
A Dual Transformer Model for Intelligent Decision
Support for Maintenance of Wind Turbines

1st Joyjit Chatterjee
Dept. of Computer Science & Technology

University of Hull
Hull, United Kingdom

j.chatterjee-2018@hull.ac.uk

2nd Nina Dethlefs
Dept. of Computer Science & Technology

University of Hull
Hull, United Kingdom
n.dethlefs@hull.ac.uk

Abstract—Wind energy is one of the fastest-growing sustain-
able energy sources in the world but relies crucially on efficient
and effective operations and maintenance to generate sufficient
amounts of energy and reduce downtime of wind turbines and
associated costs. Machine learning has been applied to fault
prediction in wind turbines, but these predictions have not been
supported with suggestions on how to avert and fix faults. We
present a data-to-text generation system utilising transformers
for generating corrective maintenance strategies for faults using
SCADA data capturing the operational status of turbines. We
achieve this in two stages: a first stage identifies faults based
on SCADA input features and their relevance. A second stage
performs content selection for the language generation task and
creates maintenance strategies based on phrase-based natural
language templates. Experiments show that our dual transformer
model achieves an accuracy of up to 96.75% for alarm prediction
and up to 75.35% for its choice of maintenance strategies during
content-selection. A qualitative analysis shows that our generated
maintenance strategies are promising. We make our human-
authored maintenance templates publicly available, and include
a brief video explaining our approach.

Index Terms—SCADA,Transformer, Alarm Message Genera-
tion,Content Selection

I. INTRODUCTION

As the world is moving towards sustainable energy sources,
rapid technological developments have contributed to making
wind energy the strongest and fastest growing renewable en-
ergy resource in recent times [1]. Wind turbines consists of an
array of complex mechanical and electrical components, which
lead them to experience inconsistent operational behaviour
from time to time. With proper operations and maintenance
(O&M) strategies, any incipient faults can be averted by
helping engineers and technicians to make appropriate timely
decisions. This can help save up to 30% on operational costs
associated with regular maintenance of turbines [2].

While there is a growing interest in the wind industry to use
machine learning to predict anomalies in O&M directly from
Supervisory Control & Acquisition (SCADA) data [3], [4],
there is a clear paucity of intelligent decision support systems
which not only predict the occurrence of an impending fault
but also generate a clear human-intelligible diagnosis of its
cause(s). Further, predicting a fault is of little use unless an
effective maintenance action can be proposed to avert and fix
it [5].

Binned power curve of turbine

0 5 10 15 20 25 30
Wind Speed in m/s

-1000

0

1000

2000

3000

4000

5000

6000

7000

P
o
w

e
r

in
 K

W

0

10

20

30

40

50
Bin Counts for Normal Operation

Anomaly
Normal Operation

Turbine operating
normally

Pitch Heartbeat Error

Yaw Move in Wrong
Direction

Fig. 1. Power curve outlining normal operation and anomaly. We aim to
generate alarm messages and maintenance actions for the latter, taking into
account the discovered causes of alarm.

In this paper, we explore the feasibility of applying natural
language generation to O&M in wind turbines and generat-
ing informative alarm messages and maintenance strategies
directly from the turbine’s SCADA data. Figure 1 depicts
the binned power curve of a wind turbine [6], which lies at
the core of our generation task. For any data point that falls
off the normal operation curve, we aim to (1) generate an
alarm message highlighting the occurring fault and affected
subcomponent(s) and (2) propose maintenance actions to fix
(or avert) the fault. As our task relies on long input sequences
of continuous values, and very different combinations of these
can be relevant given the nature of a fault, we propose
to model our task based on a transformer for sequence-
to-sequence generation. Earlier work has shown [7] that a
transformer’s multi-head attention and principle to compute
attention weights over sequences in a single iteration can make
the model faster on long sequences as well as more accurate
in some cases as outputs do not depend on the order of input
processing [7].

We decompose our generation task into 2 stages (alarm
and maintenance), utilising a transformer model at each stage.
Transformer 1 takes as input a set of SCADA features cap-
turing the operational status of the turbine, and outputs the
corresponding alarm message. We also utilise the multi-head
attention mechanism of Transformer 1 to obtain the relevant
features which are most-likely causing the corresponding

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

alarm. In the second stage, Transformer 2 takes as input the
sequence of features likely causing the fault along with the
alarm type (i.e. the outputs of Transformer 1), and finally
generates the most-effective maintenance strategy, in the form
of a sequence of phrase-based natural language templates,
trained from samples authored by a human domain expert.

We compare our Transformer 1 for alarm messages against
conventional LSTM-based Seq2Seq models with and without
attention. We choose Luong attention for the latter [8]. An
evaluation in terms of percentage of alarms predicted correctly
shows that the transformer network outperforms baselines (by
up to 18.7%) while achieving higher computational speed of
up to 28.78% compared to an encoder-decoder model with
attention. We find particularly that the feature importances
derived based on attention scores from the transformer are
more reasonable and relevant compared to our baselines. For
Transformer 2 generating maintenance strategies, we find that
our model achieves an accuracy of up to 75.35%, outperform-
ing a Seq2Seq(Att) model by up to 18.22%.

II. RELATED WORK

Data-to-text generation has been explored for a multitude
of domains including weather forecast generation [9], spatial
navigation [10], sports commentaries [11] or knowledge enti-
ties [12], amongst others. Dialogue systems also often contain
an NLG component to transform a semantic input form into
an utterance that can be presented to a user [13], [14].

A. Deep learning models for NLG

Much recent work in statistical NLG has been based on
sequence-to-sequence recurrent neural networks [15] that learn
a mapping between a non-linguistic input representation, e.g.
a set of semantic slots to be expressed, meteorological data,
pixels in an image etc., onto a sequence of words that describe
the input in natural language. Several extensions have been
proposed to this basic model, e.g. to semantically condition
outputs to increase semantic accuracy [16], pre-process the
input to increase semantic output quality [17], apply copy
actions [18] or pointer sentinel networks [19] to increase the
accuracy of slot transfer, or to inject linguistic information
into a purely learnt model in order to capture more of the
lexico-syntactic regularities of a domain [20], [21].

An alternative model to the sequence-to-sequence architec-
ture are variational auto-encoders (VAEs) which are normally
used to encode an input representation and then decode it back
to its original with minimal loss. Recent models have shown
that when systematically inserting “noise” into inputs, such
as information on target semantic slots, VAEs can learn to
transform a semantic input sequence into a lexico-syntactic
surface form [22] much like other architectures. [23] show
that combining VAE generation with convolutional and de-
convolutional techniques helps to reduce inconsistent outputs.

B. Transformers for NLG

The transformer is a more recent model that has been shown
to outperform sequence-to-sequence models on a number of

tasks, including machine translation [7], natural language un-
derstanding, question answering and common sense inference
[24], and video captioning [25]. The main idea is to remove
the requirement of a recurrent neural network and compute
attention weights over an input sequence with positional
embeddings instead. The model extends conventional attention
mechanisms (i.e., the output sequence attending to the input
sequence) with self-attention, where both inputs and outputs
attend to themselves in addition to the target attending to the
source [7]. This has been shown to be more effective in some
domains than the standard attention model, while the removal
of recurrence reduces computational cost, potentially making
transformers an attractive model for real-world and real-time
data-to-text generation.

There has been limited research in the area of using
transformers for data to text generation, as this still remains
an under explored research area. A notable exception is
[18]’s entry to the 2018 E2E challenge. The authors apply
a transformer to text generation (restaurant recommendations)
from discrete semantic slots and achieve good results, even
though their transformer model was not their best model.
[25] use transformers for video caption generation and find
it to outperform multiple competitive LSTM baselines. Other
related work on transformers for NLG includes [26] who train
an NLG system for a new domain based on a small amount of
labelled data and an extensive pre-trained language model to
inherit general-purpose linguistic knowledge. While their basic
model is an LSTM sequence-to-sequence architecture with a
field-gating encoder (see [27]), the pre-trained language model
is a 12-layer transformer [28].

We extend previous work on using transformers for NLG
to a data-to-text generation scenario from continuous numeric
inputs. In particular, we are interested in the quality of the
transformer’s attention scores towards providing transparent
decision making beyond accurate predictions.

III. LEARNING MODEL

A. The Transformer model

We model our NLG system as an architecture involving 2
stages: Stage (1) takes as input a sequence of SCADA features
and outputs an alarm event description, and Stage (2) predicts
the most effective maintenance strategy in natural language.
For Stage 1, as the SCADA data from a wind turbine is a
typical time-series with multiple features measured from vari-
ous sensors (at generally 10 minutes intervals), the model will
learn to map a sequence of features to a corresponding alarm
message describing operational behaviour of the turbine at any
given interval. Stage 2 can be seen as a sequence generation
task as maintenance strategies can consist of multiple actions
that can occur in different orders to fix or avert a fault.

The transformer model is a relatively recent architecture for
sequence transduction proposed by [7], which has been shown
to achieve or exceed state of the art performance on a number
of sequence-to-sequence tasks, see Section II. In contrast to
earlier Seq2Seq models, transformers do not rely on RNNs for

Transformer 1

Stage 1: Alarm Message Generation Stage 2: Maintenance Action Prediction

xt = (x0, x1, x2, …, xN)
Input Sequence of 102 SCADA features

from turbine

A0.05 …….0.02 0.19Probability scores from
attention heads

y=ipr fault fast frequency change <end>

Embeddings~
Positional encodings

Transform
er 2

yt = (y0, y1, y2, …, yN)Generated alarm message

Integer encoding of
alarm class

Lookup Indices of
top-10 features
causing alarm

Fi = (i0, i1, i2, …, i10)

Append

(n = 901 − 926) xt = (n, i0, i1, i2, …, i10)

Corpus of
maintenance action

templates

yt = (y0, y1, y2, …, yN)Predicted sequence
of output actions

Predicted maintenance
strategy

the grid voltage fluctuation is causing load
changes .the ipr fault is causing failure of the

double fed induction generation
dfig .inspection of end windings and partial or

complete rewinds is recommended . <end>

Content Selection

Fig. 2. Bringing together Transformer 1 for alarm generation and Transformer 2 for content selection

Time Stamp Feature 1 (X0) Feature 2 (X1)...... Feature n (Xn) Event Description
dd/mm/yyyy hh:mm:ss 2.104 0.890 8.124 Turbine Operating Normally
dd/mm/yyyy hh:mm:ss 1.245 3.753 9.509 Pitch System Fatal Error

TABLE I
EXAMPLE OF AN INPUT DATA STRUCTURE AND CORRESPONDING ALARM LOG.

sequence processing, which gives them a number of advan-
tages including computational efficiency. The fact that RNNs
read sequences one word at a time as well as their sequential
processing nature makes them less straightforward for parallel
GPU processing than transformers, which rely predominantly
on feed-forward networks and matrix multiplication [29].

Similar to Seq2Seq models, the transformer architecture
consists of an encoder and a decoder. However, it contains
multiple attention constraints, referred to as multi-head atten-
tion, which represent the essence of its performance [7], [30].
In particular, encoder and decoder apply self-attention wherein
source and target sequences attend to themselves, respectively.
In addition, the target will attend to the source sequence as in
conventional attention architectures [15].

Figure 3 illustrates an example of visualisation of individual
neurons within the query and key vectors used for computing
the final attention scores for the generated alarm message
in the transformer which we developed using BertViz [31].
The final output message is generated during the decoding
stage, utilising past and final hidden representations received
from the encoder. A softmax layer is used to capture the

scores of words to be predicted in the target sequence, which
in our case is the predicted alarm message. The interested
reader is referred to [7] for further details on the transformer
architecture.

Below, we describe the role of the transformer in each stage
for predicting faults and selecting maintenance actions. We use
transformer networks in both stages of our NLG architecture,
for fault identification and alarms (Stage 1) as well as content
selection for maintenance strategies (Stage 2).

B. Stage 1: Generating alarm messages

The first stage takes as input a sequence of SCADA
features xt = (x0, x1, x2, . . . , xN) and outputs a sequence
of symbols describing the internal state of the turbine yt =
(y0, y1, y2, . . . , yN), where t is a time step. This is shown in
Figure 2. The transformer’s task in this case is to learn when
a fault is likely to occur (so that an early alarm can be raised)
as well as estimate likely causes of the fault. The latter we
take from the network’s attention weights, see Figure 7 for an
example.

Fig. 3. Example of neuron view within the query and key vectors.

The predicted alarm and relevant features are passed on
as input to Stage 2 for content selection and generation of
maintenance strategies (to fix or avert the fault).

C. Stage 2: Content selection of maintenance actions

We model our second stage for content selection and
maintenance strategy generation as a separate transformer
network. Transformer 2 works in exactly the same manner
as Transformer 1, and will predict a sequence of maintenance
actions (to form a strategy) from an input sequence of an alarm
and features that gave rise to this alarm. Figure 2 shows an
example of this.

Specifically, given a generated alarm message from Trans-
former 1, we first integer-encode it into one of 26 alarm
categories (n = 901−926). Then, the alarm class of generated
message n is appended with a list of the top-10 features
Fi = (i0, i1, i2, . . . , i10) causing the alarm obtained with
the attention mechanism of Transformer 1 to obtain a new
sequence of features xt = (n, i0, i1, i2, . . . , i10). This serves as
an input to Transformer 2, and finally, it predicts the sequence
of most-effective maintenance actions by selecting relevant
templates from a dictionary of key-value pairs of available
maintenance actions. Please refer to Section V for more
details on the phrase-based natural language templates used
in Stage 2 of our transformer. Figure 2 outlines the topology
of the combination of Transformers 1&2 used for predicting
maintenance actions.

IV. DATA DESCRIPTION AND PREPROCESSING

For our study, we used SCADA data measured at 10-
minute intervals from the Levenmouth Demonstration Turbine
(LDT)1, a 7 MW rated operational offshore wind turbine in
Scotland. We used 102 features from the LDT logs as an input

1Platform for Operational Data (POD) Disseminated by ORE Catapult:
https://pod.ore.catapult.org.uk

X2

X102

X5
y1

X3

X1

X6

Majority class sample message

Minority class sample message

Synthetic sample message

y2

y26

y = Pitch System Fatal Error

y = PcsFaulted

y = HPU 2 Pump
Active For Too Long

Fig. 4. Illustration of synthetic minority oversampling for wind turbine alarm
messages

sequence to Transformer 1 to predict the corresponding alarm
message (referred to as event description in the original data).
See Table I for an example of a data structure and error
description, where features 1-n are sensor readings.

These event descriptions were originally prepared by human
experts and our goal is to predict an alarm type and message
from the 102 operational features. In total, the data contains 26
discrete classes of alarms with corresponding human-written
messages. The 102 features used contain various metrics,
ranging from several electrical, temperature, pressure readings
etc. captured by operational sensors as well as meteorological
data such as humidity, wind conditions, etc.

a) Addressing class imbalance: A challenge with our
dataset is a substantial class imbalance across alarm types as
some occur much more frequently than others, thus leading to
an imbalanced dataset of generation examples. For instance,
the Pitch System Fatal Error alarm accounted for 5,050 cases
owing to the fairly common pitch angle disorientation in
turbines, while HPU 2 Pump Active For Too Long only
accounted for 2,525 cases, exactly half of the former as these
are rarer messages. Even rarer cases include PcsFaulted for
instance, with only 101 cases. Training over the dataset as is
can lead to a model learning a biased generation policy that
would prefer the frequent examples in most cases and not learn
a valid representation of some of the rarer occurrences.

One way to address this situation is to generate more data in
simulation and from heuristics. In our case, this was deemed
too costly as we would require access to engineers to help
us annotate additional alarm messages for various conditions.
An alternative is to reproduce data points, e.g. including
random noise and using uniform random sampling [32]. Such
techniques are simple and can be effective but contain a risk
of changing the overall data distribution.

We finally decide to use the Synthetic Minority Oversam-
pling Technique (SMOTE) [33], a popular statistical technique

Alarm
Code
901

Alarm
Code
902

Alarm
Code
926

Historical
Fault

(DEMOTED) Yaw Brake
2 Under Pressure
Full Brake

Sub Pitch Priv Critical
Error has occurred more
than 3 times in 86400
Seconds

Wind Speed Above Max
Start

Pitch_Deg

_M
ean

W
in

dS
pe

ed
1

_M
ea

n
Na

ce
lle

Or
ie

nt
at

io

n_
De

g_
M

in

NacelleOrientation_

Deg_Stdev

Su
bI

pr
Pr

ivP
wr

Fa
ct

or
_S

td
ev

W
in

dV
an

e
_T

_S
td

ev

SubIprPrivPw
rFactor_

Stdev W
in

dV
an

e_
T_

St
de

v
W

in
dS

pe
ed

1_
M

ea
n

dict_details = {1: ‘A yaw misalignment is affecting the
turbine operation.’, 2: ‘High and variable wind speed is

affecting the stabilisation properties of the yaw brake.’ ,….
,102:’The wind speed exceeds cut-out speed and there is

danger of damage to turbine.’}

Predicted keys of
maintenance actions from

Transformer 2

Important Features
Group 2

Important Features
Group 26

Human-authored corpus of
features causing specific

alarms

Human-
authored

dictionary of
maintenance

actions

Predicted alarm type from
Transformer 1

Important Features
Group 1

Lookup features using
attention scores for given

alarm

A yaw misalignment is affecting the turbine operation. High and variable wind speed is
affecting the stabilisation properties of the yaw brake. A forced shutdown is recommended
until the absolute wind direction returns to normal.

Predicted maintenance strategy
(List of multiple relevant actions)Lookup relevant

actions

Fig. 5. Development of templates for maintenance actions

that addresses class imbalance by generating more samples of
a certain type, introducing noise and variation but at the same
time preserving the original data distribution. In particular, the
idea is to inspect successive samples of a given training set
and calculating the distance between the k-nearest neighbours
across the feature space. The new synthetic data points are
generated by multiplying the vectorial distance between the
nearest neighbours across the original dataset with a random
real number between 0 and 1, and summing it with the present
value of the sample in the feature space. Figure 4 illustrates
this for our dataset. Considering the 102 features in our dataset
ranging from Xt = (X1, . . . , X102), SMOTE balances the
samples for the minority class targets belonging to 26 different
categories of alarm messages from y = (y1, . . . , y26) by creat-
ing a feature space mapping from the majority samples to the
minority samples based on the vectorial distance between these
points. We implement SMOTE using Python’s imbalanced-
learn library [34].

b) Integer encoding: Ultimately, we obtained 500 ex-
amples for each alarm type leading to an overall dataset of
13,000 samples, each with 102 SCADA input features and an
alarm type output. Input sequences from a continuous range
were centred and scaled in the range of 0 to 10 to facilitate
unbiased predictions. To do this, we created a mapping to
convert floating point values to integers by rounding the scaled
values to the nearest integers.

V. TEMPLATES FOR MAINTENANCE ACTIONS

To produce the final output for our learning model, we
created a human-authored corpus of maintenance actions cor-

responding to various faults which had historically occurred
in the turbine. Given that our dataset consisted of a total
of 26 discrete classes of alarms, a human domain-expert
created a total of 167 sub-phrases spanning these classes,
where each sub-phrase details a specific maintenance action,
and a maintenance strategy (as we aim to generate) is made
up of a sequence of such actions, i.e. a sequence of sub-
phrases. Different alarm types can sometimes share the same
maintenance strategy (if the same actions will fix a fault),
or conversely, it is possible that the same alarm message will
require different sets of maintenance actions (if the underlying
causes for the alarms differ). Figure 6 outlines this through
an example Circos visualisation of the associations between
alarm classes, which we developed using [35]. As can be
visualised, multiple alarm classes are not independent in terms
of maintenance strategies for fixing the faults, and there is
intersection amongst the actions for many cases. For instance,
to fix an alarm in the yaw brake (type 1), causal association
exists with maintenance action for alarm in the blades (type
19). Therefore, as two different alarms can share the same
maintenance actions, of these 167 templates, 102 sub-phrases
were completely unique to any of the classes. We make our
human-authored maintenance templates publicly available. 2

Template sub-phrases average to 6.073 words.
A complete maintenance strategy in this study is a text

output, consisting of a selection of multiple maintenance action
sub-phrases selected by the second stage of our Transformer.

2Turbine Maintenance Templates:
https://github.com/joyjitchatterjee/TurbineMaintenanceTemplates

Circos plot depicting association between alarm classes

PCS Alarm
Yaw Hydraulic

Pressure Alarm

Intersection between maintenance
actions for alarm classes

Turbine Blades
Alarm

Gearbox Oil Tank
Alarm

Yaw Brake Alarm

Fig. 6. Circos plot visualisation of alarm classes, for which maintenance
actions are finally predicted. As can be seen, alarms are not independent, and
can thus share maintenance actions.

To overcome the potential problem of training our Stage
2 model with a small corpus and class imbalance (as some
maintenance actions are more prominent than others), we over-
sampled the human-authored corpus of maintenance actions
for given SCADA alarms and relevant features, similar to the
procedure used in Section IV, and obtained an overall dataset
of 1,055 samples.

Templates of sub-phrases for maintenance actions were
collected and stored in the form of key-value pairs in a
dictionary, see Figure 5. Given a set of indices of top-
10 likely features identified by Transformer 1, and the final
content-selection performed by Transformer 2, based on the
human-authored maintenance action sub-phrases, our model
can output an alarm type and a corresponding suggested
maintenance strategy to avert or fix it.

VI. EXPERIMENTS

A. Stage 1: Alarm generation

As the first stage of our dual-transformer model involves
identifying the specific type of fault which occurred in the
turbine, before any relevant maintenance action can be pre-
dicted, we use the SCADA sequence of input features and
historically labelled alarm messages processed in Section IV

for training the model. We used Tensorflow [36] for all three
learning models we wish to compare:

• Seq2Seq: The Seq2Seq model with LSTM, see [15] for
details. We use 200-dimensional word embeddings, 64
hidden neurons, a learning rate of 0.001, dropout of 0.1,
Adam optimisation, and 200 training epochs.

• Seq2Seq (Att): The Seq2Seq model with LSTM and
Luong attention, see [37] for details, with the same
hyperparameters as Seq2Seq. For attention, we use the
concat score function to compute the alignment vectors,
alongside the dot and general which Luong attention
already provides.

• Transformer: the Transformer model with multi-head
attention, see Section III-A. We use 8 multi-head attention
heads, model size of 64, and 3 dense layers for each head.
The learning rate was decayed based on the WarmupThen-
DecaySchedule class in Tensorflow.

We split our dataset in a 80%-20% ratio into training and
test data and use a batch size of 32.

B. Stage 2: Maintenance strategy generation

To train our Stage 2 of the transformer, we learn a mapping
from an input sequence of alarm type and relevant features
to an output sequence of maintenance actions. The latter are
represented as integers that point to a dictionary of text-based
templates. We use a model size of 128 and vocabulary size of
1,300 words for this stage. We again used a 80%-20% train-
test split for Stage 2 with a batch size of 16. The Stage 2
model was trained over 500 epochs.

We utilised the Seq2Seq(Att) model as a baseline for Stage
2 with LSTM and Luong attention, 128 hidden neurons,
learning rate of 0.001, dropout of 0.1, Adam optimisation, and
trained over 500 epochs. It was not feasible to use a vanilla
Seq2Seq model without attention as a baseline at this stage,
as the important features are required by our model to select
appropriate content, and this can only be accomplished with
an attention mechanism.

VII. RESULTS

A. Stage 1 evaluation

Table II shows results from our objective evaluation for
Stage 1 in terms of percentage of alarm types correctly
predicted, performance metrics in terms of average precision,
recall and F1 score as well as the computation time.

1) Objective Evaluation: In terms of percentage of alarm
types correctly predicted, we can see that the Transformer
clearly outperforms the other two models. Also, the trans-
former model attains the highest F1 score of up to 0.978
compared to the other baseline models, which perform very
similarly with the standard Seq2Seq model scoring slightly
higher. This is likely due to our sequences being relatively
short – 5.49 symbols on average with a maximum sequence
length of 14 symbols in the training data and minimal sequence
length of 1 symbols. It is likely that an attention mechanism
is not required to learn good representations for the shorter
sequences.

Stage 1 Model Percentage of Alarms Correctly Predicted Computation time Avg. Precision Avg. Recall Avg. F1 Score
Seq2Seq 78.054% 1.42 min 0.847 0.853 0.850
Seq2Seq (Att) 79.25% 4.25 min 0.862 0.853 0.857
Transformer 96.75% 3.30 min 0.967 0.99 0.978

TABLE II
STAGE 1 RESULTS IN TERMS OF PERFORMANCE METRICS FOR PREDICTED ALARM TYPES AND COMPUTATION TIME. THE BEST PERFORMING MODEL IS

SHOWN IN BOLD-FACE.

We also note that (unsurprisingly) the Seq2Seq model is the
fastest, achieving the shortest computation time, followed by
the Transformer. All computation times were obtained with
NVIDIA Tesla K80 GPU on Google’s Compute Engine.

Fig. 7. Feature importance plot for an anomaly alarm in gearbox obtained
with Transformer model

2) Error and output analysis for Stage 1: Table III shows
example messages generated with each of our models along-
side human references. For Seq2Seq we can see that while
reasonable outputs are generated for the first two situations,
the model recognises an error in the last situation but is
not able to generate a coherent message. The Seq2Seq (Att)
refers to the wrong sub-component in the first example,
confusing the oil tank with the yaw brake. Similarly the second
example confuses the pitch system with the wind direction
transducer. The final message is acceptable but highlights an
error as “critical” rather than “fatal”. Finally, our transformer
generates the most correct messages but still misses out on

Fig. 8. Feature importance plot for an anomaly alarm in gearbox obtained
with Seq2Seq (Att) model

nuances from the human references such as the exact tank
that is being shut down as well as the error codes.

To inspect further what each of the models is doing during
prediction making, Figures 7 and 8 illustrate the attention
weights of the top 10 features for the example of a gearbox
alarm, e.g. demoted gearbox oil tank level shutdown. Ac-
cording to the Transformer as in Figure 7, GBoxOpShaft-
BearingTemp1 Max and GBoxOpShaftBearingTemp1 Min are
amongst the most highly-ranked features, which can likely be
attributed to overheating of the high speed gearbox shaft bear-
ings and the gearbox housing, thus resulting in an alarm for
shutting down the oil tank due to an increasing gearbox tem-
perature. Other features such as SubPcsPrivRefGenSpeedInch-
ing Min and AuxConsumptionApparentPwr Max are highly
relevant based on existing literature [38] as rotational speed,
efficiency and rotor speed are generally attributed as the key

Reference messages 1. (DEMOTED) Gearbox oil tank 2 level shutdown. Alarm Code: 905
2. Wind direction transducer error 1&3. Alarm Code: 912
3. Sub pitch priv fatal error has occurred more than 3 times in 86,400 Seconds. Alarm Code:
902

Seq2Seq 1. Demoted oil tank shutdown. Alarm Code: 905
2. Wind direction transducer error . Alarm Code: 912
3. Error occurred more than fatal in $NUM seconds.Alarm Code: 919

Seq2Seq (Att) 1. Demoted gearbox oil tank under pressure full brake. Alarm Code: 901
2. Pitch system fatal error. Alarm Code: 919
3. Sub pitch priv critical error has occurred more than $NUM times in $NUM seconds. Alarm
Code: 925

Transformer 1. Demoted gearbox oil tank level shutdown. Alarm Code: 905
2. Wind direction transducer error .Alarm Code: 912
3. Sub pitch priv fatal error has occurred more than $NUM times in $NUM seconds. Alarm
Code: 902

TABLE III
GENERATED MESSAGES FOR EACH MODEL IN STAGE 1, WITH REMARKS ABOUT THEIR VIABILITY.

causes which indirectly affect the turbine’s control system,
thereby the gearbox.

In contrast, feature scores for Seq2Seq (Att) in Figure 8
give a fair sense of features leading to the gearbox alarm.
However, clearly, the relevance of the features to the alarm
context is not as effective as in the Transformer. Specifi-
cally, SubPcsPrivRefGenSpeedInching Mean signifies a high
speed generator inching problem, an indirect consequence
leading to contact with the generator. However, the key fea-
tures from parameters pertaining to the gearbox’s operational
status are missed. Also, some higher-ranked features like
Pitch Deg Stdev are out of context for the predicted alarm, as
a disorientation of the turbine’s pitch (turning angle of blades)
generally has little to do with the gearbox’s operation.

B. Stage 2: Maintenance strategy selection

To evaluate the performance of our Stage 2 model, which
predicts the most effective maintenance actions for a fault
occurring in the turbine, we held out 20% (211 samples) of
our over-sampled Stage 2 data set (with 1,055 samples) for
testing purposes. We compare our Stage 2 transformer against
the Seq2Seq(Att) model. For any given sequence of alarm type
and relevant features, we evaluate our Stage 2 model based on
the number of correctly chosen maintenance actions for each
held-out example.

Stage 2 Model Percentage of maintenance actions correctly predicted
Seq2Seq (Att) 57.13%
Transformer 75.35%

TABLE IV
STAGE 2 RESULTS IN TERMS OF PERCENTAGE ACCURACY FOR PREDICTED

MAINTENANCE ACTIONS. THE BEST PERFORMING MODEL IS SHOWN IN
BOLD-FACE.

Our final model output consists of a collection of multiple
natural language sub-phrases which are selected during Stage
2. Results for Stage 2 are shown in Table IV. As can be seen,
our transformer model achieves an accuracy of up to 75.35%,
outperforming the Seq2Seq(Att) model by up to 18.22%.

Alarm 1. Yaw error max start yaw error.
2. Blade too slow to respond.
3. Demoted gearbox filter manifold pressure shutdown.
4. Wind speed above max start.

Important Features 1. ['NacelleOrientation_Deg_Stdev', 'WindSpeed1_Max',
'WindSpeed1_Min',,'NacInsidetemp_Mean', 'NacInsidetemp_Min',
'WindSpeed1_Stdev',,'NacInsidetemp_Max', 'WindSpeed2_Max',
'WindSpeed2_Min',,'MainBearingtemp1_Stdev']

2. ['MainBearingtemp1_Stdev', 'WindVane_T_Max',
'Pitch_Deg_Mean',,'AuxConsumptionApparentPwr_Mean',
'WindVane_T_Min',,'RotorSpeed_rpm_Max', 'RotorSpeed_rpm_Min',
'Pitch_Deg_Min',,'GearBoxTemperature_DegC_Max',
'AuxConsumptionApparentPwr_Min']

3. ['AuxConsumptionApparentPwr_Min',
'AuxConsumptionApparentPwr_Max',,'SubIprPrivPwrFactor_Min',
'SubIprPrivPwrFactor_Mean',,'MainBearingtemp1_Max',
'MainBearingtemp1_Min',,'ReactivePower_kVAr_Stdev',
'SubIprPrivPwrFactor_Max', 'Pitch_Deg_Mean',,'Power_kW_Max']

4. ['GearBoxTemperature_DegC_Stdev',
'WindSpeed1_Min',,'GenHeWaterInlettemp_Stdev',
'GearBoxTemperature_DegC_Max',,'NacelleOrientation_Deg_Mean',
'GearBoxTemperature_DegC_Min',,'WindSpeed_mps_Mean',
'NacInsidetemp_Max', 'Pitch_Deg_Stdev',,'WindVane_T_Stdev']

Encoded Sequence 1. [908, 58, 65, 64, 59, 60, 66, 61, 69, 68, 101]
2. [904, 101, 77, 0, 20, 76, 96, 95, 1, 53, 21]
3. [915, 21, 22, 25, 24, 100, 99, 19, 26, 0, 14]
4. [926, 54, 64, 50, 53, 55, 52, 71, 61, 3, 78]

Predicted
Maintenance
Action

1. a yaw misalignment is affecting the turbine operation .high and variable
wind speed is affecting the stabilisation properties of the yaw brake .the
wind vane measurements signal a high deviation in absolute wind direction
.a forced shutdown is recommended until the absolute wind direction
returns to normal .

2. blades are too slow to respond and not capturing all the wind they could
.high rotational speed of the rotor is affecting spinning tension .please check
the upper shaft of the rotor sweep disk for high temperature .it is suggested
to use lubricants and coolants for avoiding complete failure of the rotor and
yaw mechanism .

3. the turbine power performance is derated .there is wtgs deterioration
occuring at present .the wind speed is very high and not in normal range
.the generator oil sump temperature is not in ambient range .generator oil
replacement and check is recommended .

4. the wind speed exceeds cut out speed and there is danger of damage to
turbine .the wind speed is very high and not in normal range .forced
shutdown is recommended until wind speed returns to normal range .the
generator oil sump temperature is not in ambient range .generator oil
replacement and check is recommended .

TABLE V

EXAMPLES OF PREDICTED MAINTENANCE ACTIONS USING THE
DUAL-TRANSFORMER MODEL

C. Error and output analysis for Stage 2

Table V provides some examples of predicted maintenance
actions selected by our second stage transformer under dif-
ferent scenarios. As can be observed, all output messages
are grammatically coherent and fluent, given that instead
of learning to generate the long sub-phrases, our second

stage transformer learns to simply select the appropriate sub-
phrases from the corpus, making the learning process both
simpler and more efficient. However, in some cases there were
false representations of actions which were not essential to
overcome the fault. Also, incorrect ordering of actions based
on the fault affects relevance.

• In the first example, the turbine suffers from a fault due to
yaw misalignment. Based on the relevant features causing
the fault identified by our Stage 1 transformer, our model
is able to effectively predict that the fault is likely being
caused due to extreme variations in wind speed, which
directly affects the operational consistency of the yaw
brake. Finally, a forced shutdown is recommended by the
model.

• In the second case, the fault occurs due to a slow response
of the turbine blades. Given the features identified by the
Stage 1 transformer, our model accurately produces a cor-
rect maintenance action suggestion for using lubricants in
order to stabilise the bearings. Also, the relevance of the
action based on the rotor speed and shaft temperature
is reasonable, as the rotor hub holds the turbine blades
to ensure aerodynamic efficiency, and any inconsistency
in the blade movements can be attributed to difficulty in
lifting of blades to make the rotor spin.

• In the third case, the model completely misses the iden-
tification of both, the relevant features as well as the
maintenance action. It incorrectly predicts maintenance
strategy based on derated turbine power performance,
although the alarm occurred in the gearbox and is not
relevant in this context.

• The final example shows a fault occurring due to wind
speed being above the maximum cut-off speed to sustain
turbine operation. The model is able to correctly recom-
mend forced shutdown of the turbine until the wind speed
become normal, however, in addition, an irrelevant sub-
phrase for generator oil sump temperature is output. We
believe this happens due to close association between the
features indices of wind speed and generator oil sump
temperature in our data set, and the stage 2 transformer
misses the wind speed template marginally, and picks
up the template nearest to it based on positioning in the
predicted sequence.

Thereby, it is clear that our dual-transformer model performs
very effectively in recommending the maintenance activities to
be performed by the engineers and technicians, but occasion-
ally lacks in identifying the most-relevant actions for a given
sequence of SCADA features and an occurring alarm. This,
despite not being sufficient for real-world use is promising
considering that wind turbines are complex systems, and
automated decision making still is in its infancy, and we hope
to improve this in our future work.

The content-selection stage of the model thereby needs to
eliminate some non-relevant sub-phrases from the output, and
only output the relevant phrases to be more effective, and
we believe that this can be achieved through expansion of

our knowledge base beyond hand-written phrases, to include
maintenance manuals and other unstructured documents.

VIII. CONCLUSION

This paper shows that data-to-text generation is feasible and
promising for operations and maintenance in the wind industry
and can assist engineers and technicians in understanding
the context of an impending fault to potentially prevent it.
In experiments comparing a transformer against sequence-to-
sequence models with and without attention, we find that
the transformer outperforms the other models in terms of
performance and speed, making it a relevant model for real-
time industrial application. Most importantly, it generates
attention scores that are significantly more aligned with expert
judgement in the domain. Our second stage transformer is
able to predict the effective maintenance actions by learning
from the likely causes of faults identified in the first stage. We
include a brief video explaining our approach. 3 Even though
our model learns mostly reasonable feature representations,
there are a variety of meaningful symbols and numbers which
are lost in generating alarm messages. To address this problem,
we plan to explore copy actions or pointer networks in future.
Further, we plan to use operational manuals for learning main-
tenance actions, and extend our work towards unsupervised
time series summarisation for tasks wherein labelled alarm
messages are not originally available.

ACKNOWLEDGMENTS

We would like to acknowledge the Offshore Renewable
Energy Catapult (OREC) for providing us access to the
Levenmouth Demonstration Turbine (LDT) operational data
through Platform for Operational Data (POD). We also ac-
knowledge VIPER, the high-performance computing facility
at the University of Hull and its support team, and the Aura
Innovation Centre.

REFERENCES

[1] C. J. Crabtree, D. Zappala, and S. I. Hogg, “Wind energy: UK
experiences and offshore operational challenges,” Proceedings of the
Institution of Mechanical Engineers, Part A: Journal of Power and
Energy, vol. 229, pp. 727–746, 2015.

[2] J. Carroll, A. McDonald, I. Dinwoodie, D. McMillan, M. Revie, and
I. Lazakis, “Availability, operation and maintenance costs of offshore
wind turbines with different drive train configurations,” Wind Energy,
vol. 20, pp. 361–378, 2016.

[3] Y. Si, L. Qian, B. Mao, and D. Zhang, “A data-driven approach for fault
detection of offshore wind turbines using random forests,” in IECON
2017 - 43rd Annual Conference of the IEEE Industrial Electronics
Society, Beijing, China, October 2017, pp. 3149–3154.

[4] A. Zaher, S. McArthur, and D. Infield, “Online wind turbine fault
detection through automated scada data analysis,” Wind Energy, vol. 12,
pp. 574–593, 2009.

[5] J. Chatterjee and N. Dethlefs, “Natural language generation for opera-
tions and maintenance in wind turbines,” in NeurIPS 2019 Workshop on
Tackling Climate Change with Machine Learning, Vancouver, Canada,
December 2019.

[6] J. Chatterjee and N. Dethlefs, “Deep learning with knowledge transfer
for explainable anomaly prediction in wind turbines,” Wind Energy, pp.
1–18, April 2020.

3Brief explanation of Dual-Transformer model for predicting alarm mes-
sages and maintenance actions: https://youtu.be/HSUFzBr mVQ

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Curran Associates, Inc., 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

[8] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing.
Lisbon, Portugal: Association for Computational Linguistics, Sep. 2015,
pp. 1412–1421. [Online]. Available: https://www.aclweb.org/anthology/
D15-1166

[9] S. G. Sripada, E. Reiter, I. Davy, and K. Nilssen, “Lessons from
deploying nlg technology for marine weather forecast text generation,” in
Proceedings of the 16th European Conference on Artificial Intelligence,
ser. ECAI’04, 2004, pp. 760–764.

[10] M. MacMahon, B. Stankiewicz, and B. Kuipers, “Walk the Talk:
Connecting Language Knowledge, and Action in Route Instructions,” in
Proc. of National Conference on Artificial Intelligence (AAAI), Boston,
Massachusetts, 2006.

[11] D. Chen, J. Kim, and R. Mooney, “Training a Multilingual Sportscaster:
Using Perceptual Context to Learn Language,” Journal of Artificial
Intelligence Research, vol. 37, pp. 397–435, 2010.

[12] P. Vougiouklis, H. Elsahar, L.-A. Kaffee, C. Gravier, F. Laforest, J. Hare,
and Elena, “Neural wikipedian: Generating textual summaries from
knowledge base triples,” Journal of Web Semantics, vol. in press, 2018.

[13] F. Mairesse, F. Jurčı́ček, S. Keizer, B. Thomson, K. Yu, and S. Young,
“Phrase-Based Statistical Language Generation Using Graphical Models
and Active Learning,” in Proc. of the 48th Annual Meeting of the
Association of Computational Linguistics (ACL), Uppsala, Sweden,
2010.

[14] H. Hastie, H. Cuayahuitl, N. Dethlefs, S. Keizer, and X. Liu, “Evaluation
of NLG in an end-to-end Spoken dialogue system-is it worth it?” in Proc.
of 7th International Workshop on Spoken Dialogue Systems, Saariselka,
Finland, 2016.

[15] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2, ser.
NIPS’14. Cambridge, MA, USA: MIT Press, 2014, pp. 3104–3112.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2969033.2969173

[16] T.-H. Wen, M. Gašić, N. Mrkšić, P.-H. Su, D. Vandyke, and S. Young,
“Semantically conditioned lstm-based natural language generation for
spoken dialogue systems,” in Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2015.

[17] F. Nie, J. Wang, J.-G. Yao, R. Pan, and C.-Y. Lin, “Operations guided
neural networks for high fidelity data-to-text generation,” CoRR, vol.
abs/1809.02735, 2018. [Online]. Available: http://arxiv.org/abs/1809.
02735

[18] S. Gehrmann, F. Dai, H. Elder, and A. Rush, “End-to-end content
and plan selection for data-to-text generation,” in Proceedings of the
11th International Conference on Natural Language Generation, Tilburg
University, The Netherlands, 2018, pp. 46–56.

[19] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” in arXiv:1609.07843. CoRR, 2016.

[20] O. Dusek and F. Jurcicek, “Sequence-to-Sequence Generation for Spo-
ken Dialogue via Deep Syntax Trees and Strings,” in Proc. of the Annual
Meeting of the Association for Computational Linguistics (ACL), Berlin,
Germany, 2016.

[21] N. Dethlefs, “Domain Transfer for Deep Natural Language Generation
from Abstract Meaning Representations,” IEEE Computational Intelli-
gence Magazine: Special Issue on Natural Language Generation with
Computational Intelligence, 2017.

[22] M. Freitag and S. Roy, “Unsupervised natural language generation with
denoising autoencoders,” CoRR, vol. abs/1804.07899, 2018.

[23] S. Semeniuta, A. Severyn, and E. Barth, “A hybrid convolutional
variational autoencoder for text generation,” in Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2017, pp. 627–637. [Online].
Available: http://aclweb.org/anthology/D17-1066

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional §sformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,

Minnesota: Association for Computational Linguistics, Jun. 2019,
pp. 4171–4186. [Online]. Available: https://www.aclweb.org/anthology/
N19-1423

[25] L. Zhou, Y. Zhou, J. J. Corso, R. Socher, and C. Xiong, “End-to-end
dense video captioning with masked transformer,” in Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR), Salt
Lake City, Utah, USA, 2018.

[26] Z. Chen, H. Eavani, Y. Liu, and W. Y. Wang, “Few-shot nlg with pre-
trained language model,” CoRR, vol. arXiv:1904.09521, 2019.

[27] T. Liu, K. Wang, L. Sha, B. Chang, and Z. Sui, “Table-to-text generation
by structure-aware seq2seq learning,” in Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, ser. AAAI-18, 2018,
pp. 4881–488.

[28] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2018. [Online].
Available: https://d4mucfpksywv.cloudfront.net/better-language-models/
language-models.pdf

[29] B. Tubay and M. R. Costa-Jussà, “Neural machine translation with the
transformer and multi-source romance languages for the biomedical
WMT 2018 task,” in Proceedings of the Third Conference on Machine
Translation: Shared Task Papers. Belgium, Brussels: Association for
Computational Linguistics, Oct. 2018, pp. 667–670. [Online]. Available:
https://www.aclweb.org/anthology/W18-6449

[30] A. Thiruvengadam, “Transformer architecture: Atten-
tion is all you need,” Mar 2019. [On-
line]. Available: https://medium.com/@adityathiruvengadam/
transformer-architecture-attention-is-all-you-need-aeccd9f50d09

[31] J. Vig, “A multiscale visualization of attention in the transformer
model,” arXiv preprint arXiv:1906.05714, 2019. [Online]. Available:
https://arxiv.org/abs/1906.05714

[32] L. Devroye, “Random sampling,” Non-Uniform Random Variate Gener-
ation, p. 611â641, 1986.

[33] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Journal of Artificial Intel-
ligence Research, vol. 16, p. 321â357, 2002.

[34] G. Lemaı̂tre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine
learning,” Journal of Machine Learning Research, vol. 18, no. 17, pp.
1–5, 2017. [Online]. Available: http://jmlr.org/papers/v18/16-365.html

[35] P. Kassebaum, “circulargraph,” (https://www.github.com/
paul-kassebaum-mathworks/circularGraph), 2020.

[36] M. Abadi and et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

[37] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur,
“Recurrent neural network based language model,” in INTERSPEECH
2010, 11th Annual Conference of the International Speech Communi-
cation Association, Makuhari, Chiba, Japan, September 26-30, 2010,
2010, pp. 1045–1048.

[38] Y. Feng, Y. Qiu, C. Crabtree, H. Long, and P. Tavner, “Monitoring wind
turbine gearboxes,” Wind Energy, vol. 16, 07 2013.

