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Abstract—Creating a knowledge graph automatically from
raw unstructured text has always been a job of domain expert
which takes months to curate and refine. In this paper, we
propose a domain-independent semi-automatic knowledge graph
learning system that can be trained with less amount of data,
to identify entities and relations from a large text corpus. The
system performs the following tasks to extract knowledge graph
from the text: (i) Named Entity Recognition (NER), and (ii)
Relation Identification (Open Relation Extraction (OpenRE) and
Classification). The system uses deep active learning to calculate
confidence scores using maximum normalized log-probability on
each prediction for both NER, and relation identification. We
experimented with both LSTM and transformer based models
for NER and relation identification tasks.

We achieved around 88% F1 score for the NER task on
OntoNotes-5.0 English data set with 40% training data set and
above 83% F1 score for relation identification on TACRED
dataset. The OpenRE and relation classification systems were
trained on domain-specific datasets. To the best of our knowledge,
we are the first to introduce a knowledge graph generation
learning system with deep active learning.

Index Terms—Active Learning, Named Entity Recognition,
Open Relation Extraction, Knowledge Graph, Open Information
Extraction

I. INTRODUCTION

A knowledge graph [1] is defined as the graphical knowl-

edge representations of entities, represented as nodes in the

graph, and the relations, represented as edges in the graph,

between them. Figure 1 explains the basic structure of a

knowledge graph. Each circle in the figure represents a node

and a line connecting two circles represent a relation between

two entities in the knowledge graph. Each circle has the value

of the entity and its type as a property of the node. DBpedia

[2], YAGO [3] and Freebase [4] are some of the well known

knowledge graphs.

Knowledge Graph (KG) Learning (Ontology Learning, On-

tology Extraction, or Knowledge Graph Extraction) is the pro-

cess of learning to extract entities and relations automatically

without any human supervision or semi-automatically with

some human supervision. KG learning includes learning of

extraction of domain specific terms or entities and the relation-

ship between these entities from a large corpus of unstructured

text [5]. Building large knowledge graphs manually takes

* Equal Contribution

Fig. 1. Sample Knowledge Graph of Barack Obama

huge amount of labour and time. Automating the knowledge

graph creation with little human supervision not only leads to

significant reduction of initial effort of creating the knowledge

graph but also helps in enriching the existing knowledge graph

by identifying new entities and relations from new text.

Automating knowledge graph extraction involves following

two major tasks: (i) Named Entity Extraction and (ii) Relation

Identification.

a) Named Entity Recognition: Named Entity Recogni-

tion is the task of identifying the entities and classifying them

into their types. For example, Barack Obama, the first African

American president of United States of America was succeeded

by Donald Trump. Here Barack Obama is an entity and its type

is Person.

A trainable NER model was used to make the system

domain-independent and deep active learning was used to

reduce the data required for domain-specific entity recognition.

The NER model was trained on publicly available CoNLL

2003 NER [6] dataset and then fine-tuned on OntoNotes

Release 5.0 [7] with deep active learning. The NER training
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and fine-tuning was done without any external knowledge

source to keep the model domain independent. The NER

model can easily be adapted to any kind of unstructured data

and any number of NER labels by modifying the final feed-

forward layer with new NER labels.

b) Relation Identification: Open Relation Extraction

(OpenRE) [8] is the task of identifying the word or the

sequence of words, which describes the relationships between

the entity pairs, in a sentence. OpenRE task is very differ-

ent from relation classification, which aims to classify the

relationship between two entities into one of the predefined

relationship class. The problem with relation classification is

that user needs to know all the types of relationships that can

appear in the huge corpus, which is impractical. Therefore, our

system learns to identify relations from the text in addition to

classifying the relationship in the text. OpenRE also differs

from Open Information Extraction (OpenIE) [9] as the latter

aims to identify the verb connecting two arguments while

the former aims to identify noun and verb relations between

entities extracted by NER module. In OpenIE, arguments may

or may not be an entity whereas in OpenRE both arguments

must be an entity.

Similar to NER module, a trainable OpenRE module was

created to keep the module domain independent and easily

adaptable to deep active learning. OpenRE task can easily be

converted to sequence labelling task [10] where the identified

relation is a sequence of words in the sentence. To identify

the direction of relationship in the sentence, the entities were

classified as either entity 1 or entity 2, where the output triplet

was in the form of Entity 1 → Relation → Entity 2.

To improve the recall of identifying relations from the text

we also added relation classification. For relation classifica-

tion we used TACRED dataset [11] which contains the 41

Knowledge Graph Population (KGP) classes.

II. RELATED WORK

Extracting knowledge graph from text involves following

two major steps: (i) Named Entity Recognition and (ii) Re-

lation Identification. End-to-end knowledge graph extraction

[12] have few more steps like Entity and Triplet mapping to

an existing knowledge graph. Entity and Triplet mapping to

an existing knowledge graph is out of scope of this work. This

work focuses on creating a system that can learn to identify

entities and create relationship links between entities with less

amount of data i.e. for those domains where only raw text is

available and no existing entities or relations are defined or

available publicly.

NER is one of the most important tasks in NLP and

is the first step in generating knowledge graph (KG) auto-

matically. Modern NER systems use deep neural networks

[13]. Traditionally, Recurrent Neural Networks i.e., LSTM

and GRU based NER systems [14] [15] have been widely

used in production and academic research. Recently, language

model based transformer models [16] [17] have been shown

to improve the accuracy further.

Fig. 2. Overall Architecture

OpenRE is a very important step in building knowledge

graph (KG). OpenRE problem is sometimes solved using Open

Information Extraction (OpenIE) techniques [18] [12]. The

accuracy of extracting open relations using OpenIE is quite

low and the accuracy drops further if complex sentences are

encountered. Reverb [19] and Supervised Open Information

Extraction [20] in AllenNLP framework [9] are some of the

widely used Open Information Extraction frameworks.

Unlike OpenIE, OpenRE technique aims to identify the

word or sequence of words within the sentence that specifies a

relation between two entities. Traditionally, relation classifica-

tion tasks have been confined to identifying and classifying a

relation fact into predefined relationships types [21] [8]. This

makes identifying new kinds of relations automatically from

raw text difficult.

Traditionally, hand-crafted lexical and syntactic patterns

[19] [22] were used to solve OpenRE problems. Although

these rule-based approaches were very successful, they do not

generalize well on complex and diverse open relations. Neural

network based OpenRE [10] have been very successful in im-

proving both the overall accuracy and the domain adaptation.

OpenRE methods are generally divided into two major

categories i.e., (i) Unsupervised Learning methods and (ii)

Supervised Learning methods [10]. Unsupervised learning

methods extract semantic patterns using linguistic features

and cluster them to identify open relations [23] [24] [25].

Identifying linguistic features often require external tools.

Supervised learning methods convert the OpenRE problem

into sequence tagging problem [20] [26] and can be solved

end-to-end.

Creating knowledge graph often requires huge amount of

tagged data for both NER and OpenRE. Deep active learning

[27] based methods solve this issue by selecting sentences

where the system is least confident in predicting the tags

and ask user to provide correct tags. Deep active learning

based NER architecture [27] has been able reduce the data

requirement drastically without affecting much on accuracy.

In this work, we have combined BERT based NER with

active learning, co-reference resolution, open relation ex-

traction and relation classification tasks. OpenRE is respon-



sible for extracting noun and verb relationships from the

sentences, whereas relation classification involves classifying

KGP relations from TACRED dataset [11]. To the best of

our knowledge, we are the first to combine OpenRE and

relation classification with active learning for knowledge graph

population.

III. SYSTEM ARCHITECTURE

In this section, the overall architecture of end-to-end knowl-

edge graph extraction is described. The overall architecture of

our knowledge graph extraction system is shown in Figure

2. Our knowledge graph extraction learning system has fol-

lowing components: (i) Named Entity Extraction: Identifying

domain specific named entity from the text, and (ii) Relation

Identification: Identifying open relations from the text and

classifying relations into one of the existing knowledge graph

population (KGP) relations. The detailed explanation of each

step is provided in next sections.

A. Preprocessing

Spacy [28] library was used for splitting the sentences,

tokenization, and Part-of-Speech (POS) tagging. POS tags

were later used for training purposes. Sentences in which all

the words were tagged as ”O” (Others) were removed from

the training dataset as they served no useful purpose.

B. Active Learning

Active Learning aims to reduce the labelled data required

for training. Small batches of sentences were selected in each

iteration of Active Learning for further labelling and training.

In this work, we used Random Selection and Maximum Nor-

malized Log-Probability (MNLP) [27] method for reducing

the number of tagged data required.

1) Random Selection: In this method, the system randomly

identifies a set of sentences from the unlabelled dataset. Using

Random Selection for selecting sentences in initial stages of

LSTM-CNN model helps model learn quickly.

2) Maximum Normalized Log-Probability (MNLP): In

this method, we used the normalized log-probability scores

for selecting the sentences to be tagged. The log probability

score represents the total probability for the entire predicted

sequence. Since longer sentences get higher scores due to

larger sequence length, the function tends to pick smaller

sentences for manual labelling. Therefore, normalizing the

probability scores alleviates the above mentioned problem. The

sentences are first sorted in ascending order on the basis of

the normalized probability score and the sentences with the

lowest scores are selected for labelling. The log probability

function can be mathematically represented as Equation (1) :

PredictionConfidence =

maxy1,...,yn
(P [y1, ..., yn|{xj}j=1,...,n

]) ⇔

maxy1,...,yn

n
∏

i=1

P [yi|y1, ..., yi−1, {xj}j=1,...,i
] ⇔

Fig. 3. NER Architecture

maxy1,...,yn

n
∑

i=1

logP [yi|y1, ..., yi−1, {xj}j=1,...,i
] (1)

The normalized log probability function can be mathemat-

ically represented as Equation (2):

1

n
∗maxy1,...,yn

n
∑

i=1

logP [yi|y1, ..., yi−1, {xj}j=1,...,i
] (2)

C. Named Entity Recognition

1) Bidirectional LSTM + Character CNN based Named

Entity Recognition: Named entity recognition is a very impor-

tant and challenging task. NER is one of the most important

component of knowledge graph extraction learning system.

The architecture diagram of our NER system is shown in

Figure 3. We used Glove [29] embedding and character level

CNN to encode the characters in the text to get combined

embedding having character-level and word-level features.

Learning all the features from the training data kept the

architecture generic and domain independent.

a) Character-Level Word Embedding: Character level

embedding is extracted by running Character Level Convo-

lutional Neural Network [30]. The architecture diagram of

character-level embedding is shown in Figure 4. A word

was split into constituent characters and each character’s

one-hot encoding was used as input to the CNN network.

This representation converts text into 2-Dimensional matrix.

Convolution h(y) is then computed using Equation (3):

h(y) =

k
∑

x=1

f(x) · g(y · d− x+ c) (3)

where g(x) is input function, f(x) is kernal function, d is

stride and c is an offset constant, is calculated using Equation

(4).

c = k − d+ 1 (4)



Fig. 4. Character Level Embeddings

b) Character Case Embedding: Character case i.e. up-

per case, lower case, punctuation, and other were used as

features in NER. Architecture similar to character level word

embedding was used to extract the embedding from character

cases.

c) Word Embedding: The embedding layer of NER was

first initialized with pre-trained Glove [29] embedding and was

further fine-tuned during the training.

d) Word Case Embedding: Word case (i.e. all caps,

upper initial, all lower case, mixed caps, number, no info)

embedding was created and one-hot encoded. The Embedding

layer was initialised with one-hot vectors and was fine-tuned

along with NER training.

e) Part-of-Speech Embedding: Similar to word case

embedding, POS embedding was also incorporated so that the

neural network can learn the relationship and dependencies

between POS tags used in the data.

f) Dependency Parser Tags Embedding: Similar to POS

embedding, dependency parser tags was also incorporated

into the model. But there was no significant performance

improvement, as a result, it was not incorporated into the final

model described above.

2) BERT Based Named Entity Recognition: Transformer

[16] was first introduced for the application of Neural Ma-

chine Translation. Since then, transformer based models have

achieved state-of-the-art accuracies in many NLP tasks in-

cluding Named Entity Recognition [17] [31]. BERT [17], a

transformer based architecture, was used for our NER module

along with Deep Active Learning.

For implementation, we used Hugging Face’s [32] trans-

former package, a PyTorch [33] based transformer framework.

We were able to achieve 89% F1 score using BERT Base

Cased for NER module without making any changes to the

architecture.

The main aim of our work was to reduce the data required

without reducing the accuracy. We experimented with different

training methods for BERT with Active Learning and had

some interesting results. For each of the following variations

BERT Base Cased Model was used. For every iteration of

active learning in all the following approaches, the sentences

were selected using the MNLP approach described in Active

Learning subsection above.

a) Method 1: Selected sentences were combined with

sentences selected from all previous iterations of active learn-

ing. In this case, we did not freeze the BERT language model

while training for NER task. In every iteration, the previously

trained BERT model was discarded and NER training is done

from start.

b) Method 2: Unlike Method 1, in each iteration, the

model trained in previous iteration was used for training of

further iterations. In this case, we did not freeze the BERT

language model while training for NER task. This model

performs worse than the Method 1. This could be due to the

model forgetting the previously learnt language model with

each iterations. Also as mentioned in [17] the number of

epochs while tuning should be less than or equal to 5, but

since in this case the model is being fine-tuned for around

1400 times by the end of the training process, the performance

seems to have degraded.

c) Method 3: In this method, the BERT language model

is first fine-tuned on the entire dataset without NER head.

Later, the entire model including the BERT language model

is fine-tuned in the process similar to the one used in Method

1. This model performs similar to the Method 1.

d) Method 4: In this variation, the BERT language

model is first fine-tuned on the target dataset without NER

head. After, BERT language model is fine-tuned, process

similar to Method 1 was used. Unlike Method 3, we froze

the BERT language model while training on the NER task.

We believe, since the language model was not fine tuned for

NER specific task, the performance was not able to cross a

certain barrier as shown in figure 5.

D. Coreference Resolution

Coreference Resolution aims to cluster all the co-referring

mentions in the text. Many relations in the text appear along

with pronouns instead of Named Entities and sometimes the

entities are mentioned in the abbreviations or some other

forms. Identifying and replacing such mentions with their

respective co-referring entity improves the relation extraction

accuracy. We used end-to-end coreference resolution [34]

model. We added some domain and application specific post

processing to the coreference results to standardize our output.

The predicted clusters were filtered based on NER Tags.

Words not labelled as O (Others) by the NER were not

considered as mentions for the named entity and words having

tags O (Others) were considered as mentions. For example

in the paragraph ”Barack Obama, the first African American

president of United states of America was succeeded by

Donald Trump. The general public place him among the upper

tier of American presidents.” Here, the coreference module

resolves the mention the first African American president of

United states of America and him to refer to Barack Obama.

But the first mention is an attribute of Barack Obama and



also the NER tags are not O for all the words in the sequence,

so it is not considered as a mention. Resolving such cases

would replace the relation information in the sentence with a

named entity. This will lead to loss of information from the

perspective of constructing a knowledge graph.

E. Relation Extraction and Classification

BERT classifier model was trained to segregate sentences

into two categories: no relation and others (for relation extrac-

tion and KGP Relation classification).

Our OpenRE task can be considered as a sequence labelling

task. We experimented two different architectures for the

above sequence labelling task, (i) inspired by Supervised Open

Information Extraction [20], and (ii) BERT where it was

modelled as an NER task.

For method (i), all possible entity pairs were created from a

single sentence and were passed to relation extraction module.

The mentions from coreference module of a cluster were

replaced with the named entities, the mentions were referring

to. Therefore, each sentence in the text can be considered in-

dividually for relation extraction task. For method (ii), special

token i.e. ENT at the beginning and end of each entity was

added in the sentence to provide entity location information

to BERT. MNLP based active learning was also experimented

for relation extraction to reduce the data requirements.

For the KGP relation classification, we implemented the

model proposed in [35]. The system was experimented with

BERT and RoBERTa with MNLP based active learning. Since

sentences with relation labelled as Others have already been

segregated after the classification above, the remaining relation

classification dataset had 41 classes.

The results of above experiments are discussed in results

section.

IV. DATASET

A. Named Entity Recognition

a) CoNLL-2003: The CoNLL-2003 [6] dataset has 4

types of entities namely PER, ORG, LOC, and MISC. The

details regarding the number of tokens and sentences is shown

in Table I.

TABLE I
CONLL DATASET

# of sentences # of tokens

Training set 14,041 204,566

Dev Set 3,453 46,666

Test Set 3,250 51,577

b) OntoNotes 5.0: The OntoNotes [7] dataset has 18

types of entities. The details regarding the number of tokens

and sentences is shown in Table II. Since the main aim of

the project was relation extraction, for which a pair of named

entity was required, the OntoNotes dataset was reduced to

sentences having more than one type of named entity.

TABLE II
ONTONOTES DATASET

# of sentences # of tokens

Training set 49,601 1,239,033

Dev Set 5,000 124,148

Test Set 5,089 124,437

Fig. 5. BERT-NER Test result over full dataset

B. Relation Extraction and Classification

TACRED Dataset [11] was used for OpenRE system. TA-

CRED Dataset was automatically annotated using OpenIE 5.0

[36] [37] [38] [39]. Only triplets from OpenIE 5.0 having a

named entity in both the arguments were used to create the

dataset for training OpenRE module. The results of OpenIE

model was further refined and annotated to identify the word

depicting the relation between the two named entities. The

details regarding the number of sentences in OpenRE and TA-

CRED dataset is shown in Table III and Table IV respectively.

TABLE III
OPENRE DATASET

# of sentences

Training set 6528

Dev Set 947

Test Set 839

TABLE IV
TACRED DATASET

# of sentences

Training set 13,012

Dev Set 5,436

Test Set 3,325

V. EXPERIMENTS

The two different training methods of active learning were

adopted during the training process: (i) training the model from

scratch in every iteration, and (ii) fine tuning the model trained



Fig. 6. TACRED classification active learning

TABLE V
NUMBER OF SENTENCES VS F1-SCORE FOR ACTIVE LEARNING BASED

NER

Model NER

5k

NER

10k

NER

15k

NER

20k

NER

25k

BERT 1 0.796 0.848 0.871 0.879 0.890

BERT 2 0.749 0.748 0.731 0.718 0.734

BERT 3 0.791 0.850 0.867 0.878 0.888

BERT 4 0.616 0.691 0.720 0.734 0.734

LSTM 0.810 0.848 0.856 0.864 0.864

during the previous cycle. The validation set provided in the

OntoNotes dataset was modified according to the OntoNotes

dataset description in Section IV. For all the active learning

based approaches defined above in Section III the following

setting were implemented. During every training cycle process

for all models , n (Number of sentences to be annotated in each

iteration) sentences were selected from the training dataset

Fig. 7. Relation Extraction active learning

TABLE VI
NER ACTIVE LEARNING RESULTS

Model Name Test F1-score (maximum
accuracy reached)

BiLSTM+CNN 0.866

BERT Method 1 0.890

BERT Method 2 0.775

BERT Method 3 0.888

BERT Method 4 0.741

TABLE VII
TACRED CLASSIFICATION

Model Name Test F1-score (W/o
Active learning)

Test F1-score (with
Active learning

using 40% of data)

BERT 0.877 0.855

RoBERTa 0.876 0.823

based on one of the active learning approaches described

in Section 3. The value of n a trade-off between efficiency

and performance. For lower value of n, the speed would

be slow as there would be more validation and training

cycles, and for large values of n the sentences selected for

annotation might have the same kind of uncertainty and may

be similar and redundant. In this case, different values of n

were experimented, but n=32 achieved the best results. The

selected sentences were labelled and were added to the training

dataset. In case of MNLP, the trained model was run on the

remaining training dataset and sentences with least confidence

scores were selected for next iteration of active learning.

As the model is fine-tuned on the entire dataset in every

epoch, having a constant learning rate causes the model to

forget the weights it learned previously. The learning rate was

divided by 2 in a step wise fashion after every x number of

iterations, to prevent over-fitting in case of LSTM-CNN NER

model, where x is a hyperparameter. In our case x was set as

300.

lr =







0.001 if iterations <= 300
0.0005 if 300 < iterations <= 600
0.00025 if iterations > 600

The batch size for the LSTM-CNN NER model was 8 to

have more back propagation steps during the initial training

purpose, which helped improve the performance during the

initial stages of active learning cycle. A higher batch size also

achieved similar final results but in cases where the number

of NER labels may be high or the dataset might be complex,

achieving better results early in the training process, would

help the active learning model to select uncertain sentences in a

better manner for further training. Each iteration was run for 10
epochs with early stopping option on the validation loss for 3

consecutive epochs. The number of epochs and early stopping

values were decided on the basis of the best performance on

validation set. Different experiments with multiple variations

of active learning approaches were carried out to maximize

the performance. Starting the training process with random



TABLE VIII
RELATION EXTRACTION

Model Name Test F1-score Test F1-score with
active learning

using 40% of test
data

BERT 0.858 0.831

Supervised OpenIE 0.843 0.640

selection and then changing it to MNLP based sentence

selection after 200 cycles of training produced better results.

The motivation behind this approach is that since the model

has very less knowledge about the OntoNotes dataset initially,

the sentences selected for labelling from these predictions will

have the same effect as following a random selection approach.

Therefore, adopting a random selection approach would save

the inference time and speed up the training process initially.

In case of BERT based NER (using bert-base-cased), all the

hyper-parameters were kept the same throughout the training

process. Only MNLP based active learning approach was

adopted in BERT due to the inherent language capabality of

BERT since it is trained on a huge English corpus. Multiple

training methods were carried out for BERT based NER as

described in Section III. The training batch size was set as

8, to increase the number of back propagation steps during

each cycle of active learning, as the training starts with a

small number of labelled sentences, with small addition of

new labelled data. The number of epochs during each active

learning cycle is kept as 2, consistent with the suggestion for

the number of epochs for fine tuning as suggested in BERT

paper [17]. The learning rate was also unchanged and was set

as 5e− 5 in this experiment.

For the BERT and RoBERTa based relation classification

and BERT based extraction tasks defined above, all the hyper-

parameters of BERT (bert-base-cased) and RoBERTa (roberta-

base) were kept unchanged. The number of epochs, learning

rate and the batch size was same as above. For Supervised

Open Information Extraction experiment batch size was set

as 16, learning rate was set as 0.001 and number of epochs

as 2, to prevent over-fitting due to the small size of available

dataset.

VI. RESULTS

The LSTM-CNN based NER model described in Section

III was able to achieve 88.71% F1 score when trained tested

on CoNLL dataset. It was then fine-tuned on the OntoNotes

dataset using the active learning approach described in Section

III, reached 86% F1 score on the OntoNotes dataset by using

20k (approximately 40%) sentences from the OntoNotes train

dataset.

BERT NER model had 89.3% F1 score on the entire dataset.

We achieved varying results from the different BERT based

NER variations described in Section III. The result comparison

is shown in Figure 5 and Table VI.

Figure 5 shows a comparison between the number of

sentences used for training and the test F1 score for different

NER Models. Table V shows how the test F1 score changed

for different active learning based NER models with the

increase in number of training sentences. BERT Method 1

and BERT Method 3 out performed all other models. This

experiment shows that training method used to train BERT

with active learning affects the final accuracy and number of

examples required. Freezing BERT does not help in improving

the accuracy. Method 2 starts learning quickly but does not

improve after certain sentences whereas method 1 and 3 learn

slowly but achieves the highest F1 score.

Neural Open Relation Extraction model on OpenRE dataset

prepared from TACRED as described in Section IV, was

able to achieve F1 score of 85%. With active learning, the

data requirement reduced by approximately 60% to achieve

similar results without active learning. The result comparison

is shown in Table VIII. Supervised OpenIE model requires

more sentences than BERT to attain similar performance. One

of the main reason for this can be the language model learnt

by the base BERT model as compared to the use of GLOVE

embeddings in Supervised OpenIE.

Figure 6 shows the comparison between the number of

sentences used for training and the test F1 score for BERT

and RoBERTA for relation classification. RoBERTA seems

unstable with active learning whereas BERT was quite stable

while training with active learning. We believe although BERT

and RoBERTA have same number of training parameters,

RoBERTA requires more examples than BERT to achieve sim-

ilar accuracy. The stability improves after training RoBERTA

for a long time. With active learning, the data requirement

reduced by approximately 60% to achieve similar results

without active learning.

VII. CONCLUSION AND FUTURE WORK

Creating knowledge graph using active learning reduces the

effort required to create knowledge graph from text. More

experimentation can be done on coreference resolution and

OpenRE. In future work we would like to use ensemble

methods to improve OpenRE results.

Sentence simplification before coreference resolution can be

used to reduce the complexity of sentences and improve the

performance of the relation extraction modules.

As all models are trained on top of BERT, multi-task

learning can be experimented to combine and train all heads

together.
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