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Abstract—In this work, we propose a novel representation-
learning technique for Deep Learning-based Speech Enhance-
ment algorithms inspired by Domain-Adversarial training. A
gradient reversal layer and an additional network are employed,
only at training time, to explicitly enforce a representation that is
orthogonal to the additive noise in the input signal. We show that
such learning scheme, which can be applied easily to most mask-
based Deep Neural Network Speech Enhancement approaches,
is able to improve the denoising performance when used in
conjunction with scale-invariant signal-to-distortion ratio loss and
allows to reach state-of-the-art performance with no computa-
tional overhead at run-time. In particular, on the commonly
used VoiceBank-DEMAND benchmarking dataset, we improve
signal-to-distortion ratio and signal-to-noise ratio over the non-
adversarial model and CSIG, COVL and CBAK over other, state-
of-the art, adversarial training techniques.

Index Terms—Speech Enhancement, Adversarial Training,
Deep Learning, Deep Neural Networks.

I. INTRODUCTION

Recently, monaural Speech Enhancement (SE) has seen a
significant leap in performance thanks mainly to the adoption
of supervised-learning techniques based on Deep Neural Net-
works (DNNs). In fact, DNN models, have been shown to
be able to significantly improve intelligibility measures like
the Short-Time Objective Intelligibility measure (STOI) [1],
a feat which was not possible with non-supervised classical
approaches unless very constrained situations were considered
[2]. In the supervised approach, the model learns a direct map-
ping between noisy input features and output clean features
by minimizing a loss function between the ground truth clean
example and the output of the model.

A common approach is to use hand-crafted features such as
Short-Time-Fourier Transform (STFT) spectra or log-spectra
but, because of the high capacity of DNN models, recently, it
has also been shown that it is possible to learn directly from
the raw waveform by integrating the feature extraction step in
the model architecture [3]–[6]. The advantage of this End-to-
End approach is that the model can learn by itself the most
suitable signal representation for the task at hand, possibly
learning also how to exploit phase information. In fact, even
if overlooked in the past, it has been shown that accurate
phase reconstruction has non-trivial impact on the quality of
enhanced speech [7]. While some techniques were proposed
to tackle the problem of phase reconstruction from STFT of

noisy signal such as the use of Phase sensitive mask (PSM) [8],
or iterative phase reconstruction procedures [9], [5], accurate
phase reconstruction still remains a challenging feat. On the
other hand, recently, End-to-End approaches have been shown
to outperform ideal STFT time-frequency masks in Source
Separation [10] and regarding SE, End-to-End training was
shown to be a promising direction by several works [3], [5],
[6].

Aside from the choice of features, another performance
critical issue regards the choice of the loss function. A widely
adopted loss function is the Mean Squared Error (MSE), but
more recently the Scale Invariant Signal-to-Distortion Ratio
(SI-SDR) [11] has been proposed. Over the last years several
other loss functions have been proposed, some of which
directly borrowed from performance metrics such as STOI [6].
A comparison between MSE, SI-SDR and other monaural SE-
oriented losses has been made by Kolbaek et al. [6] where it
was found that SI-SDR is the most promising all-around loss
function for monaural SE.

Another approach is to use the Generative Adversarial
Network (GAN) framework to tackle the SE problem as it
has been proposed in [3] and [12], where the loss function
is derived in an adversarial way from another network which
is jointly trained together with the network that is used to
perform denoising. More recent works [13], [14] also based on
GANs have shown further improvements by adopting a Time-
Frequency masking approach and regularization techniques.
However, GANs are still notoriously hard to train even if some
techniques such as Spectral Normalization [15] have been able
to alleviate the issue.

In this work, we propose a further technique inspired by
Domain-Adversarial Training (DAT) [16] where an additional
branch with a DNN preceded by a gradient reversal layer
(GRL) is added to the original architecture at training time and
is trained adversarially with respect to the original architecture
to predict a noise-related quantity, rather than a domain label
as in [16] or a noise-type label as in [17]. By competing
with this additional DNN, the original architecture learns to
extract a representation which is orthogonal to the noise in the
input signal thus boosting denoising performance at test time.
The proposed technique is applied to an End-to-End DNN
to perform monaural SE, and we compare our results with
other aforementioned adversarial training techniques based on
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GANs, with an End-to-End architecture [3] and without [13],
[14].

The paper is structured as follows: in Section II we briefly
describe related techniques such as GANs and Domain Ad-
versarial Training. The proposed approach is then described
in detail in Section III. In Section IV, we describe the DNN
architecture used for the experiments. Following, in Section
V we describe the dataset, the evaluation metrics adopted and
we present and discuss the results obtained. Finally, in Section
VI we draw conclusions and outline possible future work.

II. RELATED WORK

A. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [18] are powerful
generative models based on a pair of neural networks that
work adversarially: a generator G and a discriminator D. The
generator G learns to map samples z from a prior distribution
Z to samples x of a target distribution X . The discriminator
D, on the other hand, learns to distinguish between samples
from the target distribution and samples generated by G. The
two networks are jointly trained and the whole training process
is formulated as a two-player minimax game between G and
D as

min
G

max
D

V (D,G) = Ex∼X [logD(x)]+

Ez∼Z [log(1−D(G(z)))],

where Ex∼X denotes the expectation over all the samples x
coming from the distribution X . Because as noted in [18], it
often happens in practice that log(1−D(G(z))) saturates be-
cause in early training stages G can be overpowered easily by
D, practically G is usually trained to maximize log(D(G(z)))
instead. This GAN formulation goes by the name of non-
saturating GAN [19].

The aforementioned SE-oriented GAN approaches [3], [12],
[14] and [13] are actually conditional GANs as the generator
takes as input a noisy signal and tries to approximate the
clean signal. Moreover, different, more robust formulations
such as Least-Square GANs [20] (LSGAN) coupled with a
regularization loss to help stabilize training are employed. In
detail, in [3], LSGAN is coupled with L1 regularizing loss
which is added to the generator loss. In [12] the Pix2Pix
[21] approach (originally developed for images) is adopted,
while in [14] and [13] the standard non-saturating GAN loss
is employed, but a MSE regularizing loss is added to the
generator as it is observed that without such regularizing loss,
G learns easily how to fool D without producing acoustically
convincing results.

B. Domain-Adversarial Training

Domain Adversarial Training [16] is a domain adaptation
technique that tackles the mismatch between a training and
a target domain by enforcing a model to learn features that
are invariant to the change of domains. This is achieved by
embedding the domain adaptation process into the training
procedure by adding, to the original architecture, a branch with
a gradient reversal layer followed by a domain classifier. These

two added components are only used at training time and then
dropped at test-time, so there is no computational overhead
at run-time. During training, both the original network task
and this newly added domain classification task are jointly
optimized. The gradient reversal layer encourages that the
feature extraction stage of the original architecture works
adversarially to the added domain classifier, by extracting
features that are domain-invariant and thus maximize the loss
of the domain classification task. Liao et al. [17] have shown
that such technique can be also employed in monaural Speech
Enhancement to increase the robustness of the model to unseen
noise types and thus improve algorithm generalization.

III. PROPOSED APPROACH

The proposed training scheme is closely related to DAT and
is illustrated in Figure 1. As we are performing classical SE
without dereverberation, we assume that the input noisy signal
y = [y1, y2, . . . , yM ] is given by

y = x + v, (1)

where x is the clean speech signal and v an additive unknown
noise signal. Moreover, we denote as Y = {yi}K1 the input
noisy examples and with X = {xi}K1 the corresponding clean
examples in the training dataset, where K is the total number
of examples. As shown in Figure 1 we have chosen to adopt a
masking approach motivated by the encouraging results from
[13] and [14] but without making any assumption on the input
transformation which thus can be learnt in an End-to-End
fashion. This transformation can be either STFT spectra or
log-spectra or another arbitrary (linear or non-linear) signal
transformation, hand-crafted or learnt as in [4], [10]. In this
framework, the transformed representation for the noisy signal
Y is thus obtained via an analysis transformation A(y) while
the estimated clean transformed representation X̃ is obtained
through a neural-network estimated mask Ωc via element-wise
multiplication (Hadamard product) as

X̃ = Y �Ωc. (2)

Finally, a synthesis transformation S(X̃) is responsible for
obtaining the estimated time-domain signal x̃ from the masked
transformed representation.

We assume that the network used to estimate the mask Ωc

can be decomposed into two parts: an encoder part E(Y; θe)
with θe parameters, where higher-level features are extracted
from the input signal transform Y and a decoding/masking
part M(E(Y; θe); θm) with θm where these features are
aggregated in order to produce the speech-related mask Ωc.

In our experiments, we have chosen to train this network
End-to-End by using learnable analysis A(y; θa) and synthesis
S(X̃; θs) blocks as in [10] and choosing as loss function SI-
SDR between reconstructed (post-synthesis) estimated clean
signal and target clean signal

Lmain(x̃,x) = −10 log

(
‖αx‖2

‖αx− x̃‖2

)
, (3)



where α = x̃Tx/ ‖x‖2 is a re-scaling factor used to enforce
scale-invariance.

The core of the proposed approach consists in the fact that,
at training time, an additional branch with a gradient reversal
layer and an additional network is added between the encoding
and decoding part of the network. Contrary to DAT where the
additional network is used to classify the domain of the input
examples and differently from [17] where, instead, is used to
classify the noise type, here, this additional network, is used to
predict a noise-related quantity such as the noise Ideal Binary
Mask (IBM) or Ideal Ratio Mask (IRM) in the transformed
domain. In fact, it is not the scope of this work to develop
another domain adaptation technique for SE but to devise a
training scheme that is able to boost the algorithm performance
at training and test time without any assumption on a potential
domain mismatch.

This added network D(E(Y); θd) takes in input encoder
features and estimates a mask M̃n for the noise, trying to
discriminate, for each bin, the probability of noise presence.
This discriminator network is thus trained via a cross-entropy
loss between the estimated mask M̃n and the target noise IRM
or IBM

Ladv(y,Mn) =
1

N

N∑
i

Mnlog(D(E(A(y)))), (4)

where N is the total number of bins in the transformed domain
and the target mask Mn is a function of y and x as, for
example, IRM can be obtained as

Mn =
A(y − x)

A(x) +A(y − x)
, (5)

and IBM by simply applying an hard decision threshold for
each IRM bin.

The total loss is then a linear combination of the main and
adversarial losses weighted by an hyperparameter β:

L(y,x) = βLmain + (1− β)Ladv. (6)

The addition of the GRL ensures that the parameters of
the encoder E(Y; θe) and the discriminator D(E(X); θd) are
updated adversarially during stochastic gradient descent at
each iteration with learning rate lr:

θe ←− θe − lr
(
β
∂Lmain

∂θe
− (1− β)∂Ladv

∂θe

)
, (7)

θd ←− θd − lr(1− β)
∂Ladv

∂θd
, (8)

θm ←− θm − lrβ
∂Lmain

∂θm
. (9)

Analysis A(y; θa) and synthesis S(X̃; θs) transforms are also
updated in the same fashion. In this way, the encoder E(Y; θe)
and the analysis transform A(y; θa) are encouraged to find a
representation for the input signal which is orthogonal to the
additive noise in order to maximize the loss of the adversarial
network. The β parameter is crucial in this sense as it is
responsible for the trade-off between minimization of SI-SDR

and orthogonality to the noise in the feature space: SI-SDR
tries to minimize the distance between the rescaled target
signal and the estimated signal in time domain while the
adversarial loss forces the estimated signal to be orthogonal
to the noise in the encoder feature space.

Looking specifically at the update rules in Equations 7 and
8 a comparison can be made with GANs. As in GANs, in
fact, the encoder E and discriminator D compete against each
other. In fact, as noted in [17], DAT can be seen as a different
minimax approximation beside the alternative minimization
procedure used in GANs which actually leads to same formu-
lation as a non-saturating GAN [19] with conditional input.

However, a major difference is that here the discriminator
is not trying to discriminate to which distribution (clean or
enhanced) the input encoder features belongs to, but instead
tries to infer the noise for each bin of the input signal
representation in order to produce a mask, thus leading to the
following minimax formulation with value function V (D, E):

min
D

max
E

V (D, E) = Ey,x∼pdata(y,x)Ladv(y,x), (10)

where for Ladv we have explicitly considered that the target
noise mask Mn is a function of the target clean signal x and
noisy input y and we have ignored the contribution of Lmain

which can be seen as an additional regularization loss for the
encoder E .

IV. NETWORK ARCHITECTURE

We decided to adopt the recently proposed Dual-Path Recur-
rent Neural Network (DPRNN) [22] as the core component in
all the different configurations we explored in our experiments.
This recently developed neural architecture adopts a divide-
and-conquer strategy which was shown to be very effective
in Source Separation, surpassing the performance of previous
techniques by a large margin while, at the same time, halving
the number of parameters with respect to previous models.

As in [4], [10] we used for the analysis A and synthesis
S blocks respectively a 1D convolutional layer and a 1D
transposed-convolutional layer with learnable kernels. Both
layers have 64 channels and a kernel size of 16 with stride 8.
We settled for these hyper-parameters after some preliminary
experiments. Interestingly we found that further reducing the
kernel size had negative impact on the performance. This is
in stark contrast to what was found for Source Separation
[22] where better performance was observed with smaller
kernel sizes. One possibility is that small kernel sizes work
well for clean two speaker Source Separation because of the
highly structured nature of human speech but fail to have
enough discriminative capability when less structured input
is encountered.

In the analysis block, the convolutional layer was followed
by a Rectified Linear Unit (ReLU) non-linear activation to
guarantee a non-negative output. In fact, IRM and IBM
computation for the adversarial network targets in Equation
5 require non-negative values for the transformed representa-
tions. Encoder E , decoder M and adversarial network D are
all composed of one DPRNN block [22] each of which has two



Fig. 1: Illustration of the proposed approach. It consists of an encoder, a decoder and an adversarial neural network plus an
analysis and synthesis transform blocks. The adversarial network learns to predict a noise-related mask by minimizing Ladv .
A GRL ensures that the encoder and analysis blocks work adversarially versus the adversarial network by maximizing Ladv .
In this way the analysis and encoder blocks are encouraged to learn a noise-orthogonal representation.

bi-directional Long-Short-Term Memory (LSTM) networks
with 128 neurons. The encoder E has an additional channel-
wise normalization layer at its input followed by a point-wise
(unitary kernel size) convolutional layer as in [10] with 64
channels.

The decoderM and adversarial network D have instead an
additional 64 channel point-wise convolutional layer followed
by a Parametric ReLU (PReLU) [23] non-linearity and an
optional activation to produce the mask.

We use the sigmoid activation for both the decoder and the
adversarial network, as it gave the best results in our prelimi-
nary experiments. Thus the decoder tries to estimate a pseudo
IRM mask for the clean transformed representation which
minimizes the SI-SDR in time domain between denoised and
target signal.

The network is then trained till convergence via early-
stopping on 4 second long segments with a batch-size of 1.
RAdam [24] is used for optimization with an initial learning
rate of 1e−3. We also apply gradient clipping with maximum
L2 norm of 5 to improve training stability.

V. RESULTS AND DISCUSSION

A. Dataset

For our experiments, we used the VoiceBank-DEMAND
[25] which has become a de-facto standard dataset to compare
monaural Speech Enhancement algorithms. It consists of a

total of 24792 utterances of 30 different speakers selected from
VoiceBank corpus [26] and 10 artificially added noises some of
which selected from the DEMAND dataset [27]. This dataset
is already split into a training and test set with no overlap
between speakers and noise types and with noises added
at different signal-to-noise ratios: for the training set 15 dB,
10 dB, 5 dB and 0 dB and for the test set 17.5 dB, 12.5 dB,
7.5 dB and 2.5 dB. This makes this dataset particularly suitable
for assessing an algorithm generalization capability. As the
original sampling rate for the data is 48 kHz we downsampled
to 16 kHz in order to be comparable with previous works [3],
[13], [14] which also report performance figures on this dataset
at 16 kHz. Moreover, in our experiments, the training set was
further split into a training and a validation set using a 90/10
ratio. The validation set was then used for hyper-parameter
tuning and early-stopping.

B. Evaluation Metrics

In this study, we use several objective measures to assess
the performance of the proposed method. Alongside SI-SDR
defined in Equation 3 and used as the main loss Lmain in
our architecture, Signal-to-Distortion Ratio (SDR), Signal-to-
Artifacts Ratio (SAR) and Signal-to-Noise Ratio (SNR) as
defined in [28] are reported. The popular BSS Eval toolkit
[29] is used to compute these metrics.



To compare directly with other aforementioned adversarial
training methods [3], [14] and [13], we also compute the
wideband ITU-T P.862.2 Perceptual Evaluation of Speech
Quality (PESQ) [30] (from -0.5 to 4.5) a metric originally
developed for voiced telecommunication evaluation, Short-
Time Objective Intelligibility (STOI) [1] and Hu and Loizou
[31] composite measures: CSIG, CBAK and COVL (all from 1
to 5) which are objective measures that approximate SIG, BAK
and OVL subjective Mean Opinion Scores (MOS). More in
detail, CSIG quantifies the signal distortion when the listener
is attending to the speech signal, CBAK instead quantifies the
intrusiveness of the noise when the listener is attending to the
noise and COVL the overall quality of the signal.

C. Ablation Study

To assess the validity of the proposed approach we have
performed an ablation study by comparing different configu-
rations of the same architecture. In particular, we considered
two additional possible training schemes beside the proposed
approach (Adv):
• Non-Adversarial (Non-Adv) where the adversarial branch

is removed and the analysis, encoder, decoder and syn-
thesis blocks are trained only via Lmain.

• Cooperative (Coop) where the GRL in the adversarial
branch is removed and the discriminator is given the task
to estimate the IRM or IBM of the clean signal instead
of the one for the noise. In this configuration, differently
from Equation 7, the gradients with respect to the two
losses have the same sign at the encoder and analysis
blocks.

For both Adv and Coop, two different masks were considered
as a target: IRM and IBM. As a reference, we also computed
the objective metrics outlined in Section V-B for the un-
enhanced noisy input and for oracle STFT-based IBM and
IRM with 25 ms window and 10 ms stride.

In our preliminary experiments, we also explored a third
configuration, where the adversarial branch is interposed be-
tween the analysis and encoder block and thus only the
analysis transform, besides the discriminator, is affected by
Ladv . However, we found out that, because of limited capacity
of the learnable analysis transform, as expected, this leads
to unstable training with discriminator easily overpowering
the analysis block even when the discriminator capacity was
severely reduced.

For all the training schemes considered, we performed a
random-search based hyper-parameter tuning. In the following,
we thus report only the best model measured in terms of
COVL for each scheme unless stated differently. As pointed
out in Section III a particularly critical hyper-parameter for the
proposed approach is β which controls the trade-off between
adversarial and SI-SDR loss. In Figure 2, we have reported
CSIG versus CBAK for different values of β and for Adv-IRM
training scheme. It can be seen that there is an optimum range
of values with a good trade-off between CSIG and CBAK. The
best value, in this case, is 0.8 for which the highest COVL is
obtained as it offers the best trade-off. In general, we found

Fig. 2: CBAK versus CSIG for different values of β for the
Adv-IRM proposed learning scheme.

that for values higher than 0.9 and lower than 0.6 there was a
significant drop in performance.

Method SI-SDR SDR SNR SAR

Noisy 8.44 8.53 8.53 ∞
Non-Adv 19.26 20.59 25.47 22.49

Adv-IBM 19.38 21.1 27.67 22.50
Adv-IRM 19.51 21.52 28.18 22.57

Coop-IBM 19.13 20.34 24.98 22.56
Coop-IRM 19.16 20.31 25.1 22.54

Oracle-IBM 19.7 20.97 30.49 21.64
Oracle-IRM 19.24 20.27 24.35 22.53

TABLE I: Ablation study results in terms of SI-SDR and
BSS Eval [29] metrics. Bold-fonts indicate best performance
(except for oracle).

Method CSIG CBAK COVL PESQ STOI

Noisy 3.33 2.44 2.62 1.97 0.91
Non-Adv 3.82 3.33 3.19 2.57 0.94

Adv-IBM 3.82 3.36 3.21 2.62 0.94
Adv-IRM 3.84 3.33 3.21 2.59 0.94

Coop-IBM 3.79 3.31 3.15 2.52 0.94
Coop-IRM 3.80 3.31 3.17 2.54 0.94

Oracle-IBM 3.33 3.57 3.22 3.19 0.97
Oracle-IRM 4.94 4 4.45 3.66 0.98

TABLE II: Ablation study results in terms of composite met-
rics, PESQ and STOI. Bold-fonts indicate best performance
(except for oracle).

In Table I we report the results in terms of SI-SDR, SDR,
SNR and SAR. As it can be seen, even the baseline Non-Adv
configuration attains values close to oracle STFT masks. In
particular, the fact that, for all models, SAR is higher with
respect to the oracle masks should indicate that the analysis
and synthesis blocks learn a transformation which is able
to also capture phase information leading ultimately to less



artifacts in the reconstructed signal. Secondly we see that the
Coop learning scheme is not able to bring benefits but instead
results in a slight performance loss. The overall best figures
are obtained with the proposed techniques (Adv-IBM, Adv-
IRM) which are even able to surpass oracle masking for what
regards SDR and SAR and even SNR but only with respect to
Oracle-IRM. In particular, the one where the discriminator is
used to estimate the IRM (Adv-IRM) perform best as far as
these metrics are concerned.

In Table II we compare the different training schemes in
terms of objective composite metrics, PESQ and STOI. In
contrast with Table I here it can be seen that, in general, the
different schemes are far from oracle STFT performance and
especially Oracle-IRM. The only exception is for CSIG, in
fact, all models achieve better CSIG than Oracle-IBM which is
not able to improve over Noisy as the IBM masking approach
introduces significant distortion. This result is in accordance
with the SAR values and further shows that the End-to-End
approach adopted leads to less artifacts in the estimated clean
signal. Also in accordance with SI-SDR and BSS eval metrics,
the Coop learning schemes lead to a slight overall drop in
performance compared with the baseline Non-Adv scheme.

Both the proposed approaches are able to improve over the
Non-Adv baseline but in different ways: Adv-IBM attains the
highest CBAK but is not able to improve CSIG while, on the
contrary, Adv-IRM improves CSIG but not CBAK. This seems
to suggest that Adv-IBM is able to denoise more but distorts
less while Adv-IRM has the exact opposite behaviour. This
is in contrast with the SNR figures from Table I where the
highest SNR is achieved by Adv-IRM but is in accordance
with the SAR figures as the similar SAR values for Non-Adv
and Adv-IBM actually lead to identical CSIG. This suggests
that SNR and CBAK are poorly correlated, while SAR and
CSIG are more strongly correlated. The proposed approaches
are also able to bring a slight improvement in terms of PESQ,
but no significant improvement has been observed for STOI.
Figure 3 shows LogMel spectrograms of respectively oracle
clean signal x (Figure 3a), noisy signal y (Figure 3b) and
estimated clean signal x̃ for Non-Adv (Figure 3c) and Adv-
IRM (Figure 3d). It is observed that, in accordance with the
metrics in Table I and II, the proposed approach leads to higher
SNR in the enhanced signal.

A statistical significance test was conducted to assess if the
values obtained for composite metrics, PESQ and STOI in
Table II are of enough statistical significance. We resorted to
the non-parametric Wilcoxon Signed-Rank Test [32] as the
data distribution for the performance metrics was found to be
highly-non Gaussian and because we are comparing different
algorithms on the same test data. We adopted the default as-
sumption for the test: the null hypothesis consists in assuming
same distribution for the two methods we are comparing. The
significance value was set to 0.01. In Table III we report the
p-values obtained with such test by comparing the proposed
approaches (Adv-IBM, Adv-IRM) with the baseline Non-Adv.
It can be seen that the null hypothesis can be rejected for all
metrics but STOI, CBAK for Adv-IRM and STOI, CSIG for

Adv-IBM.

p-value

Method CSIG CBAK COVL PESQ STOI

Adv-IBM 0.23 2.5e−17 1e−3 6e−14 0.51
Adv-IRM 5e−3 0.43 2e−3 7e−4 0.67

TABLE III: Wilcoxon statistical significance test results be-
tween the proposed adversarial methods and non-adversarial
baseline method.

To further understand how the proposed approach is able to
improve the performance over the plain SI-SDR only approach
(Non-Adv) we can analyze the output of the encoder block.
In fact, the rationale behind the proposed method is that the
encoder block learns to extract a representation more robust
with respect to noise by competing against the adversarial
network. In order to test such hypothesis we have computed
the mean L2 norm for the test set data and for the output
of the encoder. In particular, we computed such value when
only the oracle clean signal x is fed to the architecture
Lclean
2 = ‖E(X)‖2 and when only the noise v is fed to the

architecture Lnoise
2 = ‖E(V)‖2. In Table IV we report such

values for all the different training schemes. The fact that the
ratio between Lclean

2 and Lnoise
2 is higher for the proposed

method suggests that the encoder is able to better reject noise
when the proposed adversarial scheme is employed.

Method Lclean
2 Lnoise

2 Lclean
2 / Lnoise

2

Non-Adv 0.092 0.113 0.81
Adv-IBM 0.088 0.092 0.95
Adv-IRM 0.087 0.091 0.95
Coop-IBM 0.075 0.09 0.83
Coop-IRM 0.078 0.093 0.84

TABLE IV: Values for the mean L2 norm on test data for the
output of the encoder when the model is fed the oracle clean
signal (Lclean

2 ) and the oracle noise signal (Lclean
2 ).

In Figure 4, as a further example, we show the output of
the encoder when the network is fed the noisy input y. For
visualization purposes we have taken the logarithm of the
absolute value of the feature maps. In the top Figure 4a is
visualized the output of the encoder trained with proposed
Adv-IRM learning scheme while in the bottom Figure 4b
with baseline Non-Adv method. The speech has a distinctive
pattern and appears as vertical stripes that encompass every
channel. This suggests that every feature map is activated by
speech. On the contrary, it can be seen that in both models
noise triggers overall more sparse activations which shows that
the encoder and analysis blocks have learnt how to extract
relevant speech-related features. It is also observed that, for the
proposed approach (Adv-IRM), the speech patterns are more
visible which indicate that the encoder learns a more robust
representation against input noise as noise leads to weaker
activations in the adversarially trained model.



Fig. 3: LogMel spectrograms of oracle clean signal (a), noisy signal (b), estimated clean signal with Non-Adv model (c) and
estimated clean signal with proposed Adv-IRM model (d).

Fig. 4: (a): encoder output for Adv-IRM. (b): encoder output
for Non-Adv. Speech regions have been highlighted.

D. Comparison with other Methods

In Table V we compare the results obtained in the pre-
vious Section with other state-of-the-art algorithms based
on adversarial training for which composite metrics, PESQ
and STOI are available on VoiceBank-DEMAND. It can be
seen that both proposed learning schemes (Adv-IBM, Adv-
IRM) are able to outperform the other approaches based on
GANs with a smaller model at runtime. In fact, the second
best algorithm [14] has about 850K parameters at runtime
while both the proposed techniques 441K. In particular, it can
be observed that, among the other proposed algorithms the
two TF-masking approaches significantly outperform SEGAN
[3] whose relatively low CSIG value suggests it tends to
introduces more artifacts. We argue that such a result is due

to the fact that SEGAN adopts an End-to-End regression
approach, which could lead to severe non-linear distortions.
On the contrary, we adopted the learnable transformation
framework firstly proposed in [4] for Source Separation, where
a masking approach is used together with learnable low-
capacity transformations. Due to the low capacity of analysis
and synthesis blocks strong non-linear distortions are avoided.

Method CSIG CBAK COVL PESQ STOI

Noisy 3.33 2.44 2.62 1.97 0.91
Adv-IBM 3.82 3.36* 3.21* 2.62* 0.94
Adv-IRM 3.84* 3.33 3.21* 2.59* 0.94

SEGAN [3] 3.48 2.94 2.8 2.16 0.93
Soni et al. [14] 3.8 3.12 3.14 2.53 0.93
Shah et al. [13] 3.55 2.95 2.92 2.34 0.93

TABLE V: Comparison between different adversarial train-
ing methods on VoiceBank-DEMAND. For the proposed ap-
proach, statistical significant results over the non-adversarial
model are denoted with an asterisk.

VI. CONCLUSIONS

In this study, we propose a novel training scheme for
Speech Enhancement Deep Learning-based algorithms based
on adversarial training. At training time an additional branch
with a gradient reversal layer followed by an additional neural
network is added to the original architecture after the feature
extraction stage. This additional network is given the task to
predict a noise-related IBM or IRM mask while the gradient
reversal layer ensures that such network works adversarially
with respect to the feature extraction stage layers.

In this way, the feature extraction stage learns to extract
more discriminative features which are more robust against
noise. This proposed learning scheme was applied to a End-
to-End analysis/masking/synthesis deep neural network archi-
tecture where, instead of using fixed Time-Frequency trans-
formations, the transformation and its inverse is learnt and a



DNN-predicted mask for the speech is applied on such learnt
representation. We performed an extensive ablation study to
assess the validity of the proposed training scheme using the
VoiceBank-DEMAND dataset and comparing various training
schemes with several objective measures. Results show that
the proposed approach is able to improve several objective
metrics over the baseline non-adversarial training scheme.

Finally, the proposed training scheme was also compared
with other SE algorithms based on adversarial training for
which results on VoiceBank-DEMAND are available, and
it was shown to be able to outperform previous methods
with significantly less parameters. Possible future work could
explore how to make this framework less sensitive to the β
hyper-parameter, which has currently a significant impact on
the performance, and apply the proposed training scheme to
different application scenarios as a pre-processing step for
Automatic Speech Recognition.
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