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Abstract—For solving Visual Question Answering (VQA), we
commonly employ images and questions simutansouly to predict
answers. Some attention mechansims should be used to foucs
on the most valuable information, because there are too much
information extracted from images and questions. Top-Down
Attention (TDA) is one of the famous attention mechansims. For
standard TDA, only important regions of the image associated
with the question are highlighted. In this work, we propose a
Cascading Top-Down Attention (CTDA) model. CTDA highlights
the most important information collected from images and
questions by a cascading attention process. First, the key words of
the question, associated with the image, are highlighted by using a
Question Top-Down Attention (QTDA) . Then, important regions
of the image, associated with the question, are highlighted by
using of Image Top-Down Attention (ITDA), useless information
of the images and questions can be ignored effectively. We
evaluate our model on two popular VQA data sets. CTDA obtains
better results than standard TDA and the other state of the art
models.

Index Terms—Cascading Top-Down Attention, Question Top-
Down Attention, Image Top-Down Attention, Visual Question
Answering

I. INTRODUCTION

In recent years, VQA [3] has emerged as a prominent
multidisciplinary research problem in academia and industry.
VQA requires two forms of information: questions and im-
ages. The inputs for VQA are images and free-form, open-
end natural language questions. VQA’s goal is to produce a
natural language answer about the inputs. In order to correctly
answer a question over an image, the computer needs a deep
image understanding through fine-grained analysis and even
multiple steps of reasoning. At present, most image captioning
methods and VQA are processed through neural networks with
visual attention. Attention typically produces a spatial map
to highlight the image regions associated with the question,
which improves the performance of the overall framework [1],
[3], [9], [26], [27].

Most of attention models for VQA in literature focus on the
problem of identifying ”where to look” or visual attention. Few

models focus on ”what to listen”. Combining the processed
images and questions to predict the answers is the most
common method [1], [23], [26], [29], [30]. The processed
images are more relevant to questions. In fact, the words
associated with the answer in the question may be just a
few key words. When original questions are combined with
images, some irrelevant words may introduce noises and
affect final results. Motivated by this observation, we want
to highlight the question’ s key words to reduce the effect.

Fig. 1. CTDA sample diagram

In this paper, we have improved the model proposed by
the winner of the 2017 VQA Challenge [23]. We propose
CTDA to process this problem effectively(Fig 1). CTDA
jointly reasons with ITDA and QTDA. Our model uses the
pre-trained Glove vector [19] and Gated Recurrent Unit (GRU)
[28] to generate the question embedding, and uses Faster
Region-based Convolutional Neural Networks (Faster RCNN)
to generate the object-centric features from the image. The
image features and the question features are fed into attention
module to create the embedded features. Finally, the embedded
features are fed to a classifier to generate the final answer. In
this sense, the image is used to guide the question attention
and the question is used to guide image attention. The main
contributions of this paper are:

a. We propose a novel model (CTDA) for VQA. CTAD
based on question-guided image attention and image-guided
question attention;

b. We evaluate our model in VQA v2.0 [9] and v1.0 [3]
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Fig. 2. Variants of the attention in TDA model

data sets. We obtain comparable or even better results than
the current state of the art models;

c. We perform contrast experiments and ablation experments
to quantify the roles of different components in our proposed
model.

II. RELATED WORK

In recent researches, mainstream models use neural net-
works to combine images and questions for VQA [1], [3],
[27]. Typically, these models can be characterized as top-down
approaches, where context is provided by a representation of
the question in the case of VQA [2], [6], [19], [20], [23], [30],
[31]. Anderson et al. [1] firstly used TDA for VQA. In Fast-
RCNN [1], [20] and GRU [28], TDA is used to obtain image
features and question features respectively.

In previous work, few people paid attention to questions
in VQA, but there are also work related to natural language
processing (NLP) that has begun to model language attention.
Moritz et al. [11] proposed a model based on the attention
mechanism to avoid the understanding bottleneck caused by
fixed-width hidden vectors in text reading. A more granular
attention mechanism was proposed by Tim et al. [21], and
the author used a verbatim neural network attention to reason
over the implications of the two sentences. Santos et al. [7]
proposed a two-way attention to predict and then input the
results of the prediction pairing into the public representation
space.

The popular VQA models mainly use word embeddings for
questions. The features are used to represent words and can be
pre-trained on language models [18], [19]. The benets of this
pre-training is that one can perform unsupervised pre-training
in large corpora and even includes words which not necessarily
exist in training questions or answers [8], [12], [22], [24].
VQA is closely related to image captioning [1], [6]. Oriol et al.
[26] firstly proposed to extract advanced image feature vectors

from the GoogleNet system and generate captions. Oriol et al.
[28] proposed bi-directional GRU and Xu et al. [29] proposed
bi-directional Long-Short Term Memory (LSTM).

Before image features are inputted to the VQA system, a
large amount of other data is used to pre-train the feature
extraction models. In this way, when images are inputted to
VQA, the features are extracted directly by the pre-training
model. Most of VQA models do not use the actual output of
the classifier, but use its hidden state to finally represent the
image as a group of identified properties and objects to operate
on. This is the current method of processing the mainstream
of images [8], [17], [29], [31]. Yang et al. [31] proposed a
stacked attention network, which ran multiple hops to infer the
answer progressively. Kevin et al. [22]generated image regions
with object proposals and then selected regions relevant to
questions.

The attention in VQA is a method that is consistent with
human thinking. Most of questions are only related to cer-
tain regions of images. Answering such questions generally
requires only local information in images. Excessive image
information can cause noise. So most of attentions use ques-
tion to pay attention to image regions.

Neural network attention has been widely used in different
fields of computer vision and natural language processing [6],
[27], [28]. Most of methods use the soft attention [4] which
was firstly proposed. Soft attention adds a network layer to
the network structure for generating soft weights and then use
them to calculate weighted averages. The difference between
the two main types of soft attention is in input features and
candidate features. The first type uses an alignment function
based on the input and the ”connection” of each candidate. The
second type uses an alignment function based on the input dot
product and each dot product.

People are paying more and more attention to the research



of attention, in order to achieve the purpose of multi-step
effective reasoning and further filtering redundant information.
Yang et al. [31] linearly superimposed multiple attention, and
the latter attention is based on the output of the previous
attention to achieve multi-step reasoning. Fukui et al. [8]
applied two parallel attention to images, which proves that
the model can focus on multiple regions of images.

Similar to observing images, humans often focus on some of
key words when they understand questions. While performing
attention on images, some people have also proposed to pay
attention to questions [17]. Through an alternating or parallel
attention between questions and images, these models enable
more detailed information filtering. Lu et al. [17] proposed
draw attention to the image at the three levels of the word,
phrase and sentence of the question.

III. MODEL

In our model (Fig 2), we use the well-known joint multi-
model embedding of question and image [12], [25], [26].
ITDA on image features to highlight important images regions,
which obtain new image features. QTDA on question features
to highlight question’s key words, which obtain new question
features. Finally, by combining the new image features and
the new question features, the score is predicted from the
candidate answers.

A. Question Embedding

Whether it’s training process or validation process, ques-
tions and images are inputted. In order to improve the
computational efficiency, the maximum length of questions
is adjusted to 14 words, because only about 0.25% of the
questions in VQA v2.0 data set exceed 14 words [23]. The
given question is encoded as q.

Fig. 3. GRU

q = {q1, q2, q3..., qt} , qi ∈ RD (1)

where D is the representation vector, the dimension is setted
to 300; t is the number of words in the question. After the
word is embedded, a sequence size of 14 × 300 vector is
obtained. Words over the length are discarded directly, and
those below the length are directly filled with the zero vector.
Then bi-directional GRU [28] processes the 14 words. The
corresponding hidden state with dimension 1024 is obtained,
which is inputted to VQA system as question feature (q).

The GRU (Fig 3) only has two gates, including update gate
and reset gate. The update gate is used to control the range,
and the status information of the previous moment can enter

the current status. The larger the threshold of update gate, the
more state information is currently introduced. The reset gate
is used to control the degree of ignoring the status information
of the previous moment. The smaller the threshold of reset
gate, the more it is ignored. The forward propagation of the
GRU model can be summarized as the following formula:

zt = σ(Wz[ht−1, xt]) (2)

h̃t = tanh(Wh̃t
[rt ∗ ht−1, xt]) (3)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (4)

yt = σ(Woht) (5)

where [] indicates that two vectors are spliced, Wr,Wz ,Wh̃,Wo

are the weight to be learned, ∗ represents matrix element
multiplication.

B. Image Features

Fig. 4. Faster RCNN

Image features are extracted by Faster RCNN. Faster RCNN
is divided into two phases to detect objects (Fig 4). In the first
phase, feature map is described as a Region Proposal Network
(RPN), which is used to pre-discover the possible locations of
the targets in the graph and provided candidate regions for
the predicted objects. In the second phase, regions of interest
(RoI) are merged and feature maps of each suggestion box
are extracted. These feature maps are inputted together to the
final layer of the Convolutional Neural Networks (CNN). The
output of the final model includes the softmax distribution on
the class label and the refinement of each particular bounding
box.

Faster R-CNN uses pre-trained ResNet-101 [10] for clas-
sification on ImageNet. To learn a better representation of
features, model adds an additional training output to predict
the attribute class (except the object class). To predict the
properties of the region, it connects the average merged
convolution features to the learning embedding of the instance
object class and feeds it to another output layer. The output
layer defines a softmax distribution for each attribute class
and ”no attribute” class. The input images through bottom-up
attention to obtain feature vector (v) of size K×2048, where
K is a plurality of image positions, and then extract feature
vector (v) as image features centered on image K object. We
select a fixed K = 36 in our experimental evaluation.



C. Non-linear layers
Our model uses multiple non-linear transformation layers.

In the implementation process, each non-linear transformation
layer is activated using gated hyperbolic tangent, and functions
are implemented in these layers f : x ∈ Rm → y ∈ Rn. The
specific parameters are defined as follows:

ŷ = tanh(wx + b) (6)

g = σ(w,
x + b,) (7)

y = ŷ ◦ g (8)

where σ is the sigmoid activation function, w,w, ∈ Rn×m

and the deviation b, b, ∈ Rn are the weights that needs to
be trained, ◦ is the Hadamard (element-by-element) product g
multiplication as the gate that activates y in the middle.

D. CTDA
1) QTDA: Image features (v) are fused with question fea-

tures (qi,i = 1, 2, ..., t,t = 14) by element-wise multiplication.
They use the non-linear (fx) and linear layers to obtain scalar
attention weights (α) associated with words of the question
(Fig 5). Formally:

ai = waf1(fq(qi) ◦ fv(v))) (9)

α = softmax(a) (10)

q̂ =

t∑
i=1

αiqi (11)

where wa needs to be trained, fx is that the given non-linear
transformation. Softmax function is used to normalize the
attention weights for all words. It is weighted and summed
by normalized values to obtain an attention-grabbing question
(q̂).

Fig. 5. QTDA

2) ITDA: Question features (q) are fused with image fea-
tures (vi, i = 1, 2, ..., k, k = 36) by element-wise multiplica-
tion. They pass through the non-linear (fx) and linear layers
to obtain attention weights (β) associated with regions of the
image (Fig 6). Formally:

bi = wbf2(f
,
v(vi) ◦ f ,q(q)) (12)

β = softmax(b) (13)

v̂ =

k∑
i=1

βivi (14)

where wb needs to be trained. Softmax function is used to
normalize the attention weights for all locations. It is weighted
and summed by normalized values to obtain an attention-
grabbing image features(v̂).

Fig. 6. ITDA

E. Attention Fusion

The image features (v̂) are obtained by QTDA and the
question features (q̂) obtained by QTDA. They are respectively
passed through the non-linear layer, and then connected by a
simple element-by-element multiplication method:

h = f(q̂) ◦ f(v̂) (15)

The fusion features (h) are called the joint embedding of the
question and the image. They are sent to the output classifier
for predicting answer.

F. Output Classifier

While the fusion features are classified by the output classi-
fier, VQA is considered as a multi-label classification task. In
the output classifier,output vocabulary has a set of candidate
answers. In fact,each question is associated with one or more
answers. The precision mark in each answer is in range [0,1].
Our multi-label classifier passes the joint embedding the h
through a non-linear layer (f), then through a linear mapping
(wo) predicts scores ŝ for candidates answers:

ŝ = σ(wof(h)) (16)

where wo ∈ RN×1024 is the weight matrix that needs to be
trained; σ is the activation function, which is used to normalize
the final score to [0, 1]. By using a loss similar to binary
cross entropy, we obtain a soft target score. Final stage can be
regarded as a logistic regression to predict the correctness of
each candidate answer. Our objective function is:

L =

M∑
i=1

N∑
j=1

sij log(ŝij)− (1− sij)log(1− sij) (17)

The indexes i and j correspond to questions(M) and
candidate answers (N). The ground-truth scores (s) are the
aforementioned soft accuracies of ground truth answers. The
above formulation proved to be much more effective than a
softmax classifier as commonly used in other VQA models.

IV. EXPERIMENTS

A. Evaluation indicators

We use the accuracy metric provided by the VQA Chal-
lenge, which is highly reliable for interpersonal differences in
expressing answers:

Acc(a) = 1
K

K∑
k=1

min(
∑K

j=1 j 6=kI(a=aj),1

3 ) (18)



Among them (a1, a2, a3, ..., ak) is the correct answer pro-
vided by the user,k = 10. If there are more than three
annotators agreeing on the answer, the answer is believed
correct,which is the most intuitive explanation.

B. Data set

TABLE I
OUR RESULTS ON VQA 1.0 VALIDATION SET

Method Y/N Num Other All
LSTM Q+I [17] 79.8 32.9 40.7 54.3
Image Atten [17] 79.8 33.9 43.6 55.9

HieCoAtt [17] 79.6 35.0 45.7 57.0
CTDA (Q+V)(ours) 82.89 39.08 54.94 63.41

TABLE II
OUR RESULTS ON VQA 2.0 VALIDATION SET

Method Y/N Num Other All
HieCoAtt [17] 71.80 36.53 46.25 54.57

MCB [17] 77.37 36.66 51.23 59.14
SAA [13] 77.45 38.46 51.76 59.67
FE [15] 80.46 42.80 53.57 62.26

CTDA (Q+V)(ours) 81.26 43.24 55.67 63.65

We evaluate our model on two data sets, in VQA v1.0
and v2.0 data set. VQA data set contains manually annotated
questions and answers about the Microsoft COCO data set.
There are three subcategories according to the type of answer
(including yes/no, number and other). Each question has 10
free-response answers.

VQA v1.0 has 82,783 images, 248,349 questions and
2,483,490 answers for training set; 40,504 images, 121,512
questions and 1,215,120 for validation set. VQA v2.0 has
82,783 images, 443,757 questions and 4,437,570 answers for
training set; 40,504 images, 214,354 questions and 2,143,540
answers for validation set.

C. Setup

We build a dictionary by combining all the answers in the
training and validation sets. Remove the number of occur-
rences less than 9 times. Then check if the standard answers
to all questions are covered. If not,join them. Finally, an
answer dictionary is obtained. For each question, we match all
answers in the dictionary with ten answers. If a answer in the
dictionary is matched with the annotated answer successfully,
we count how often the answer appears in all standard answers.
According to the number of occurrences, all an swers in the
dictionary are scored by the above evaluation indicators.

We train our model on training data set, report results from
the validation set and the test-dev, the test-standard results
from the 2019 VQA challenge evaluation server. After that, the
weight of the candidate answer to questions is obtained, and
then the candidate answer with the highest weight is selected
as the predicted answer. Then we get answer and score for
each question.

D. Results and analysis

From table I and table II , CTDA (Q+V) can get a level
that is comparable or even better than the current popular
model [8], [13], [16], [17], [23] in VQA v1.0 and v2.0. In
VQA v1.0 data set, the accuracy of CTDA (Q+V) is 9.11%,
7.51%, and 6.41% higher than LSTM Q + I, Image Atten, and
HieCoAtt respectively; In VQA v2.0 data set, the accuracy of
CTDA(Q+V) is 9.08%, 4.51%, 3.98%, and 1.39% higher than
HieCoAtt, MCB, SAA, and FE respectively. Therefore, v the
accuracy of CTDA (Q+V) proposed in this paper is far better
than these models in VQA v1.0 and v2.0.

Table III and table IV show the performance of our
model in VQA v2.0 test-dev set and test-standard set. We
trained our model on train set and validation set and tested
the performance on test-standard set and test-dev set. On
the test-dev, we compared the results of six models: MFB,
MFH, FE, MUTAN, MLB and V. Our CTDA (Q+V) model
has higher accuracy than the worst MFB model among them
2.47%, higher accuracy than the best FE model among them
1.05%. On the test-standard, we compared the results of ten
models: MFB, MFH, FE, MUTAN, MLB, ITDA (V), Prior,
Language-only,d-LSTM + nI, and LV-NUS. Our CTDA (Q+V)
has higher accuracy than the worst Prior model among them
41.78%, higher accuracy than the best LV-NUS model among
them 0.99%.

TABLE III
OUR RESULTS ON VQA 2.0 TEST-DEV SET

Method Y/N Num Other All
MFB [32] - - - 64.98
MFH [33] - - - 65.80

MUTAN [5] 82.88 44.21 56.50 66.01
FE [15] 82.50 45.80 57.34 66.40
V [23] 81.82 44.21 56.05 65.32

MLB [14] 83.58 44.92 56.34 66.27
CTDA (Q+V) (ours) 83.68 46.48 58.37 67.45

TABLE IV
OUR RESULTS ON VQA 2.0 TEST-STANDARD SET

Method Y/N Num Other All
MCB [8] 78.82 38.28 53.36 62.27

V [23] 82.20 43.90 56.26 65.67
Prior [9] 61.20 0.36 1.17 25.98

Language-only [9] 67.01 31.55 27.37 44.26
d-LSTM+n-I [9] 73.46 35.18 41.83 54.22

LV-NUS [23] 81.89 46.29 58.30 66.77
UPMC-LIP6 [5] 82.07 41.06 57.12 65.71

FE [15] 82.44 44.93 57.60 66.52
MUTAN [5] 83.06 44.28 56.91 66.38
MLB [14] 83.96 44.77 56.52 66.62

CTDA (Q+V)(ours) 83.91 46.66 58.53 67.76

From the results of the above four tables, it can be seen
that our CTDA (Q+V) can reach a level that is comparable
to or better than the current mainstream models on both in
VQA v1.0 and v2.0. Specifically, we analyze and compare
CTDA (Q+V) and the V model. CTDA (Q+V) is a model
improved on the basis of ITDA (V). ITDA (V) is the winner of



Fig. 7. CTDA (Q+V)

the 2017 VQA Challenge. The model uses quite good results.
But the model only focuses on the image on the object that
pays attention, ignoring the question on VQA’s importance, no
consideration is given to the possibility of noise in the input
question, which has an impact on the entire VQA.

CTDA (Q=V) is based on the above considerations. In order
to prevent some invalid or noisy information from being input
into VQA, paying attention to questions and highlighting key
words in questions; then paying attention to questions and
highlight important regions in images. Remove invalid or noisy
information.

In the specific implementation process, we consider that
questions are related to images, so we use images to pay
attention to questions. From experimental results, the results of
CTDA (Q=V) are significantly improved than the results of V,
which are 2.13% and 2.09% higher in VQA v2.0 test-dev and
test-standard data sets, respectively. The accuracy of CTDA
(Q=V) idea is verified. Our model achieves an overall single
model accuracy of 67.45% on the test-dev set and 67.76%
on the test-standard set, outperforming the best previously
reported results by 1.05% and 1.14%.

E. Ablation study

We perform ablation studies to quantify the role of each
component in our model. Specifically, we re-train our approach
by ablating certain components:

ITDA (V): Applying TDA to images alonely, where no
question attention is performed. The model only uses question
features to guide images’ attention, not pays attention to
image-guided question.

QTDA (Q): Applying TDA to questions alonely, where no
image attention is performed. The model only uses images
features to guide questions’ attention, not pays attention to
question-guided image.

These models are paid CTDA, include image attention and
question attention,but there is a little difference: In CTDA
(Q=V), when images and question are paid TDA, images
features and question features are original features to guide
images’ attention and questions’ attention.

In CTDA (V+Q), when images and question are paid TDA,
the original questions features are used to guide images’
attention, then obtain new images features after the attention is
applied. The new images features are used to guide questions’
attention, then obtain new questions features after the attention
is applied.

In CTDA (Q+V), when images and question are paid TDA,
the original images features are used to guide questions’ atten-
tion, then obtain new questions’ features after the attention is
applied. The new questions features are used to guide images’
attention ,then obtain new images features after the attention
is applied.

TABLE V
OUR RESULTS ON VQA 1.0 VALIDATION SET

Method Y/N Num Other All
QTDA(Q) 81.73 38.47 48.13 59.49

ITDA(V) [23] 82.70 38.43 54.03 62.80
CTDA(Q=V) 82.76 36.00 54.57 62.79
CTDA(V+Q) 83.08 37.81 54.47 63.08
CTDA(Q+V) 82.89 39.08 54.94 63.41

TABLE VI
OUR RESULTS ON VQA 2.0 VALIDATION SET

Method Y/N Num Other All
QTDA(Q) 78.26 41.06 47.99 58.45

ITDA(V) [23] 79.92 42.06 54.68 62.50
CTDA(Q=V) 80.82 41.69 55.21 63.06
CTDA(V+Q) 81.14 42.14 55.41 63.33
CTDA(Q+V) 81.26 43.24 55.67 63.65

Table V shows results on the v1.0 validation set and table
V I shows results in VQA v2.0 validation set. It can be seen
from the two tables that results of QTDA(Q) and ITDA(V)
are relatively poor in both data sets, so only paying attention
to images or questions, the characteristics of the other object
still contain invalid and noisy information. Among them, since
image features information is more than questions features
information, it is better to eliminate only noise in images
features than to remove only noise in questions features.
In v1.0, the accuracy of ITDA (V) is 3.31% higher than
QTDA(Q); in VQA v2.0, the accuracy of ITDA(V) is 4.05%
higher than QTDA(Q).

Compared with V, On v1.0 validation set, CTDA (Q=V)’s
score is reduced 0.01%, the results shows that our model and
V model have comparable effects on v1.0.; CTDA (V+Q)’s
score is improved 0.28%; CTDA (Q+V)’s score is improved
to 0.61%. In VQA v2.0 validation set, CTDA (Q=V)’s score is
improved to 0.56%; CTDA (V+Q)’s score is improved 0.83%;
CTDA (Q+V)’s score is improved 1.15%. Whether the model
is in VQA v1.0 validation set or in VQA v2.0 validation set,
the results of CTDA (Q+V) are the best (Fig 7). But the effect



is better on v2.0 than v1.0, because the data set distribution
of v2.0 is more reasonable than v1.0.

Images contain more information than questions. When
CTDA is paid, the score can be improved a lot. But the
order of image attention and question attention influence the
final results. For CTDA(Q=V), images guide questions and
questions guide images are all using the original data. There
is no prior attention to images or questions, and the effect
is relatively poor. For CTDA (V+Q), this is equivalent to
paying attention to images firstly, due to images contains more
content, By paying attention to images, there are residual
information. For CTDA (Q+V), this is equivalent to paying
attention to questions, which is equivalent to denoising the
question first. Due to questions contain less content, the
denoising effect is better. The above experimental results prove
that this is better than other methods.

The experimental results show that for both images and
questions, if only one aspect of the analysis is understood,
the accuracy of prediction results will not be high. CTDA
understands and analyzes the cascading superposition, and can
make more reasonable reasoning. It has a more comprehensive
understanding of questions and images, thus makes results
more accurate.

V. CONCLUSION

In this paper, we propose a new VQA model. Our model
is evaluated in VQA data set and obtained better results
than other models [8], [13], [17], [23]. The studies show
that highlighting questions’ key words can improve VQA’s
accuracy, which also provides new ideas for future research in
VQA field.
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