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Abstract—Mobile data consumption is rapidly growing
following the ever-increasing bandwidth-hungry applica-
tions and improvements in network data rates. With the
anticipated 5G right at the corner, operators are focusing
on load-aware network dimensioning, optimization, and
management, where traffic volume prediction plays a
critical role. To this end, several researchers investigated
different statistical and machine-learning models to exploit
and predict the linear and nonlinear patterns that often
arise due to the complexity of mobile networks and
varying users’ behaviors at different times and locations.
In this paper, we propose a hybrid model composed of
Double Seasonal ARIMA (D-SARIMA), which focuses on
modeling the multi-seasonal nature of the data traffic and
exploiting the residuals of DSARIMA via Long-Short Term
Memory (LSTM)-based Networks. The residues contain
the nonlinear component of the data. To incorporate the
spatial dependency inherent in mobile data traffic collected
from base stations, we used K-means clustering and consid-
ered the correlation among them. Experiments conducted
with real-world data sets collected from 739 base stations
for over four months, shows that our proposed hybrid
model outperforms both D-SARIMA and LSTM models.
The improvement emanates from capturing the double
seasonality, non-linearity, and spatial dependency inherent
in data traffic.

Index Terms—Mobile traffic prediction, non-linear data
traffic, Double SARIMA, Hybrid model, LSTM.

I. INTRODUCTION

The continued evolution of mobile network tech-
nologies and the emergence of various services
have led to an exponential growth of mobile data
traffic [[1]. From the operators’ perspective, this
growth is an opportunity that maximizes revenue.
However, supporting such traffic demand, among
others, requires availing infrastructure during net-
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work dimensioning phase as well as allocating
sufficient network resources (e.g., bandwidth and
energy) and network management solutions during
network operation phase. The mobile data traffic
demand has a dynamic nature that varies in time and
space domains. [Fig. I (a) and (b){shows the temporal
and spatial variations of data traffic collected from
the Universal Mobile Telecommunications Service
(UMTS) network operator in the city of Addis
Ababa, Ethiopia. Thus, accurately understanding
the traffic dynamics in multiple dimensions and
predicting the current and future demands is critical.

Researchers, in recent years, have made efforts
to propose different mobile traffic prediction tech-
niques. The prediction can be performed at different
granularities: aggregate demand of an operator [2],
demand on a cell level [3], per user demand [4]], on
packet level (e.g., packet arrival rate, the occurrence
of burst, packet inter-arrival rate, flow rate) [6], and
application-level (e.g., predicting applications with
significant contribution to generating the traffic) [5].

Inherently, mobile traffic prediction can be treated
as a time series prediction problem where models
can be used to predict traffic demand based on avail-
able historical data. One way of broadly categoriz-
ing time series based models can be as linear statisti-
cal models (such as Box-Jenkins variants), machine
learning-based models (such as Neural Networks),
and a hybrid of the two models [6], [7]. In [8],
linear auto-regressive integrated moving average
(ARIMA) model, one of the Box-Jenkins variants,
has been used to capture fixed temporal dependen-
cies in network traffic and predict its yearly growth.
To improve the ARIMA-based models on capturing
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(a) Temporal dynamics of data traffic decomposed to trend, and seasonal (daily and weekly) components. (b) Spatial distribution

of the mobile data traffic. (c) Correlation matrix for selected neighboring base stations.

the long-term traffic repetitive patterns, [9] and
considered statistically decomposed components of
the mobile data traffic (e.g., trends and seasonality)
for prediction using Seasonal ARIMA (SARIMA)
model. Generally, the linear statistical methods work
well in estimating the inherent linear characteristics
of the data traffic. However, due to the complexity
of mobile networks and varying customers’ behav-
iors at different times and locations, data traffic
dynamics exhibits non-linear patterns and often non-
stationarity which makes it difficult to be captured
via those linear statistical models [3]], [11].
Following advancements in machine learning
techniques, prediction of mobile traffic with ma-
chine learning-based methods is proven to improve
the prediction accuracy by capturing the non-linear
and complex patterns inherent in data traffic [6],
[11]]. In [12]], the authors implemented Long Short
Term Memory (LSTM) network-based prediction
model to capture the temporal dependencies in
mobile voice and data traffic. LSTM-based deep
learning model was applied in to not only
consider the temporal but also the spatial cor-
relation across the entire network by analyzing
traffic information from neighboring base stations.
With users continuously moving within a given
network, traffic patterns across neighboring base sta-
tions are correlated, and exploring both the spatial
and temporal dimensions would improve the traffic
prediction performance. The Double Spatiotempo-
ral Neural Network (D-STNN) proposed in
used Convolutional-LSTM (ConvLLSTM) and three-
dimensional Convolutional Network (3D-ConvNet)
structures with an encoder-decoder architecture to

jointly learn the complex spatial and temporal de-
pendencies of the mobile data traffic and provide
long-term network-wide prediction. Another means
to explore the spatial correlation of the data traffic
by grouping together adjust and correlated base sta-
tions with similar usage patterns is considered in [3].
K-Means clustering was used in combination with
Elman Neural Network and Wavelet decomposition
to provide a cell-level prediction.

Another approach to explore the complex dynam-
ics of the data traffic is by implementing the hybrid
of linear statistical models (such as ARIMA) with
Artificial Neural Network models and Wavelet
analysis to capture the linear and non-linear
parts, respectively, of the data and combine the two
results to obtain the final mobile network traffic
flow prediction. This two-step prediction approach
merges the positive traits of those models and has
the benefit of improving computational complexity,
model interpretability, and prediction accuracy.

This paper proposes a hybrid model of Double
Seasonal ARIMA (D-SARIMA), which focuses on
modeling the multi-seasonal nature of the mobile
data traffic, and Long-short Term memory (LSTM)-
based Networks to learn non-linearities by further
exploiting the residuals of D-SARIMA. To evaluate
its prediction performance, a comparative analysis
is done with SARIMA models and LSTM-based
networks at base station level with data set collected
from 739 UMTS base stations (eNodeB) in the city
of Addis Ababa, Ethopia. In addition, to further
capture spatial dependecy of the data, we consid-
ered a cluster-level comparison with K-means as a
clustering approach.



The remainder of this paper is organized as

follows. presents the mobile data traffic
analysis. The different traffic prediction techniques

and the hybrid model are discussed in
presents the data pre-processing
and demonstrates the experimental results. Finally,
Section V concludes this paper.

II. MOBILE DATA TRAFFIC ANALYSIS
A. Data Set Description

The mobile data traffic analyzed in this paper is
obtained from a UMTS network operator in Addis
Ababa, Ethiopia. The data is collected from January
2019 to April 2019 with a temporal resolution
of 1 hour. Specifically, the dataset encompasses
eNodeBs‘ location information, observed cell-level
downlink traffic, and active users with the corre-
sponding timestamp. illustrates the temporal
and spatial characteristics of mobile data traffic.

The temporal variation in aggregated data traffic
can be observed in (a) showing an increasing
trend in traffic volume and exhibiting daily peri-
odical behavior with relatively high demand nearly
at midnight and lowest-demand during early morn-
ings. The variation of data traffic on different days
throughout the week also created new repetitive
patterns on a weekly basis indicating the presence
of double seasonalities in mobile traffic.

There is also significant traffic load variation
on the network, as shown in (b) with a
significant degree of correlation among neighboring
base stations illustrated by high values (greater than
0.6) of the Pearson correlation coefficient ().
To further explore the spatial dependency inherent
in mobile data traffic collected from base stations,
we consider a clustering approach based on their
temporal pattern.

B. K-means Clustering

Several techniques can be used to map a group
of spatially distributed base stations with comple-
menting traffic patterns together and also identify
unique temporal patterns [3]. Among the available
alternatives, we have selected K-means for main
reasons as it is very fast as compared to hierarchical

The K-means approach aims at dividing a data
sets into K disjoint clusters centered around their
means or centroids. To obtain the clusters, K-means
iteratively updates cluster members, means, or cen-
troids, where most of the time means or centroids
are initialized by randomly selecting one of the data
set to be a centroid or mean. On the other hand,
membership in a cluster is given based on the close-
ness of a data set to a cluster’s mean or centroid; i.e.,
similarity of data traffic pattern of a particular base
station to the mean traffic pattern. Afterward, means
or centroids are updated by taking the average of
the identified members. In this context, deploying
K-means for time series data sets is faced with a
critical question of identifying the optimal value of
K. To this end, we have utilized inter-cluster inertia,
which measures the closeness of a data sets to the
cluster mean or centroid. Furthermore, following
the discussion in [18]], we have acknowledged the
impact of temporal distortion on K-means with
regards to cluster membership identification and
the optimal estimation of cluster average which is
still a challenge to be tackled. However, we found
including the proposed solutions in [[I18] to our
paper to be computationally costy. Thus, even if
the solution provides better cluster identifications,
we have avoided it in this work; and we aim to
investigate the impact of the proposed solutions in
[18] on prediction accuracy in future work.

With that, the optimal number of clusters, K,
value is estimated by iteratively observing the inter-
cluster inertia, and 5 clusters were obtained. The
traffic pattern for the respective five clusters is
shown in [Fig. 2| indicating a presence of diversity
and similarity of traffic usage among them. Simi-
larly, the spatial correlation of the five clusters is
presented in In a city where the different
functional areas (residential, business, or entertain-
ment areas) are mixed, a low correlation among
the clusters is expected; however, the close to zero
correlation in might imply peculiar usage
behaviors or the sparse population distribution in
the network load.

III. TRAFFIC PREDICTION TECHNIQUES

clustering techniques and provides less number of A. Double Seasonal ARIMA

hyperparameters, i.e., number of cluster K, as com-
pared to model-based clustering mechanisms [[17].

ARIMA is a popular statistical model used to
capture the stationarity property of time-series data
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Fig. 2. Clustered base stations with their corresponding centroids.

as a function of its sequentially lagged variables
as well as error terms. When there exist seasonal
components in the data, it is possible to treat the
seasonal and non-seasonal parts with a general
multiplicative SARIMA model [19].

To capture the double (daily and weekly) sea-
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Fig. 3. Correlation matrix for the five clusters.

sonalities explained in Section II of the mobile data
traffic, the SARIMA model can be expressed as
SARIMA(p,d, ) x (Py, D1, Q1) X (Pa, D, Q)2
where the order of regression (¢) and moving
average (O) coefficients for the non-seasonal and
seasonal parts of the model are represented by
(p, Py) and (¢, @), respectively. The parameters
d and D are also used to represent the differencing
that can be applied one or more times to eliminate
the trend, and s seasonalities, and make the time

series data stationary.

Assuming a polynomial that has a factor (1 — L)
of multiplicity, the Double SARIMA (D-SARIMA)
model is formulated as [19]]:

(1= L)1 =Y ¢ L) (1= ¢l"?)
i=1 j=1 k=1
(1= L)1 = LHPH A = L) P2 ( X, — p))

q Q1 Q2

= (14> L) (1= 0, (1= 0,LF)e,
i=1 j=1 k=1

(1)

where X, is the aggregated traffic consumption
representing the non-stationary time-series and &,
is the error term at time t.

In order to incorporate the impact of spatial
dependency with SARIMA models, we can consider
the aggregated traffic from different cluster as ex-
ogenous variables (independent variables). Evaluat-
ing the cross-correlation among clusters will help
to identify which cluster data to be considered as
external variable.

B. LSTM

Another predictor that is widely considered to
learn and estimate complex multi-dimensional char-
acteristics of the mobile data traffic is a Recurrent
Neural Network (RNN). As one variant of RNN,
LSTM is suitable for time series prediction and
is capable of capturing the long-range temporal



information by using memory cells [20]. Which
input to process, whether to update the memory
cell, and whether to create an output is controlled
by three gates in LSTM memory block, namely the
input gate, forget gate and output gate, respectively.

For a given sequential inputs p;, hidden layer
h:_1 and previous memory cell state c;_;, the LSTM
output for time step ¢ is given as [20]]

Ot = O'[Wopt + Uoht,1 + VO(ft © thl) -+
(c(Wipe + Uihy—y + Vic,1 +b;)©O

gWipe + Uchi—q + b;)) + b, (2)

where ©® denotes element-wise multiplication and
forget gate f, is equated as o(Wyp, + Ushi—y +
Vici—1 + by). For a given data traffic consumption
observed at base station level for a time inter-
val T, the input sequence is a 2-D dataset (i.e.,
P = pi,pa,ps3,...,pr), and for mobile data traffic
measured over N base stations or represented in
terms of K clusters, the input sequence will be
3-D (.., P = P, P, Ps,..., Py). The nonlinear
activation functions are represented by g() and o,
usually denoting the Relu/tanh and sigmoid func-
tions, respectively. W), U(), and V() are weight
matrices that are adjusted during model training by
minimizing the square loss function (in this paper)
and b are bias vectors.

C. Proposed Hybrid Model

To improve prediction accuracy and effectively
handle the linear and non-linear dynamics of the
mobile data traffic, we propose a hybridize model by
leveraging the benefits of both SARIMA and LSTM.
illustrates the proposed model consisting the
data processing part and a hybrid predictor part.
The model’s first part includes pre-processing part
for ”clean-up”, clustering part as well as cluster
correlation analyzing part. Whereas, hybrid predictor
part blends the prediction output from D-SARIMA
and LSTM-based network to provide combined pre-
diction as illustrated in

While conducting a prediction for a particular
cluster, its correlation with the remaining four clus-
ters is analyzed. The clusters with correlation co-
efficient greater than 0.5 value are assumed to be
moderately correlated and are taken as external (ex-
ogenous) variables to D-SARIMA model. With that

the spatial correlation among different clusters is
considered as a means of improving the prediction.
The complex non-linearities that couldn’t be fitted
with D-SARIMA are reflected on the model resid-
uals. For a time series data y; the residual, r;, from
linear statistical models can be expressed as:

3)

where L, is the estimated linear component of the
data.

While keeping the temporal structure of the
residual errors, LSTM-based network then used
to learn additional information and provide future
predictions.

Combining the outputs from the two models mod-
els depends on the different predictors considered
and can be done through weighted or straightfor-
ward addition, multiplication or by ensemble av-
eraging the prediction output or model coefficients
[15]]. In the proposed model, straightforward addi-
tion is considered to integrate the results from the
two predictions as:

T’t:yt—f/t

th:ft‘Fit‘F&t 4)

where ), represented the final prediction, 7; indicat-
ing the estimation from LSTM-based network and
g, 1s the error that is not captured by the hybrid
model.

Input data
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Fig. 4. Proposed hybrid model.



IV. EXPERIMENTAL RESULTS
A. Data set Pre-processing and Experiment Set up

Few number of data traffic measurement values
were missing due to improper data storage and
retrial. Thus, we applied linear interpolation using
Kalman filters prior to prediction to impute the
missing values; as Kalman filter is used to find opti-
mal estimates of the missing values by computing its
conditional mean and variance up on the observed
data traffic. Furthermore, to speeds up learning and
faster convergence for based predictor, the traffic
values are normalized into range of [0, 1] using
Min-Max normalization.

To obtain the model parameters for D-SARIMA,
i.e., to determine the autoregression (p, P(.)), mov-
ing average (q, Q(.)) and differencing orders (d,
D(.)), it is necessary to investigate Auto Correlation
Function (ACF) and Partial Auto Correlation Func-
tion (PACF) of the the time series. Removing the
non-stationarity exhibited on the mobile data traffic
as a form of increasing trend, and daily and weekly
seasonalities (in is essential prior to using
the D-SARIMA . The ACF plot in shows
stationarity of the data traffic in the mean value after
going through a second order differentiation process
to remove the trend and seasonality. The significant
sparks at lag (24, 48, ....) and at 168 on the ACF
plot also confirm the daily (s; = 24) and weekly
(sg = 168) seasonalities discussed in Section II.

After considering the correlated clusters as exoge-
nous variables on the model, the best-fit model is
identified as SARIMA(L O, 2)(2, ]_, 0)24(0, ]_, 1)168

ACF and PACF after

D, =1,

D, =1, 5, = 24, s, = 168

ACF

' ' ! ]
0 50 100 150

PACF

1 [I\ 0 1 :‘ 0
Lag

Fig. 5. ACF and PACF plot

based on minimum values of the Corrected Akaike’s
Information Criterion (AICc).

To capture the non-linearity on the mobile data
traffic by exploiting the residuals from D-SARIMA,
the LSTM-based network within the hybrid model
considers 2-layers of LSTM units each with 128 and
64 hidden nodes, respectively, to form a stacked
LSTM network, and Time distributed dense layer
at the output to apply a layer to every temporal
slice of an input. The ReLU activation function
is considered for the two LSTM layers and the
stgmoid activation function to restrict the predic-
tion output within range of [0,1]. For 80/10/10
partitioned residual data for training, validation and
testing, optimizing the square loss is done with
Adaptive Moment Estimation (ADAM) optimizer,
which is widely used in Neural Networks domain.
the key point to note is, the values of these param-
eters including additional hyper-parameters such as
batch size (24), epoch (100) and number of past
observations (48 or 2 days) are determined based
on experiment requirements as optimizing them was
not the intent of the work. Thus, the parameters can
also take different value which can impact the trade-
off between the prediction accuracy and the time
needed to train the network.

B. Evaluation Metrics

For the purpose of evaluating the prediction
performance of the hybrid model and compare it
against D-SARIMA and LSTM models, two stan-
dard prediction metrics are used: Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE);
calculated for prediction error e; over n measure-
ment points of the data traffic over space and time.

1 n
RMSE = || — 2 5
n;e (5)
MAE =13 ©
_ni:1 -

C. Prediction Results and Comparison

The mobile data traffic prediction performance of
aforementioned hybrid model is done considering
two cases/approaches: Base Station-Level prediction
approach where data traffic from a single base sta-
tion is analyzed, and Cluster-level approach where



the data traffic from other clusters that are mod-
erately correlated are considered to incorporate the
spatial dependency.

Table 1| shows comparison (based on average RMSE
and MAE) of the hybrid, D-SARIMA, and LSTM-
based models. Key observations from the base sta-
tion level results are:

o The proposed hybrid model performs poorly,
whereas D-SARIMA provides relatively better
short-time prediction. The results also indicate
the double seasonality and trend components
are the dominant patterns in mobile data traffic
that were better captured by the linear model.

o The LSTM model was not able to sufficiently
learn the patterns (i.e., trend, seasonalities, and
non-linearities) inherent both in the data or
the D-SARIMA residuals to the extent that it
contributes negatively in the hybrid model. This
shows that linear models are good at capturing
short-term dependency in the data. Possible
remedies to improve the LSTM model include:
increasing the data size (from the current four
months), hyper-parameter optimization, or ex-
tracting additional features from other base
stations are; the latter approach is used in the
cluster-level prediction explained next.

As argued repeatedly, the cluster-level approach has
the potential to exploit the temporal and spatial
dimensions of the mobile data. The addition of
the spatial dimension will, undoubtedly, add to the
nonlinearity of the data but also provides more
information for the LSTM to learn more. Key ob-
servations from the clusters-level results in [Table I
are:

o All three models perform better than their

TABLE 1
COMPARING THE PREDICTION PERFORMANCE ON BASE
STATION-LEVEL AND CLUSTER-LEVEL APPROACH IN TERMS OF
RMSE AND MAE

Approaches Models Evaluation Metrics
MAE | RMSE
Base station level || D-SARIMA | 1.385 1.229
Hybrid 1.667 1.517
LSTM 1.408 1.237
Cluster-level D-SARIMA | 0.872 0.548
Hybrid 0.416 0.363
LSTM 0.617 0.548
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Fig. 6. Double Seasonal ARIMA model fitting and 120 hours ahead
prediction considering single base station in (a) and multiple cross-
correlated clusters in (b).

Data Traffic(TB)

Actual
BS_LSTM
=— CS_Hybnd
= CS_LSTM
BS_Hybnd
—— BS_DSARIMA
—— CS_DSARIMA

Apr 27 12:00

Apr 26 00:00 Apr 26 12:00 Apr 27 00:00

Time

Apr28 01

Fig. 7. 48 hours of mobile data traffic prediction performance
considering base station and cluster-level approaches

counterparts in base station level investigation
as they exploit cluster correlation and extract
multiple temporal patterns. The improvement
is as high as 60%, which is significant.

o By comparison, the proposed hybrid model
performs better while the D-SARIMA’s perfor-
mance is inferior to the two models. The LSTM
captures the dynamics (the non-linearity) in
the mobile data which is manifested on the
improved prediction performance of the hybrid
and LSTM model.

The cluster-level approach benefited the linear
model like D-SARIMA as the other correlated clus-
ters’ data traffic is taken as exogenous variables for
the prediction of a particular cluster. See to
further learn the improvements in these models.



The mobile data traffic prediction for next 48
hours with the models considering both approaches
is illustrated in Results show that for both
base station and cluster-level approaches, the pre-
diction during low traffic load (in early morning)
is comparable. However, there exists a significance
difference during day-time that can associated to a
user activity and spatial mobility. In addition, as the
prediction time increases, despite the performance
degradation of D-SARIMA, the performance hybrid
model prediction remains relativity constant.

V. CONCLUSIONS

As mobile networks become more complex, and
users’ data traffic consumption behaviors vary over
space and time, providing accurate predictions of
the traffic volume gets particularly tricky. In this
paper, we propose the use of hybrid model of
D-SARIMA and LSTM-based network to exploit
both the linear and non-linearity on the data traffic
and provide accurate predictions. We considered
the double (daily and weekly) seasonal patterns in
our D-SARIMA and exploiting the residuals with
LSTM to learn non-linearities that the linear model
failed to capture. Furthermore, to explore spatial
dependency inherent in mobile data traffic collected
from base stations, we used k-means clustering
to group base stations with complementing traffic
patterns together and also identified unique temporal
patterns. By evaluating the correlation among them,
we considered multiple clusters together as multiple
valuables to provide cluster-level prediction. The
results reveal the benefits of using hybrid model
and exploiting the spatial correlation. Possible ex-
tensions to this work are investigating the impact
of temporal distortion on the cluster averaging,
computational overhead of the hybrid model, or the
impact of optimizing the hyper-parameters of the
LSTM-based network on the prediction accuracy.
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