is encoded for

properly answering questions which involve complex inter-

region relations.

Later studies paid more attention on the opposite orientation

called image-guided attention on question features. In [7], a

co-attention mechanism was proposed, which employs atten-

tion both on image regions and on question words. Considering

the sequential consistency of textual words instead of treating

each word in a sentence independently, Chao et al. [20] pro-

posed a question attention scheme on the output embeddings,

which are generated by a bi-directional LSTM.

Another type of attention is question-guided attention on

question features. Yu et al. [21] introduced a multi-level

attention network which can reduce the semantic gap by

semantic attention and simultaneously benefit fine-grained

spatial inference by visual attention. Further, Yu et al. [11]

combined this mechanism with a novel multi-modal feature

fusion (MFB) of image and question.

Different from other co-attention models, the attention

weights of our model are generated by different level inte-

grated features, and we design different multi-channel atten-

tion mechanisms for visual and textual features separately. It

should be noticed that our attention mechanism is compatible

with other attention mechanisms, since our attention is im-

posed on the channel of the input (image or text), instead of

on image regions or question words.

III. PROPOSED METHOD

The VQA task requires to provide an answer when given

an image v ∈ V and a corresponding question q ∈ Q. Most

previous works regard the open-ended VQA as a classification

task:

argmax
ai∈A

pθ (ai|q, v) (1)

where θ means the whole set of parameters of the model, and

A denotes the set of candidate answers. These works mainly

rely on designing effective strategies to fuse multimodal fea-

tures, and then learning a MLP classfier to get the predicted an-

swer. However, almost all of existing methods utilize a single

global fusion of multi-modal features in attention mechanisms

(AM), while overlook the significance of local feature fusion,

which has a significant contribution to finer-grained feature

integration.

Thereby, we propose a novel competitive selection (CS)

strategy for screening multi-modal features, and further pro-

pose the multi-channel co-attention network (MC-CAN) for

VQA, which integrates different modalities from global level

to local level. Fig.3 provides an overview of the architecture

of our model. The inputs to our model contain a question

and a corresponding image. The visual and textual features

are extracted by a convolutional neural network (CNN) and

a Gated Recurrent Unit (GRU) respectively. Then our MC-

CAN disposes the process of multi-modal feature fusion. Note

that visual and textual features are integrated three times

at different levels. Additionally, we design different multi-

channel attention mechanisms separately for visual and textual

features at different levels.

A. Multi-Hierarchical Fusion for VQA

The goal of multi-modal fusion is to explore the interaction

between two modalities (vision and text). This projection from

different unimodal spaces to a multi-modal one is supposed

to extract the relevant correlations between two independent

spaces. Besides, a powerful model is expected to have ability

to understand full scene, and to focus its attention on rele-

vant visual regions while discarding the useless information

regarding the question.

As illustrated in Fig.3, we divide the whole integration pro-

cess of multi-modal features into three levels (Global, Image

Local, Image-Question Local). At the Global level, the original

visual and textual features (V for image, Q for question) are

integrated to produce region attention weights of M channels

with the dimension (K ×M ), namely Ratt (Fig.5(a)), which

is imposed on K image regions M times to obtain the M
representations (M channels VM ) of region-normalized visual

features. At the Image Local level, we firstly calculate the

multi-channel textual features QN (Fig.5(b)) by projecting

Q N times. Then VM and Q are integrated to produce the

attention weights of N channels Qatt (Fig.5(b)), which are

inposed on QN to obtain channel-normalized textual features

Q̂. At the Image-Question Local level, already provided with

attentions imposed on visual regions and on textual channels

at the former two levels, we thereby obtain the fused features

of M channels f3qv by integrating VM and Q̂. Finally, the

attention weights of M channels Catt, which are calculated by

Ratt from the Global level fusion, are further multiplied to the
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M -channel fused features f3qv to obtain the final normalized

integrated features f qv .

Feature fusion strategy. We use the MLB as the basis of

our fusion strategy, as illustrated in Fig.4(a). Different from the

MLB, we utilize the gated tanh (GTH) layer (Fig.4(b)), which

is proposed in [4], to replace the traditional FC layer, since the

GTH has excellent performance of projecting different modal

features into common feature space. The GTH implements

a function fa: x ∈ R
m → y ∈ R

n with parameters a ={
W,W

′
, b, b

′}
defined as follows:

ỹ = tanh(Wx + b) (2)

g = σ(W
′
x + b

′
) (3)

y = ỹ ◦ g (4)

where σ is the sigmoid activation function, W,W
′ ∈ R

n×m

are learned weights, b, b
′ ∈ R

n are learned biases, and ◦
denotes the Hadamard (element-wise) product. The vector g
acts multiplicatively as a gate on the intermediate activation

ỹ.

B. Multi-Channel Attention Mechanism

As illustrated conceptually in Fig.5, we design different

multi-channel attention mechanisms separately for visual and

textual features at different level of integrations. Fig.5(a)

shows the module of visual attention for image, and Fig.5(b)

shows the module of textual attention for question.

Multi-Channel Visual Attention for Image. Given textual

features Q ∈ R
H and a set of spatial visual features V ∈

R
K×2048, the representation of global integrated features at

the Global level is given by:

qprj = GTH(Q), vprj = GTH(V) (5)

f1qv1 = GTH(qprj ◦ vprj) (6)

where the operation GTH(X) denotes the gated tanh layer in

Fig.4, which projects X to the specified common feature space

for further integration. qprj ∈ R
H and vprj ∈ R

K×H are the

projections of textual and visual features in common feature

space respectively. f1qv ∈ R
K×H is the vector of integrated

features, and ◦ denotes the Hadamard product. As illustrated in

Fig.5(a), the attention weights of K image regions for different

visual channels Ratt = (c1, · · · , cM ) are given by:

Ratt = softmax(FC(f1qv)) (7)

where Ratt ∈ R
K×M , M is the number of visual feature

channels. The ith-channel region-normalized visual features

vi ∈ (v1, · · · , vM ), are the multiplication of ith-channel
visual region attention weights ci = (ari1 , · · · , ariK ) ∈ R

K and

the original image features V ∈ R
K×2048, with a GTH(.)

projecting, as shown by:

vi = GTH(ciV),VM = (v1, · · · , vM )T (8)

where vi ∈ R
H ,VM ∈ R

M×H . Additionally, considering the

final multi-channel feature integration at the Image-Question

Local level, the attention weight of each channel Catt =
(ac1, · · · , acM ) is further calculated by:

Catt = softmax(FC(Ratt)) (9)

where Catt ∈ R
M , which is in charge of focusing on the M

channels of the final multi-channel integrated features at the

last fusion level.
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Multi-Channel Textual Attention for Question. Given

textual features Q ∈ R
H and region-normalized visual features

of M channels VM ∈ R
M×H , by Eq.5 and 6, we can get the

integrated features f2qv ∈ R
M×H at the Image Local level.

And the attention weights Qatt = (aq1, · · · , aqN ) ∈ R
N of N

question channels are further obtained by:

Qatt = σ(FC(f2qv)) (10)

where σ is the sigmoid activation function. Generally, the

VQA question consists of several words no longer than

maxlength (we set it as 14). Though there may be some words

useless for VQA inference such as “can”, “the”, “be”, etc, we

still argue that these useless words are important parts of the

whole textual semantics. Moreover, the attention weight of

each question word is difficult to predict. Therefore, we try

another way (Fig.5(b)), which projects the question features

as N different representations (N -channel question features)

QN by N GTH(.)s, defined as follows:

QN = (GTH1(Q), · · · ,GTHN (Q))T (11)

where QN ∈ R
N×H . Then the channel-normalized question

representation Q̂ ∈ R
H is obtained by:

Q̂ = QattQ
N =

N∑
i=1

aqi GTHi(Q) (12)

Final Multi-Channel Feature Fusion. Given channel-

normalized textual features Q̂ ∈ R
H and region-normalized

visual features of M channels VM ∈ R
M×H , similarly, the

integrated features of M channels f3qv = (f31, . . . , f3M )T ∈
R

M×H can be calculated at the Image-Question Local level

by Eq.5 and 6. As shown in Fig.3, the final normalized fused

features f qv can be obtained by:

f qv = Cattf3qv =

M∑
i=1

aci f3i (13)

where f3i , f qv ∈ R
H ,Catt = (ac1, · · · , acM ) is the attention

weight of each channel computed by Eq.9. Then the f qv is

fed to an MLP classifier including two layers(FC(300)-ReLU-

Dropout(0.2)-FC(3129)) to predict the final answer pa:

pa = argmax
ai∈A

(Classifier(f qv)) (14)

where A denotes the set of candidate answers. During the

classification procedure, we just select the candidate answer

ai with highest relevance score as the final predicted answer

pa.

IV. EXPERIMENTS

In this Section, we evaluate our proposed approach and

compare it with other state-of-the-art methods on two public

datasets: the VQA v2 [22] dataset and VQA-CP v2 [23]

dataset.

A. Datasets and evaluation metrics

VQA v2. The VQA v2 is the most popular dataset,

which balances the answers to each question to minimize

the VQA v1 [1] dataset priors. It consists of 1,105,904

questions (443,757 train, 214,354 val and 447,793 test), related

to 204,721 images (82,783 train, 40,504 val and 81,434

test). There are three types of questions including Y es/No,

Number and Other.

As in [4], we choose correct answers appearing more than

8 times in the train set to form the set of candidate answers.

But we don’t use the additional question and answers from

Visual Genome (VG) dataset.

VQA-CP v2. The VQA-CP (Visual Question Answering

under Changing Priors) v2 uses the same data from VQA

v2, but re-organizes VQA v2 such that the answers to each

type of questions have different distributions for train and test

sets. For example, “white” might be the most frequent answer

to “What color...” questions in the train set, but “black” is

the most frequent in the test set. Therefore, a model might

perform badly in the test set if it has paid more attention on

the distribution of answers to each type of questions in the

train set, since there are completely different answer biases

between these two splits.

Evaluation metrics. On average, in both VQA v2 and VQA-

CP v2, each image is associated with 3 questions, and each



TABLE I
ABLATION STUDIES ON THE NUMBER OF IMAGE CHANNELS FOR VQA.

WHERE Avgtop5 DENOTES THE AVERAGE OF TOP 5 ACCURACIES FOR THE

All TYPE IN A SINGLE EXPERIMENT. THE BOLDED MODEL DENOTES THAT

ITS CHANNEL NUMBER IS SELECTED AS THE FINAL SETTING (E.G,
MC-CAN(5, 1) MEANS THAT WE CHOOSE M = 5 AS THE FINAL

SETTING). FOR EACH QUESTION TYPE, THE BEST RESULT IS BOLDED.

MC-CAN(M,N)
VQA v2 val set

Y es/No Num Other All Avgtop5

Up-Down 81.915 43.827 57.042 64.646 64.621
MC-CAN(1,1) 82.375 44.227 57.445 65.074 65.056
MC-CAN(2,1) 82.562 44.326 57.393 65.131 65.112
MC-CAN(3,1) 82.626 44.875 57.373 65.218 65.201
MC-CAN(4,1) 82.690 44.727 57.319 65.196 65.175
MC-CAN(5,1) 82.894 44.503 57.230 65.199 65.193
MC-CAN(6,1) 82.832 44.336 57.222 65.150 65.108
MC-CAN(7,1) 82.764 44.646 57.160 65.134 65.107
MC-CAN(8,1) 82.585 44.428 57.302 65.108 65.096
MC-CAN(16,1) 82.893 44.402 57.128 65.135 65.125
MC-CAN(24,1) 82.822 44.117 57.212 65.112 65.069
MC-CAN(32,1) 82.738 44.322 57.115 65.060 65.037
MC-CAN(48,1) 82.958 44.509 56.983 65.102 65.076
MC-CAN(64,1) 82.774 44.562 57.048 65.072 65.049

question is labeled with 10 answers by human annotators. We

conduct the evaluation using the index in [1] as:

Acc(pa) = min(1,
hunmans that provided pa

3
) (15)

The index indicates that if the predicted answer pa appears

more than or equal to 3 times in human labeled answer list,

the accuracy achieves 1.

B. Experimental Settings

We use the recent Up-Down 2048-d features provided in

[4] based on Faster R-CNN [5] to represent each image as a

set of 36 localized regions. For the question, the words are

represented as 300-d embeddings initialized with pre-trained

GloVe vectors [6], which are then fed to a GRU to obtain a

1280-d question embedding. For computational efficiency, we

restrict the maximum length of each question by selecting the

first 14 words.

Our models are optimized with the Adamax optimizer [31]

with a batch size of 512 and trained on a 2080Ti GPU.

And we set the hidden dimension H of our MC-CAN as

1280. Additionally, we conduct ablation studies to evaluate

the impact of channel number (M for image, N for question)

on the validation set of VQA v2.

C. Ablation Studies

We compare the performance of our proposed method

with the baseline [4] adopting a single global integration for

attention. And we further explore the effect of different number

of channels (M for image in Tab. I, N for question in Tab. II)

on our MC-CAN and every incremental channel just increases

model size by 3K. These models are trained on the train set

and evaluated on the validation set of VQA v2. It is worth

to note that the accuracy of our re-implemented baseline (Up-

Down) with MLB fusion applied on the validation set of VQA

v2 is 1.4% higher than the performance reported in [4], which

TABLE II
ABLATION STUDIES ON THE NUMBER OF QUESTION CHANNELS FOR VQA.

WE SELECT N = 2 AS THE FINAL SETTING.

MC-CAN(M,N)
VQA v2 val set

Y es/No Num Other All Avgtop5

MC-CAN(1,1) 82.375 44.227 57.445 65.074 65.056
MC-CAN(1,2) 82.674 44.783 57.313 65.194 65.139
MC-CAN(1,3) 82.651 44.161 57.301 65.098 65.039
MC-CAN(1,4) 82.629 44.276 57.297 65.103 65.078
MC-CAN(1,5) 82.548 44.370 57.235 65.054 65.035
MC-CAN(1,6) 82.647 44.361 57.280 65.112 65.085
MC-CAN(1,7) 82.768 44.425 57.136 65.095 65.087
MC-CAN(1,8) 82.566 44.004 57.264 65.027 64.975
MC-CAN(1,16) 82.523 44.018 57.182 64.972 64.957

reflects that the MLB fusion has more powerful performance

than traditional concatenation. Besides, we average the top 5

accuracies of the All type to evaluate the stability of these

results, which reflects the holistic capability of these models

to some extent.

The comparison results are shown in Tab.I and Tab.II.

For fair comparison, all other variables of these models are

controlled to be consistent except the channel number M or

N , which is set as 1 when another one is being evaluated.

From Tab.I we can find that:

(1) MC-CAN(1, 1) gives better results than the baseline,

where (M = 1, N = 1) means no channel attention. This

phenomenon indicates that multi-hierarchical fusion is more

effective for the finer-grained interaction of multi-modal fea-

tures.

Analysis. For Y es/No, larger M and N can both greatly

enhance its accuracy such as (M = 48, accuracy = 82.958%)
and (N = 7, accuracy = 82.768%). The reason is that the

stacked multi-channel attentions with incremental channels can

provide finer-grained information. For Num, a proper M or

N benefits its performance such as (M = 3, accuracy =
44.875%) and (N = 2, accuracy = 44.783%), but larger

M or N (M > 3, N > 2) weakens the effectiveness of our

MC-CAN. The reason may be that excessively finer-grained

information, which is generally called noise, from excessive

channels makes the Num questions reasoning more difficult.

For Other, our MC-CAN performs worse with the larger M
or N , and the model with a single image channel and a single

question channel achieves the best accuracy (M = 1, N =
1, accuracy = 57.445%).

Considering a variety of factors, including different question

types, model complexity and stability, and additional valida-

tion experiments, we choose M = 5 and N = 2 as the final

setting, and compare its performance with other state-of-the-

art methods.

(2) The multi-channel attention for image improves the

performance of MC-CAN, since almost all MA-CAN(M, 1)
with M > 1 achieve better performance than MC-CAN(1, 1).

(3) A suitable number of image channels can greatly

improve the accuracy of VQA (e.g., M from 2 to 8), but

an excessively large channel number might be useless (e.g.,

M ∈ {24, 32, 48, 64}).



TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON TEST-STANDARD AND TEST-DEV SET OF VQA V2. THE MODELS WITH “†” ARE RE-IMPLEMENTED

VERSIONS FROM [24]. THE “-” INDICATES THE RESULT IS NOT AVAILABLE. ALL THE REPORTED RESULTS ARE OBTAINED WITH A SINGLE MODEL

WITHOUT MODEL ENSEMBLING.

Model
test-std test-dev

Y es/No Num Other All Y es/No Num Other All

ReasonNet [25] 78.86 41.98 57.39 64.61 - - - -

MUTAN† [10] 83.06 44.28 56.91 66.38 82.88 44.54 56.50 66.01

MLB† [9] 83.96 44.77 56.52 66.62 83.58 44.92 56.34 66.27
QGHC [26] - - - 65.90 83.54 38.06 57.10 65.89
DA-NTN [24] 84.60 47.13 58.20 67.94 84.29 47.14 57.92 67.56
Up-Down [4] 82.20 43.90 56.26 65.67 81.82 44.21 56.05 65.32
VQA-E [27] 83.22 43.58 56.79 66.31 - - - -
QCG [28] 82.91 47.13 56.22 66.18 - - - -
VCTREE [29] 84.55 47.36 59.34 68.49 84.28 47.78 59.11 68.19
MuRel [30] - - - 68.41 84.77 49.84 57.85 68.03
MC-CAN(ours) 85.58 47.44 60.07 69.27 85.43 48.26 60.21 69.24
MC-CAN+count(ours) 85.40 51.09 60.21 69.66 85.28 50.71 60.17 69.44

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE VALIDATION

SET OF VQA V2. THE MODELS WITH “†” WERE TRAINED BY [24]. THE

“-” INDICATES THE RESULT IS NOT AVAILABLE. FOR EACH QUESTION

TYPE, THE BEST RESULT IS BOLDED.

Model Y es/No Num Other All

ReasonNet [25] 73.78 36.98 54.81 60.60

MUTAN† [10] 81.09 42.25 54.41 62.84

MLB† [9] 81.89 42.97 53.89 62.98
QGHC [26] - - - 60.64
DA-NTN [24] 83.09 44.88 55.71 64.58
Up-Down [4] 80.3 42.8 55.8 63.2
VQA-E [27] 80.85 43.02 54.16 63.51
VCTREE [29] 82.6 45.1 57.1 65.1
MuRel [30] - - - 65.14
MC-CAN(ours) 82.92 44.93 57.24 65.27
MC-CAN+count(ours) 83.00 47.82 57.24 65.68

Similarly, Tab. II reports the ablation studies on the number

of question channels N . Compared with image channels, our

MC-CAN is more sensitive to the number of question chan-

nels. The reason may be that the structure of question features

(no more than 14 words) is simpler than image features (36

bounding boxes), which makes the question features more

sensitive to noises with the same number of channels.

D. Comparisons with State-of-the-arts

Tab.III reports the single-model performances of various

state-of-the-art methods on both test-standard and test-dev sets

of VQA v2 dataset. For fair comparison, all reported methods

are trained on the combination of train set and validation set.

We can find that our MC-CAN has stable improvements (3.6%
for test-std, 3.92% for test-dev) than the baseline [4]. And

our approach achieves the best accuracy in almost all question

types except the Num type (48.26%, the best is 49.84%) on

TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE VALIDATION

SET OF VQA-CP V2. THE MODELS WITH “†” WERE TRAINED BY [32].

Model Accuracy(%)

MuRel [30] 39.54

Up-Down† [4] 38.01

QCG† [28] 38.32

BAN† [33] 39.31

MAC† [34] 31.96

RN† [35] 36.70
Ans Them All [32] 39.21
MC-CAN(ours) 40.78
MC-CAN+count(ours) 40.66

test-dev. Similarly, we further improve the accuracy of Num
type (47.44% to 51.09% for test-std, 48.26% to 50.71% for

test-dev) with Count conponent integrated.

Tab.IV reports the performance of our method with pub-

lished results of the state-of-the-arts on VQA v2 validation

set. We analyse Tab.IV as follows:

(1) Compared with the baseline (Up-Down) [4], our MC-

CAN improves the performance from 63.2% to 65.27%.

Specifically, our proposed approach brings 2.62%, 2.13% and

1.44% improvements in the question types of Y es/No, Num
and Other, respectively.

(2) Compared with other state-of-the-art methods, our MC-

CAN achieves the best score in overall questions (65.27%)
and Other (57.24%), and the accuracy of Y es/No and Num
types approaches the best.

(3) We further improve our proposed approach by com-

bining it with the Count component [14], which can greatly



improve the performance of Num type by introducing the

spatial information of bounding boxes. Obviously, the Num
accuracy is improved from 44.93% to 47.82% and the overall

performance is further improved to 65.68%.

We also compare our proposed method with other state-of-

the-art methods on VQA-CP v2 dataset in Tab.V. All models

in Tab.V are trained on the train set and evaluated on the

validation set. These results indicate that VQA-CP v2 is more

difficult than VQA v2, though it is just re-organized from

VQA v2. Obviously, our MC-CAN (40.78%) still outperforms

other state-of-the-art methods at least 1.24%. Furthermore, we

evaluate the combination of our method and Count component

in the same way. However, the accuracy is decreased from

40.78% to 40.66%. The reason of this abnormal phenomenon

may be that the Count component improves the Num score

by utilizing biases of answer distributions to some extent,

which is useless on VQA-CP dataset. Compared with the

great improvement (0.41%) on the validation set of VQA

v2 (Tab.IV), such a 0.12% decline still shows its powerful

performance and stability.

V. CONCLUSION

In this paper, we propose a novel competitive selection

(CS) strategy for screening multi-modal features, and further

propose the multi-channel co-attention network (MC-CAN)

for VQA. Our approach integrates multi-modal features from

global level to local level, and we design different multi-

channel attention architectures separately for visual and textual

features at different level of integrations. We further improve

our proposed approach by combining it with MLB fusion

and Count modules. Experimental results on two large VQA

datasets show that our proposed model outperforms existing

state-of-the-art approaches.

Our future work will focus on combining our MC-CAN

with other state-of-the-art methods such as bilinear pooling

methods (MCB, MFB and MUTAN). We are also insterested

in intergating our multi-channel AM with other AMs. Further-

more, our MC-CAN will be explored on other tasks related to

vision and text such as image captioning.
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