High Capacity Neural Block Classifiers with
Logistic Neurons and Random Coding

Olaoluwa Adigun
Signal and Image Processing Institute
Department of Electrical and Computer Engineering
University of Southern California
Los Angeles, CA 90089-2564.
adigun@usc.edu

Abstract—We show that neural networks with logistic output
neurons and random codewords can store and classify far
more patterns than those that use softmax neurons and 1-in-K
encoding. Logistic neurons can choose binary codewords from
an exponentially large set of codewords. Random coding picks
the binary or bipolar codewords for training such deep classifier
models. This method searched for the bipolar codewords that
minimized the mean of an inter-codeword similarity measure.
The method used blocks of networks with logistic input and
output layers and with few hidden layers. Adding such blocks
gave deeper networks and reduced the problem of vanishing
gradients. It also improved learning because the input and output
neurons of an interior block must equal the input pattern’s
code word. Deep-sweep training of the neural blocks further
improved the classification accuracy. The networks trained on
the CIFAR-100 and the Caltech-256 image datasets. Networks
with 40 output logistic neurons and random coding achieved
much of the accuracy of 100 softmax neurons on the CIFAR-
100 patterns. Sufficiently deep random-coded networks with just
80 or more logistic output neurons had better accuracy on the
Caltech-256 dataset than did deep networks with 256 softmax
output neurons.

Index Terms—logistic network, blocking, random coding, deep
sweep training, backpropagation invariance

I. LOGISTIC VERSUS SOFTMAX NEURONS FOR
LARGE-CAPACITY NETWORKS

We show that a network with logistic output neurons and
random coding can store the same number K of patterns as
a softmax classifier but with a smaller number M of output
neurons. The logistic network’s classification accuracy falls as
M becomes much smaller than K. This implies that a properly
coded logistic network can store far more patterns with similar
accuracy than a softmax network can with the same number
of outputs. We further show that randomly encoded logistic
blocks lead to still more efficient deep networks.

Almost all deep classifiers map input patterns to K output
softmax neurons. So they code the K pattern classes with K
unit bit vectors and thus with 1-in-K coding. The softmax
output layer has the likelihood structure of a one-shot multi-
nomial probability or the single roll of K-sided die and thus
its log-likelihood is the negative of the cross entropy [1], [2].
This softmax structure produces an output probability vector
and so restricts its coding options to the K unit bit vectors of
the K-dimensional unit hypercube [0, 1]%.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Bart Kosko
Signal and Image Processing Institute
Department of Electrical and Computer Engineering
University of Southern California
Los Angeles, CA 90089-2564.
kosko@usc.edu

Logistic output coding can use any of the 2% binary vertices
of the hypercube [0, 1] This allows far fewer output logistic
neurons to accurately code for the K pattern classes. The
logistic layer’s likelihood is that of a product of Bernoulli
probabilities and thus K flips of a coin. Its log-likelihood
has a double cross-entropy structure [1], [2]. The softmax and
logistic networks coincide when K = 1.

Figure 1 shows the block structure of a deep logistic
network. Figure 2 shows sample random coding vectors of
lengths M = 20, 60, and 100 for logistic networks that
encode K = 100 pattern classes. The remaining figures show
how block logistic networks with random coding can encode
the CIFAR-100 and Caltech-256 patterns with fewer than
K = 100 or K = 256 respective output neurons. Logistic
networks also had higher classification accuracy than did
softmax networks with the same number of neurons. The last
figure shows that the very best performance came from deep-
sweep training of all the blocks after pre-training the individual
blocks. Table 3 shows that 80 logistic output neurons did better
on the Caltech-256 data than did 256 softmax output neurons.

Earlier work [3], [4] explored how random basis vectors
affected the approximation error of neural function approxi-
mators. Our random coding method deals with increasing the
capacity of encoding patterns at the output or visible hidden
layers. Other work [5] explored the formal capacity of some
feedforward networks. Our work shows how to improve the
pattern capacity of deep neural classifiers with logistic output
neurons, block structure, and deep-sweep training.

II. FINDING RANDOM CODEWORDS FOR PATTERNS
A. Network Likelihood Structure and BP Invariance

Training a neural network optimizes the network parame-
ters with respect to an appropriate loss function. This also
maximizes the log-likelihood L(y|x, ®) of the network [6]-
[8]. Backpropagation invariance holds at each layer if the
parameter gradient of the layer likelihood gives back the same
backpropagation learning laws [1], [2].

The network’s complete likelihood desribes the joint proba-
bility of all layers [1]. Suppose a network has J hidden layers
hi,ho,...... ,hy. The term h; denotes the 4" hidden layer
after the input (identity) layer. The complete likelihood is

Input Block N© Hidden Block N®

Hidden Block N®

Hidden Block N® Output Block N®)

s gh@ —— gt@

x ah) — gt@

NN

— g"® — gt ®

KGO

t— gh® —— gt® t—— gh®) — t®

AN
N

300 ----0LSO<HO0- - 0K
. 7"‘(/‘6‘(xS Q /‘6‘\
7N ZNaLINNG- - - .. XN@ LI

X —— GO —— GO e GX (D) —— GI(R) —— GER) ems GX(B) ——s GR(B) —— L) oms GX(4) —— GR(4) —— GE(H) e > GX(8) —— Gh®) —— Gt

Fig. 1: Modular architecture of a deep block neural network. The deep-sweep training method in Algorithm 1 used blocking to break a deep
neural network into small multiple blocks. The network had an input block NV M three hidden blocks {N @ N® N (4)}, and output block
N®)_Each block had three layers in the simplest case. The terms a‘(?, ..., a*®) represent the activations for the visible hidden layers and

a'® is the output activation. The terms a™(*), .

..., a™® represent the activations of the non-visible hidden layers. The deep-sweep method

used two stages: pre-training and fine-tuning. The pre-training sta%e trained the blocks separately. It used supervised training for each block

by using the block error E® between the output activation a*®®

and the target t. The fine-tuning stage began after the pre-training and

also used supervised learning. It stacked all the blocks together and used an identity matrix I to connect contiguous blocks. Fine tuning

optimized the weights with respect to the joint error Fgs.

the probability density p(y,hy,,hi|x,©). The chain rule
or multiplication theorem of probability factors the likelihood
into a product of the layer likelihoods:

p(Y7hJ7 """ 7h1|x7@) :p(Y|hJ7 """ 7h17x7e)x
J
p(hy|x,0) x [phjh;_q,...... h1,x,0)
=2

where we assume that p(x) = 1 for simplicity [1], [9], [10].
So the complete log-likelihood L(y,h|®) is L(y,h|®) =
logp(y, hy, ... hi[x,0) = L(y|x,0) + >7_; L(hy|x,0)
where L(h,|x, ©) = log p(h;h;_q,......,hi,x,0).
The output layer has log-likelihood L(y|x,®)
= logp(ylhy,.....,h1,x,0). The next sections use this
structure in the equivalent form of layer error functions.

B. Output Activation, Decision Rule, and Error Function

Input x passes through a classifier network N and gives
o' = N(a®) where o' is the input to the output layer. The
output activation a’ equals f(o') where f is a monotonic and
differentiable function. Softmax or Gibbs activation functions
[6], [11] remain the most used output activation for neural
classifiers. This paper explores instead binary and bipolar
output logistic activations. Logistic output activations give a
choice of 2 codewords at the vertices of the unit cube [0, 1]
to code for the K patterns as opposed to the softmax choice
of just the M vertices of the embedded probability simplex.

Codeword cj, is an M -dimensional vector that represents the
kth class. M is the codeword length. Each target t is one of
the K unique codewords {cq,ca,....,cx }. The decision rule
for classifying x maps the output activation a’ to the class
with the closest codeword:

t

K

C(x) = arg minz |ckl — aj
LR

@)

where C(x) is the predicted class for input x, a! is the [t"

argument of the output activation, and c,; is the [t" component
of the k" codeword cj. The next section describes the output
activations and their layer-likelihood structure.

1) Softmax or Gibbs Activation: This activation maps the
neuron’s input o’ to a probability distribution over the pre-
dicted output classes [2], [11]. The activation a} of the [*"
output neuron has the mutli-class Bayesian form:

ol = exp(of)
K
Zk=1 eXp(OZ)

where of is the input of the I'® output neuron. A single such
logistic function defines the Bayesian posterior in terms of the
log-posterior odds for simple two-class classification [6].
The softmax activation (3) uses K binary basis vectors from
the Boolean {0, 1} as the codewords. The codeword length
M equals the number K of classes in this case: M = K.
The decision rule follows from (2). The error function F
for the softmax layer is the cross entropy [1] since it equals
the negative of the log-likelihood for a layer multinomial
likelihood—a single roll of the network’s implied K-sided die:

3

K K
By =— tylog(af) = —log | [at™ “)
k=1 k=1

where t) is the kKt argument of the target. The softmax
decision rule follows from (2). The rule simplifies for the unit
bit basis vectors as the codewords. Let E{il |ckl — a§| = D
where D) is the distance between at and c. Then

C(x) = argmin D) — arg max al, 5)
k k

because M = K. So C(x) = m implies that D™ < D)

for k € {1,2,..., K}. The decision rule simplifies as in (5)

because cxr = 1, cjy = 0 for all [# k, and 0 < a} < 1 for

le{l,2,...,K}.

:

!

W

5 AN

Fl
=T

T

.

FFET

i
i

i ol

I
1]
]

.

(a) M =20

(b) M =60

I R T
,‘E'--"li'mﬁ* a1

e
.#__i:':‘i?i-f. 1%"'#.

O 20
40

60

80

100

40 60 80 100

(¢) M = 100

(d) Basis vectors

Fig. 2: Bipolar codewords generated from the random coding method in Algorithm 1 with p = 0.5, M < 100, and K = 100. The
algorithm found the set of codewords C* with the smallest mean p. of the inter-codeword similarity measure dx; . We searched for the best

such random code words in 10,000 iterations. This figure shows the

grayscale image of some of the codewords. The black pixels denote

the bit value 1 and the white pixels denote the bit value —1. (a) shows the best code C* with M = 20. (b) shows the best code C* with

M = 60. (c) shows the best code C* with M = 100. (d) shows the
cube {—1,1}*%° with M = 100.

2) Binary Logistic Activation: The binary activation a}
maps the input o’ to a vector in the unit hypercube [0, 1]:
_ 1
~ 1+exp(—o})

aj

(6)
activation of the I*” output neuron where o} is the input of the
I*" output neuron. The codewords are vectors from {0, 1}
where log, K < M. The decision rule for the bipolar logistic
activation follows from (2). We can also imposc the equidistant
condition on the codewords by picking the basis vectors from
the Boolean {0,1}M as the codewords with M = K. The
decision rule simplifies to equation (5) in this case. Binary
logistic activation uses the double cross entropy Ej,, as its
error function. This is equivalent to the negative of the log-
likelihood with independent Bernoulli probability distribution.

Elog

M
— > [tilog(af) + (1 —tr)log(1 —af)] (7
=1

M
—logHa};(tk)l —a}i(lftk) 3)
=1

The term a} denotes the activation of the [t"

and t; is the I*" argument of the target vector.

3) Bipolar Logistic Activations: A bipolar logistic activa-
tion maps o! to a vector in [—1,1]*. The activation a} of the
[*" output neuron has the form

2
T 1+exp(—ol)

output neuron

! ©)

a
where of is the input into the Ith output neuron. The codewords
are K bipolar vectors from {—1,1}* such that log, K < M.

The decision in this case follows from (2). The corre-
sponding error function Iy ;04 is the double cross entropy.
This requires a linear transformation of a} and ¢; as follows:
al, = 3(1+af) and &z = £(1 + tx). The bipolar logistic
activation uses the transformed double cross-entropy. This

100 equidistant unit basis-vector codewords from the bipolar Boolean

is equivalent to the negative of the log-likelihood of the
transformed terms with independent Bernoulli probabilities:

M
By == [frlog(al) + (1~ i)loa(1 ~af)] (10)
=
o
= —5 > [+ 1) log(1 + af)+
k=1
(1 —t5)log(1 — ak) —21()%2)} (11
M .
— —log [J (@)@ (1 — ak)" ™. (12)
=1

Training seeks the best parameter ©* that minimizes the
error function. So we can drop the constant terms in E;. The
modified error Ep_jo4 has the form

M

By iog = — Y _(1+t)log(1+af)+(1—t;) log(1—aj). (13)
=1

The backpropagation (BP) learning laws remain invariant
at a softmax or logistic layer if the error functions have the
appropriate respecitive cross-entropy or double-cross-entropy
form. The learning laws are invariant for softmax and binary
logistic activations because [7], [8]:

OEs 0FEj,

BUlj B aUlj

= (af —t)a} (14)

where w;; is the weight connecting the 4t neuron of the
hidden layer to the [*" output neuron, @’ is the activation of
the j" neuron of the hidden layer linked to the output layer,

and of = Z}']=1 ul]-aj?. The derivative in the case of using a
bipolar logistic output activation is

aEb_log aEb_log Baf 30}
= et o a3
Ouy; daj o] Oy,
20 —t) (A+ap(d—af) 4
T 0-d)(1+a) 2 aj (16
= (af — ty)aj. (17)

So the BP learning laws remain invariant for the softmax,
binary logistic, and bipolar logistic activations because (14)
equals (17).

C. Random Coding with Bipolar Codewords

We now present the method for picking K random bipolar
codewords from {—1,1}* with logy K < M < K. The
bipolar Boolean cube contains 2 codewords since the bipolar
unit cube [—1,1]M has M vertices. It is computationally
expensive to pick M = K for a dataset with big values of
K such as 10,000 or more [12], [13]. Our goal is to find an
efficient way to pick K codewords with log, K < M < K.

Let code C be a K x M matrix such that the k" row cy, is
the k" codeword and dy; be the similarity measure between
ci and ¢;. We have di; = |cy, - ¢;|. There are (K (K — 1))
unique pairs of codewords. The mean . of the inter-codeword
similarity measure has the normalized correlation form

9 K K
He = TR =) 2 2 lex el

k=11>k

(18)

This random coding method uses f. to guide the search. The
method finds the best code C* with the minimum similarity
mean p; for a fixed M. Algorithm 1 shows the pseudocode
for this method. A high value of . implies that most of the
codewords are not orthogonal while a low value of u. implies
that most of the codewords are orthogonal. Figure 2 shows
examples of codewords from Algorithm 1.

D. Deep-Sweep Training of Blocks

Deep-sweep training optimizes a network with respect to the
network’s complete likelihood in (1). This method performs
blocking on deep networks by breaking the network down into
small multiple contiguous networks or blocks. Figure 1 shows
the architecture of a deep neural network with the deep-sweep
training method. The figure shows the small blocks that make
up the deep neural network. N is the input block, N
is the output block, and the others are hidden blocks. The
layer of connection between two blocks is treated as a wvisible
hidden layer. We need the number of blocks B > 2 to use
the deep-sweep method. Let the term L) denote the number
of layers for block N®. L(® must be greater than 1 because
each block has at least an input layer and an output layer. ©
represents the weights of N,

The deep-sweep training method trains a neural network in
two stages. The first stage is the pre-training and the second
stage is fine-tuning. The pre-training stage trains the blocks
separately as supervised learning tasks. N maps x into

Algorithm 1 : Random coding search w.r.t. the mean p. of
the similarity measure with bipolar codewords.

Require: Code length M, number of codewords K, number
of search iterations 7', and sampling probability p.
I:op’ =00
2: fort =1to T do
3: Pick K distinct codewords of length M:

4. for k=1to K do

5: Randomly generate a codeword from {—1,1}":

6: if £ == 1 then

7: Generate a (1 x M) vector C) by picking M
samples with replacement from {—1,1} with the
probability p.

else
: search_status = True
10: while search_status == True do

11: Generate a (1 x M) vector ¢, by picking M
samples with replacement from {—1, 1} with the
probability p.

12: Compute the inter-codeword similarity measures
between ¢; and C¢—1)

d;, = ct-b CkT.

13: Drop cy, if there is a copy in C¢=1),

14: if max(dy) < M then

15: C® « Stack c; and C*~1) to form a (k x
M) matrix.

16: search_status = False

17: end if

18: end while

19: end if

20: end for
21: Compute the mean ,u(.t) for code C) using (18).

2: if(t==1) or (uf<pt) then

23: Update the best code C* and best mean p.* .
24: end if

25: end for

the corresponding range of the output activation. The output
activation a*® of the b** block is:
ol _ {N(b)(t), ifbe{2.. B}

otherwise

N (), "

and a'® = f(o!®) where t is the target, o' is the input to
the output layer of N® and a*(® is the output activation of
N®)_ The error function F®) measures the error between the
target t and activation a*®. The error function E(® of N(®)
for b € {1,2,3,.., B} with a bipolar logistic activation is:

M
E® =31 +t)log (1+a,")+
=1

(1—t)log (1—al®) (20)

where af(b) is the [*" component of the output activation of
N®). The fine-tuning stage follows the pre-training stage. It
involves stacking the blocks and a deep-sweep across the entire
network A from the input layer to the ouptut layer. Figure 1
shows the stacked blocks where x is the input through N
and the output activation a*(%) comes from the output of N
We have:

b) (5t(b—1 ;
S0 _ N®(at=D) if b € {2,...., B} on
NO®)(x), otherwise
and a'® = f(&'®)). The deep-sweep error E[(ll;) for the
fine-tuning stage is different from the error E(®). Ec(il;) is
the deep-sweep error between a‘(®) and the target t. So the
corresponding deep-sweep error for a network with bipolar
logistic activation is:

M
B ==Y | w)log (14)+
=1

(1—t)log (1 — df(b))}

for b € {1,2,..., B} where df(b) is the [** component of the
activation a*®). The update rule at this stage differs from
ordinary BP. Ordinary BP trains network parameters with a
single error function at the output layer since the algorithm
does not directly know the correct output value of a hidden
layer. But we do know the correct output layer of an interior
block since it just equals the random codeword. So the deep-
sweep method updates the weights with respect to errors at the
output layer of the blocks. The joint deep-sweep error Fy; is:

(22)

B M
Ei=-3Y [(1 +1)log (1 +at®)+
b=1 =1
(1—t)log (1 — af“’))] (23)
B
=Y EY) 24)
b=1

and the update rule for any parameter ©, follows from the
derivative of this joint error. Algorithm 2 shows the pseu-
docode for this method.

III. SIMULATION EXPERIMENTS

Our coding simulations compared the performance of the
output activations. Output logistic activations outperformed
softmax activation. We also simulated the performance of
the random coding method in algorithm 1. The classification
accuracy of neural classifiers decreased as . increased with
a fixed M and log, < M < K. The result also shows
that the accuracy with bipolar codewords and M = 0.4K
is comparable with the accuracy from using the softmax
activation with K-dimensional codewords (basis vectors).

We found that training a deep neural classifier with the
deep-sweep method outperformed training with ordinary back-
propagation. The next sections describes the datasets for the
experiments.

Algorithm 2 : Deep-sweep training algorithm.

Require: Learning rate 7, batch size M, training epochs N,
iterations per epoch R, number of blocks B, size of blocks
{2 ..., L(B)}, and start of fine-tuning stage n.

Require: Initial weights for the blocks 9(0), @(2°>,
and the training samples {x;, t;}7_,.

1: num_of_iters = N x R

2: for r =1 to num_of_iters do

3. Select a batch of M samples {X,,, tm,}M_,.

4 if r < ng then

5 for b =1 to B do

6: Compute the output activatiom afflb)
7 Compute the pre-training error E®):

N

for input x,,.

| M
E® = ~3 Z {(1 +t) " log (1 + 2P+

m=1

(1—tm) " log (1 - af,gb))] :

8: Update the block parameter ©, :
(r+1) _ o) (b)
o, =0, nVe, L ‘@b:@ff)'
9: end for
10: else
11: Stack the B blocks into a single deep network.
12: for b=1to B do
13: Compute the output activation éf,(lb) for input x,,.
14: Compute the deep-sweep error Ec(l?:
M
BY = -0 [(1 +)" log (1 + &40+
m=1
(1=)" log (1 — 53,(}7))]
15: end for
16: Compute the joint deep-sweep error Eg4g using equa-
tion (24).
17: Update the all the weights as follows:
ot =0 —VekEs| _ .
18: end if 0=0
19: end for
A. Datasets

This classification experiments used the CIFAR-100 and
Caltech-256 image datasets.

1) CIFAR-100: CIFAR-100 is a set of 60,000 color images
from 100 pattern classes with 600 images per class. The 100
classes divide into 20 superclasses. Each superclass consists
of 5 classes [14]. Each image has dimension 32x32x3. We
used a 6-fold validation split with this dataset.

2) Caltech-256: This dataset had 30,607 images from 256
pattern classes. Each class had between 31 and 80 images.
The 256 classes consisted of the two superclasses animate
and inanimate. The animate superclass contained 69 pattern

35
33 L
9 >
: = g | .
o L
c e 20
531 <
® 215
g% ;'3 Softmax
a @ 10 b
By == 8 —— Binary logistic
© . oS —— Bipolar logistic
28 - - 0
Softmax Binary Bipolar 20 40 60 80 100

Training Epoch

(b) CIFAR-100

logistic logistic

(a) CIFAR-100

Classification accuracy

ey
o

I W
R

-
N

o

il
T

Softmax

— Softmax
— Binary logistic
- Bipolar logistic

»-'
o
5
Classification accuracy
)

=)

Bipolar 0 20 40 60 80 100
logistic Training Epoch

(d) Caltech-256

Binary
logistic

(c) Caltech-256

Fig. 3: Logistic activations outperformed softmax activations for the same number K of output neurons. We compared the classifier
accuracy of networks that used output softmax, binary logistic, and bipolar logistic neurons. Pattern coding used K binary basis vectors
from the Boolean {0, l}K as the codewords for softmax or binary logistic outputs. Coding used K bipolar basis vectors from the bipolar
cube {—1,1}* as the codewords for bipolar logistic outputs. Ordinary unidirectional backpropagation trained the networks. (a) shows the
classification accuracy of the neural classifiers trained on the CIFAR-100 dataset with K = 100 where each model used 5-hidden layers
with 512 neurons each. (b) shows the performance of the best model for each activation type. (c) shows the classification accuracy of the
neural classifiers trained on the Caltech-256 dataset with K = 256 where each model used 7-hidden layers with 1,024 neurons each. (d)
shows the performance of the best model (for each activation) with 7 hidden layers.

TABLE I: Output logistic activations outperformed softmax activations for the same number of output neurons. We used K binary basis
vectors from the Boolean {0, 1}K as the codewords with softmax or binary logistic activations. We used K bipolar basis vectors from the
bipolar cube {—1, l}K as the codewords for bipolar logistic outputs. Ordinary backpropagation trained the classifiers. KX = 100 for the

CIFAR-100 dataset and K = 256 for the Caltech-256 dataset.

No. of Hidden Layers CIFAR-100

Caltech-256

Softmax

Binary Logistic

Bipolar Logistic

Softmax

Binary Logistic

Bipolar Logistic

3 layers
5 layers
7 layers
9 layers

30.38 + 1.42%
29.04 £+ 0.74%
27.80 + 0.74%

26.58 + 0.61%

32.92 +0.44%
32.47+0.73%
29.64 + 1.23%
26.77 + 1.12%

32.65 + 0.83%
32.19 + 0.85%
29.89 + 0.78%

27.47 + 0.68%

17.01 £ 0.92%
15.82 + 0.74%
15.19 £ 0.70%
15.84 £+ 0.74%

19.43 £ 0.73%
18.59 +£ 0.93%
18.08 £ 0.81%
17.16 £ 0.78%

19.06 £+ 1.00%
17.93 £ 0.70%
17.61 £ 0.91%
17.25 + 0.85%

TABLE II: Random bipolar coding scheme with neural classifiers.
The classifiers trained with random bipolar codewords from Algo-
rithm 1 and used 5 hidden layers per model. We used code length
M = 30 with the CIFAR-100 dataset and code length M = 80 with
the Caltech-256 dataset. We used probability p to pick M samples
with replacement from {—1,1} when choosing the codewords. The
mean p. of the similarity measure decreased as p increased from 0 to
0.5. The classification accuracy increased as the value p. decreased
for a fixed value of M.

Dataset Probability p | Mean p. Accuracy
0.1000 16.9915 16.12 £ 0.31%
0.1250 14.6145 17.90 £+ 0.43%
0.1500 12.4865 20.25 + 0.60%
0.1875 9.9794 20.27 + 0.47%
CIFAR-100 02125 82638 | 21.08+0.46%
0.2250 7.7931 22.80 £+ 0.54%
0.2375 7.1180 22.75 + 0.76%
0.2750 5.6162 23.52 £ 1.03%
0.3500 4.4537 24.13 +0.61%
0.5000 4.1923 24.86 + 0.59%
0.1125 45.969 9.392 £ 0.54%
0.1875 28.867 10.18 + 1.04%
0.2125 24.382 10.42 £+ 0.50%
0.2250 22.205 11.10 + 1.08%
Caltech-256 0.2375 20.202 | 11.69 % 0.54%
0.2500 18.293 12.53 £ 0.86%
0.3000 12.189 12.44 £ 0.72%
0.3500 8.7057 14.24 +0.51%
0.5000 7.0074 15.97 + 0.62%

classes. The inanimate superclass contained 187 pattern classes
[15]. We removed the cluttered images and reduced the size

of the dataset to 29,780 images. We resized each image to
100x100x3. We used a 5-fold validation split with this case.

B. Network Description

We trained several deep neural classifiers on the CIFAR-
100 and Caltech-256 datasets. The classifiers used 3,072 input
neurons and K = 100 if they trained on the CIFAR-100
data. All the classifiers we trained on the CIFAR-100 had
512 neurons per hidden layer. The hidden neurons used ReLU
activations of the form a(z) = max(0,z) although logistic
hidden units also performed well in blocks. We trained some
classifiers with the ordinary BP [14], [16] and then further
trained others with the deep-sweep method. We used dropout
pruning method for the hidden layers [17]. A dropout value
of 0.9 for the non-visible hidden layers reduced overfitting.
We did not use a dropout with the visible hidden layers.

The ncural classifiers differed when trained on the Caltech-
256 dataset. We used 30,000 neurons at the input layer and
K equals 256 of the deep classifiers trained on this dataset.
All the models trained on Caltech-256 used 1,024 neurons per
hidden layer with the ReLU activation. We varied the value
of code length M for the models with the bipolar logistic
activation such that log, 256 < M < 256. We trained some
classifiers with the ordinary BP and others with the deep-
sweep method. The deep neural classifiers used 30,000 input
neurons and M output neurons. Dropout pruned all the non-
visible hidden layers with a dropout value of 0.8. We did not
use a dropout with the visible hidden layers.

26
. = 524 —— M=30,K=100
824 ©
5 L] 3
P 5 g2
5 — s
'% 20 = 220
i) (%)
= &
‘@ n
818 £
O161 == ©
16
16.99 12.49 7.79 4.19 6 8 10 12 14 16

Mean . of codeword similarity

(b) CIFAR-100

Mean p. of codeword similarity

(a) CIFAR-100

Classification accuracy

-
~

=—— M =80, K= 256

{H

...
w
Classification accuracy

=
[

iy

i
=y
=
N

—_

Lt

45.97 24.38 12.19 7.01 5
Mean p. of codeword similarity

©

10 15 20 25 30 35 40 45 50
Mean . of codeword similarity

(c) Caltech-256 (d) Caltech-256

Fig. 4: Random bipolar coding with neural classifiers. Classification accuracy fell with an increase in the mean p. of inter-codeword
similarity measure for a fixed code length M. The trained neural classifiers used 5 hidden layers with 512 neurons each and had code
length M = 30 on the CIFAR-100 dataset. The trained neural classifiers used 5 hidden layers with 1,024 neurons each and had code length
M = 80 on the Caltech-256 dataset. The random coding method in Algorithm 1 picked the codewords. We compared the effect of p. on
the classification accuracy. (a) shows the accuracy when training the classifiers with the codewords from Algorithm 1. (b) shows that the
accuracy decreased with an increase in p. for a fixed code length M = 30. (¢) shows the accuracy when training the classifiers with the
codewords from Algorithm 1. (d) shows that the accuracy decreased with an increase in u. for a fixed code length M = 80.

TABLE III: Using the bipolar codewords with small codeword length and logistic outputs gave a classifier accuracy comparable to that of
using softmax outputs and K binary basis vectors from {0, 1}K . The deep neural classifiers trained with bipolar codewords from Algorithm
1 on the CIFAR-100 and Caltech-256 datasets. We compared the performance of these classifiers to the accuracy of the models trained
with K -basis vectors and softmax activations (from Table I). Training models on the CIFAR-100 dataset with bipolar codewords of length
M = 40 = 0.4K achieved between 88% — 90% of the accuracy obtained from using 100 binary basis vectors and softmax outputs. Training
models on Caltech-256 dataset with bipolar codewords of length M = 80 = 0.3125K achieved between 84% — 101% of the accuracy
obtained from using the 256 binary basis vectors and softmax outputs (from Table I). It outperformed softmax activations in some cases

with the Caltech-256 dataset.

Classification Accuracy

3 Hidden Layers

5 Hidden Layers

7 Hiddden Layers

16.68 £ 0.70%
19.63 £+ 0.45%
24.24 + 0.54%
25.80 + 0.94%
26.98 + 0.92%
27.61 + 0.82%
27.63 +0.74%
27.78 + 0.64%
27.62 + 0.99%
27.86 + 0.82%
27.80 &+ 0.84%

17.55 £+ 0.46%
20.28 + 0.47%
23.43 + 0.80%
24.86 + 0.59%
25.86 £ 0.95%
26.33 + 0.60%
26.52 + 0.84%
26.82 +0.71%
26.41 + 0.79%
26.84 + 0.52%
26.47+1.11%

17.44 £+ 0.64%
19.57 £+ 0.55%
23.08 + 0.49%
23.78 + 0.59%
24.82+0.47%
25.03 &+ 0.54%
25.57 + 0.63%
25.23 + 0.80%
25.14 + 1.08%
25.26 + 0.56%
25.01 + 0.73%

Dataset Code Length M Best mean p}

8 2.1156

10 2.3733

20 3.3774

30 4.1923

40 4.8158

CIFAR-100 50 5.3830
60 5.9079

70 6.3766

30 6.8505

90 7.2509

100 7.6444

10 2.4287

20 3.4642

50 5.5320

Caltech-256 80 7.0074
100 7.8234

150 9.5934

200 11.101

250 12.401

9.78 £1.25%
12.56 £ 1.49%
13.82 + 1.17%
14.28 +1.27%
14.13 £ 1.69%
14.36 + 1.55%
14.36 &+ 1.69%
14.06 £ 1.09%

11.05 £ 0.95%
13.78 £ 1.02%
15.63 + 1.05%
15.97 £ 0.62%
15.94 £ 0.75%
16.22 + 0.94%
16.25 + 0.55%
16.36 + 1.12%

11.03 £ 0.67%
13.70 £ 0.66%
14.99 + 0.81%
15.43 £ 0.59%
15.42 £ 0.93%
15.39 £ 0.91%
16.06 + 0.58%
16.70 £ 0.97%

C. Results and Discussion

Table I compares the effect of the output activations on the
classification accuracy of deep neural classifiers. It shows that
the logistic activations outperformed the softmax activation.
We used the K-dimensional basis vectors as the codewords.
Figure 3 shows the result from training neural classifiers with
different configurations. The figure shows that the logistic
activation outperformed the softmax in all the cases we tested.

We used the random coding method in algorithm 1 to search
for bipolar codewords. We varied the value of M and searched
over 10,000 iterations for the best code C* with the minimum
mean p;. Figure 2 displays different sets of bipolar random
codewords from algorithm 1 with p = 0.5 and K = 100. The
codewords came from the bipolar Boolean cube {—1,1}M.

Figures 2a-2c show the respective bipolar codewords for code
length 20, 60, and 100 using algorithm 1. Figure 2d shows the
bipolar basis vector with K = 100 from {—1,1}1°. Table
IT shows that decreasing the mean p. of code C increases
the classification accuracy of the classifiers trained with the
codewords. This is true when the length M of codewords is
such that M < K. We also found the best set of codewords
with p = 0.5. Figure 4 also supports this.

Table III shows that logistic networks can achieve high
accuracy with small values of M. The table shows that the
random codewords can achieve a comparable classification
accuracy with a small code length M relative to the accuracy
from training with the softmax output activation using K
binary basis vectors from {0, 1}¥ as the codewords. It took

w
o

—— Slayers —— 7layers —— 9Iayevsl

8
N
o

~N
o

I
¥

®
i

=
o

— M=10
— M=40
— M =100

R
Classification accuracy
-
o

Classification accuracy

8
v

o

M =100 0 20 40 60 80 100

Training Epoch

(b) CIFAR-100

M =40

(a) CIFAR-100

B
o

=
[N)

—— 5 layers

—— 17 layers

H

-
o

-
N

©

=

Classification accuracy
=)

o
=)

E

Classification accuracy

20 40 60 80 100
Training Epoch

(d) Caltech-256

M =200

o

(c) Caltech-256

Fig. 5: Random bipolar coding and ordinary BP. Algorithm 1 picked K codewords from {—1,1}*. The marginal increase in classification
accuracy with an increase in the code length M decreased as M approached K. (a) shows the classification accuracy of the deep neural
classifiers trained with the random bipolar coding (aAgorithm 1). (b) shows the classification accuracy of the neural classifiers with 5 hidden
layers. The accuracy increased by 8.31% with an increase from M = 10 to M = 40 and the accuracy increased by 0.61% with an increase
from M = 40 to M = 100. (c) shows the classification accuracy of the deep neural classifiers trained with codewords generated with
random bipolar coding. (d) shows the classification accuracy of neural classifiers with 5 hidden layers. The accuracy increased by 4.92%
with an increase from M = 10 to M = 80 and the accuracy increased by 0.40% with an increase from M = 80 to M = 200.

TABLE IV: Deep-sweep versus ordinary backpropagation learning for deep neural classifiers and basis vectors as the codewords. We
compared the effect of the algorithms on the classification accuracy of the classifiers. We used the bipolar basis vectors from {—1, l}K as
the codewords. Deep-sweep method outperformed the ordinary BP with deep neural classifiers. The deep-sweep benefit increased with an

increase in the depth of the classifiers.

. . R R Classification Accuracy
No. of Layers No. of Blocks Layers per Block Deep-sweep CIFAR-100 Caliech 256
5 lavers 1 5 No 32.65 £+ 0.83% 19.06 £+ 1.00%
yers
2 3 Yes 30.62 4+ 0.41% 18.59 + 0.66%
1 7 No 32.19 £+ 0.85% 17.93 +0.70%
7 layers 2 4 Yes 32.69 + 0.70% | 20.11 + 1.22%
3 3 Yes 27.95 &+ 0.69% 16.25 £ 0.65%
9 layers 1 9 No 29.89 £ 0.78% | 17.61 = 0.91%
2 5 Yes 32.20 £ 0.32% 19.75 4+ 0.83%
11 layers 1 11 No 2747 + 0.78% | 17.25 + 0.85%
2 6 Yes 30.68 £+ 0.57% 18.77 £ 1.19%
13 Tayers 1 13 No 2555 £ 1.09% | 16.40 + 0.57%
3 5 Yes 30.76 + 0.74% | 18.47 + 0.56%
— Tioyes — Sleyes — 11iayess| — ioyes — Slayers — 11ieyers) TABLE V: Finding the best block size with the deep-sweep al-
L34 — 522 gorithm. We trained deep neural classifiers with the bipolar basis
§32 - T= g = vectors from {—1, 1}K as the codewords. The relationship between
8 - 1 = 520 J_% the classification accuracy and the block size with a fixed number of
£30 L = _|_ = blocks B follows an inverted U-shape.
£ 58 - g1 T +
8 T 8 +==
© 2% : ©16 No. of blocks No. of layers Classification Accuracy
Voeepaween deopoween Vdecpowesn deopoweep per block CIFAR-100 Caltech 256
3 layers 30.62 £+ 0.41% | 18.59 £ 0.66%
(a) CIFAR-100 (b) Caltech-256 2 blocks 4 layers 32,69 £ 0.70% | 20.11 & 1.22%

i o , 5 layers 3220 & 0.32% | 19.75 & 0.83%
Fig. 6: Deep-sweep training method outperformed ordinary back- 6 layers 30.68 + 0.57% | 18.77 + 1.19%
propagation. The deep neural classifiers used bipolar logistic func- 3 layers 2795 + 0.69% | 16.25 + 0.64%
tions for output activations. We used K bipolar basis vectors from the 3 blocks 4 layers 31.84 £+ 0.84% | 18.76 £ 0.60%
bipolar cube {—1, 1}* as the codewords with bipolar logistic outputs. 5 layers 30.76 £ 0.74% | 18.47 + 0.61%
We compared the effect of training with the deep-sweep method 3 layers 27.94 £ 0.62% | 13.96 &+ 0.51%
or ordinary backpropagation. Deep-sweep outperformed ordinary BP 4 blocks 4 layers 28.45 4 0.56% | 16.97 £ 1.37%
with deep networks. (a) shows the classification accuracy obtained g ia‘/ers ;ggg i gggg" }?Sg i ?ggg"

s . s . . : ayers . . © . B 0
T) s e Sseaon | s [2005 1030 | Lo oot
' ’ e 5 layers 23.15 4+ 1.86% | 14.47 £+ 1.00%

M = 40 = 0.4K to get between 88% — 90% of the classifi-
cation accuracy from using the softmax activation with M =
K =100 on the CIFAR-100 dataset. It took M = 80 < 0.32K
to get between 84% —101% of the classification accuracy from
using the softmax output activation (with M = K = 256) on

the Caltech-256 dataset. The random codes with M = 80
outperformed the softmax activation with M = 256 for neural
classifiers with 5 or 7 hidden layers. Figure 5 shows that the
marginal increase in classification accuracy with an increase

in the code length M decreases as M approaches K.

-
~

NN
5 o
o o

IS

N
o
W

——- Baseline
—+— 1 block (No deep-sweep)
—#— 2 blocks (With deep-sweep)

——- Baseline
—+— 1 block (No deep-sweep)
—#— 2 blocks (With deep-sweep)

N

Classification accuracy
N
N
Classification accuracy
oo e e e

=
o«
=

0 20 40 60 80 100
Code Length M

o

50 100 150 200 250
Code Length M

(a) CIFAR-100 (b) Caltech-256

Fig. 7: Deep-sweep training with the random bipolar code search
and (M < K) outperformed the baseline. The baseline is training
with the combination of ordinary BP and softmax activation with
the binary basis vectors from {0,1}*. We compared the effect of
the deep-sweep method with code length M on the classification
accuracy of deep neural classifiers. (a) shows the performance of deep
neural classifiers with 9 hidden layers and trainied with the ordinary
BP (no deep-sweep). It also show the perfromance of a 2-block
netowrk with 5 hidden layers per block and trained with the deep-
sweep method. (b) shows the performance of deep neural classifiers
with 11 hidden layers and the ordinary BP (no deep-sweep). It also
show the performance of a 2-block network with 6 hidden layers per
block and trained with the deep-sweep method.

Table IV shows the benefit of training deep neural classifiers
with the deep-sweep method in Algorithm 2. The deep-sweep
training method reduces both the vanishing-gradient and slow-
start problem. Simulations showed that the deep-sweep method
improved the classification accuracy of deep neural classifiers.
The deep-sweep benefit increases as the depth of the classifier
increases. Figure 6 also shows that the deep-sweep method
outperformed ordinary BP with deep neural classifiers. Table
V shows the relationship between the accuracy and the block
size with the deep-sweep method. The relationship follows an
inverted U-shape with a fixed number of blocks B.

We also compared the effect of using the deep-sweep
method and Algorithm 1 to pick the codewords. Figure 7
shows that the deep-sweep and random coding method with
M = 40 = 0.4K outperformed training with the 100 basis
vectors as the codewords (with softmax output activation)
without the deep-sweep. We used the CIFAR-100 dataset
with K = 100 in this case. We also found the same trend
with the models we trained on the Caltech-256 dataset. The
combination of the deep-sweep and random coding method
with M = 80 < 0.32K outperformed training with basis
vectors from {0, 1}X as the codewords (with softmax output
activation) with the ordinary BP.

IV. CONCLUSION

Logistic output neurons with random coding allow a given
deep neural classifier to encode and accurately detect more
patterns than a network with the same number of softmax
output neurons. The logistic output layer of a neural block uses
length-M code words with logy K < M < K. Algorithm 1
gives a simple way to randomly pick K reasonably separated
bipolar codewords with a small code length M. Many other
algorithms may work as well or better. Each block has so

few hidden layers that there was no problem of vanishing
gradients. The network instead achieved depth by adding more
blocks. Deep-sweep training further outperformed ordinary
backpropagation with deep neural classifiers. Using bidirec-
tional backpropagation [18]—[20] or proper noise-boosting [1],
[2], [21], [22] should further improve deep-block behavior.

REFERENCES

[1] O. Adigun and B. Kosko, “Noise-boosted bidirectional backpropagation
and adversarial learning,” Neural Networks, vol. 120, pp. 9-31, 2019.

[2] B. Kosko, K. Audkhasi, and O. Osoba, “Noise can speed backpropaga-
tion learning and deep bidirectional pretraining,” To appear in Neural
Networks, 2020.

[3] B. Igelnik and Y.-H. Pao, “Stochastic choice of basis functions in
adaptive function approximation and the functional-link net,” IEEE
Transactions on Neural Networks, vol. 6, no. 6, pp. 1320-1329, 1995.

[4] A. N. Gorban, I. Y. Tyukin, D. V. Prokhorov, and K. I. Sofeikov, “Ap-
proximation with random bases: Pro et contra,” Information Sciences,
vol. 364, pp. 129-145, 2016.

[5] P. Baldi and R. Vershynin, “The capacity of feedforward neural net-
works,” Neural networks, vol. 116, pp. 288-311, 2019.

[6] C. M. Bishop, Pattern recognition and machine learning.
2006.

[71 K. Audhkhasi, O. Osoba, and B. Kosko, “Noise-enhanced convolutional
neural networks,” Neural Networks, vol. 78, pp. 15-23, 2016.

[8] B. Kosko, K. Audhkhasi, and O. Osoba, “Noise can speed backprop-
agation learning and deep bidirectional pretraining,” Neural Networks,
2020.

[9] J. A. Gubner, Probability and random processes for electrical and

computer engineers. Cambridge University Press, 2006.

A. Leon-Garcia, “Probability, statistics, and random processes for elec-

trical engineering,” 2017.

1. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,

2016.

J. Deng, A. C. Berg, K. Li, and L. Fei-Fei, “What does classifying

more than 10,000 image categories tell us?” in European conference on

computer vision. Springer, 2010, pp. 71-84.

M. R. Gupta, S. Bengio, and J. Weston, “Training highly multiclass

classifiers,” The Journal of Machine Learning Research, vol. 15, no. 1,

pp. 1461-1492, 2014.

A. Krizhevsky, G. Hinton ef al., “Learning multiple layers of features

from tiny images,” Citeseer, Tech. Rep., 2009.

G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category

dataset,” 2007.

W. P. J., “Beyond regression: New tools for prediction and analysis in

the behavioral sciences.” Doctoral Dissertation, Applied Mathematics,

Harvard University, MA, 1974.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: a simple way to prevent neural networks from over-

fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.

1929-1958, 2014.

O. Adigun and B. Kosko, “Bidirectional representation and backpropa-

gation learning,” in International Joint Conference on Advances in Big

Data Analytics, 2016, pp. 3-9.

O. Adigun and B. Kosko, “Bidirectional backpropagation,” IEEE Trans-

actions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 5, pp.

19821994, 2019.

O. Adigun and B. Kosko, “Training generative adversarial networks

with bidirectional backpropagation,” in 2018 17th IEEE International

Conference on Machine Learning and Applications (ICMLA). 1EEE,

2018, pp. 1178-1185.

0. Osoba and B. Kosko, “The noisy expectation-maximization algorithm

for multiplicative noise injection,” Fluctuation and Noise Letters, vol. 15,

no. 01, p. 1650007, 2016.

O. Adigun and B. Kosko, “Using noise to speed up video classification

with recurrent backpropagation,” in International Joint Conference on

Neural Networks. 1EEE, 2017, pp. 108-115.

springer,

[10]
[11]
[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

