
Deep Echo State Networks with Multi-Span
Features for Nonlinear Time Series Prediction

1st Ziqiang Li
Dept. of Electrical Engineering and Information Systems

Graduate School of Engineering
The University of Tokyo
Tokyo 113-8656, Japan

ziqiang li@sat.t.u-tokyo.ac.jp

2nd Gouhei Tanaka
Dept. of Electrical Engineering and Information Systems

Graduate School of Engineering
The University of Tokyo
Tokyo 113-8656, Japan

gouhei@sat.t.u-tokyo.ac.jp

Abstract—Nonlinear time-series prediction is one of the
challenging topics in machine learning due to complex non-
stationarity in the temporal dynamics. Many recurrent neural
network models have been proposed for enhancing the prediction
accuracy in time-series prediction tasks. Echo state networks
(ESNs) are a variant of recurrent neural networks, which have
great potential for addressing machine learning tasks with a very
low learning cost. However, the existing ESN-based models have
used only single-span features to our best knowledge. In this
study, we propose two deep ESN models incorporating multi-span
features to improve the prediction performance. We show that
the two deep ESN models yield better prediction performance
compared to the other state-of-the-art ESN-based methods in
benchmark time-series prediction tasks with three models: the
Lorenz system, the Mackey-Glass system, and the NARMA-10
system. Our analyses illustrate that deeper structures decrease
the multicollinearity of the extracted features and thus contribute
to improved performance. The presented results suggest that
the proposed models contribute to the development of artificial
intelligence for temporal information processing.

Index Terms—machine learning, nonlinear time-series predic-
tion, reservoir computing, deep echo state networks

I. INTRODUCTION

Nonlinear time-series prediction [1] is one of the classical
prediction tasks, which aims to predict the future of a nonlinear
dynamical system from a given temporal data generated by
the system. Since the Recurrent Neural Network (RNN) [2]
demonstrated its outstanding ability in time-series prediction
tasks, many RNN-based methods such as Long Short-Term
Memory (LSTM) [3] and Gated Recurrent Unit (GRU) [4]
have been proposed to deal with nonlinear time-series pre-
diction. However, as the exploding gradient problem often
occurs in the training process of the above mentioned RNNs,
stable prediction performance cannot be easily ensured [5].
In addition, the Back Propagation Through Time (BPTT)
algorithm [6] used for RNN training depends on long-term
memory information, which is computationally expensive.
Reservoir Computing (RC) [7]–[9] is a special framework of
RNNs. As in the classical RNN framework, the RC model is
composed of three parts: the input layer, the inner (reservoir)
layer, and the readout layer. The merit of RC is that only the
readout layer needs to be trained, whereas the input and the
inner weights are fixed all the time. As a representative of

RC models, Echo State Network (ESN) [10] has been widely
studied for temporal data prediction and classification [11],
[12] as well as time-series signal reconstruction [13], [14].
In this work, we focus on ESN-based methods for nonlinear
time-series prediction tasks.

Many methods [15]–[18] based on standard architectures of
ESN have so far been proposed for enhancing the prediction
accuracy on nonlinear time-series prediction tasks. However,
due to the limited representation ability caused by the single
reservoir architecture of ESN, the prediction performance of
the improved models was also limited.

With the development of deep learning [19], the concept of
stacking architecture [20] has been introduced into RC models.
Deep RC was first introduced in [21] where a deep RC model
called DeepESN with stacking multiple ESNs was proposed.
In [22], several ESN-unsupervised encoders are connected se-
rially and the prediction performance is enhanced by reducing
redundancy in the features. Mod-DeepESN proposed in [23]
employs wide topology for enhancing richness of the features
in the deep RC model.

However, since the current deep RC models (e.g. Deep-
ESN, Deep-ESN, Mod-DeepESN) extract only single time-
span states in each RC layer. For example, the responses to

0 10 20 30 40 50 60
Time

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Va
lu
e

Points in time span1
Points in time span2
Points in time span3
Points in time span4

Fig. 1. Four different time-span points for the Macket-Glass system with
ϕ = 17.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

the t-th input and the (t + 1)-th input are used for training
without any changes in their order. This restriction inhibits
leveraging multi-span states (e.g. the states sampled for dif-
ferent time spans.) which have been demonstrated to improve
the prediction ability [24], [25]. Fig. 1 is a schematic diagram
showing four different data point sequences corresponding to
multi-span features for the Mackey-Glass system with ϕ = 17.
The point sequences with different marks are sampled for four
different types of time spans.

Therefore, to facilitate prediction performance using multi-
span features, we develop deep ESN models as follows.

1) We provide two novel deep RC architectures: Deep
Multi-Span ESN and Deep Multi-Temporal ESN. These
two models can extract various time-span features by
dividing input series of single time-span into that of var-
ious time-span. The final prediction results demonstrate
that concatenated multi-span features in the proposed
deep RC models can effectively enhance prediction
performance for nonlinear and chaotic time series.

2) Through analyzing complexity of the two proposed
models, we show that they have the same magnitude
of computational complexity as the previous deep RC
models. This ensures computational efficiency of our
models.

3) We demonstrate that our models yield excellent pre-
diction performance on the three benchmark nonlinear
time-series prediction tasks with the Lorenz system, the
Mackey-glass system, and the NARMA-10 system. In
addition, we present the effect of the reservoir size,
the number of layers, and the number of spans on the
performance of the two proposed models. Moreover, we
compare the multi-collinearity of the features in the two
proposed models with that in the DeepESN model.

The rest parts of our paper are organized as follows. Section II
contains the detailed description of the two proposed models.
The analysis of computational complexity will be shown
in Sec. III. The experimental results and analysis will be
presented in Sec. IV. Discussion will be given in Sec. V. The
conclusion will be provided in Sec. VI.

II. TWO ARCHITECTURES

A. Deep Multi-Span ESN

Before introducing our proposed architectures, we define
the original input sequential data matrix U of length NT , and
the corresponding target sequential data matrix Y of length
NT as follows:

U = {u (t = 1) ,u (t = 2) , ...,u (t = NT)} ∈ RNU×NT ,
(1a)

Y = {y (t = 1) ,y (t = 2) , ...,y (t = NT)} ∈ RNY ×NT ,
(1b)

where NU and NY are the dimensions of input and target data,
respectively. t represents the time index of original sequential
data. Our aim is to construct a machine learning model for
supervised learning with the above data.

1) Group-wise reservoir layer: We propose ESN-based
models with a serial combination of multiple reservoir layers
as shown in Fig. 2. In this figure, the input data is given to
the bottom nodes and the network output is obtained at the
top nodes. The model states are expanded in time and the
horizontal direction corresponds to the time axis. The time
points are divided into several groups for extracting multi-span
features.

Suppose that the input data at the time t in the g-th group
of the l-th reservoir layer is defined as u

(l)
(g) (t) ∈ RNU , and

the internal state at the time t corresponding to the g-th group
in the l-th reservoir layer is denoted by x

(l)
(g) (t) ∈ RNR . Then,

the internal state is updated as follows:

x̃
(l)
(g) (t) = tanh

(
W

(l)
in(g)u

(l)
(g) (t) + W

(l)
(g)x

(l)
(g) (t− 1)

)
, (2a)

x
(l)
(g) (t) =

(
1− α(l)

(g)

)
x
(l)
(g) (t− 1) + α

(l)
(g)x̃

(l)
(g) (t) , (2b)

where the parameter α
(l)
(g) denotes the leaking rate of the

reservoir of the g-th group in the l-th layer, which controls the
updating speed of reservoir dynamics. The matrices W(l)

in(g) ∈
RNR×NU and W

(l)
(g) ∈ RNR×NR represent the input weight

matrix and inner weight matrix of reservoir corresponding to
the g-th group in the l-th layer, respectively. Typically, the
elements of W(l)

in(g) are generated randomly from the uniform
distribution in the range of [−1, 1]. In order to expect the
Echo State Property (ESP) [10] which is a requirement for the
reservoir, the inner weights W

(l)
(g) should satisfy the following

condition:

max
1≤l≤NL
1≤g≤NG

ρ
((

1− a(l)(g)

)
E + a

(l)
(g)W

(l)
(g)

)
< 1, (3)

where ρ (·) represents the spectral radius of a matrix argument
and E ∈ RNR×NR denotes the identity matrix. With inequal-
ity (3), the reservoir can obtain “memory” ability like some
traditional RNN models. Note that the ESP can be realized
in the reservoir even when the left-hand side of inequality (3)
equals to 1 or slightly larger than 1 in practice [26].

2) State rearrangement layer: A state rearrangement layer
following the l-th reservoir layer is introduced to reorganize
the reservoir states generated in the previous RC layer. In each
state rearrangement layer, the states of the l-th reservoir layer
are divided into G(l) groups, and the value of G(l) is given as
follows:

G(l) = 2l−1. (4)

Figure 2(a) shows an example of the two-layer Deep Multi-
Span ESN where G(1) = 1 and G(2) = 2. There are two
important processes in the state rearrangement layer: collection
and distribution. Here, we define the τ -th time step state of
the l-th state rearrangement layer as s(l) (τ). In the collection
process, the states of the g-th reservoir group in the l-th state
rearrangement layer s(l) are collected as follows:

x
(l)
(g) (t)→s(l) (τ) , (5)

 ! "#

 "#

 "#

 ! $#

 "#

 "#

 ! %#

 "#

 "#

 ! &#

 "#

 "#

 ! "#

 $#

 "#

 ! $#

 $#

 "#

 ! "#

 $#

 $#

 ! $#

 $#

 $#

 ! ! $#!

 "#

 ! ! %#!

 "#

 ! ! &#!

 "#

 ! ! "#!

 $#

 ! ! $#!

 $#

 ! ! %#!

 $#

 ! ! &#!

 $#

Group-wise

reservoir

layer

Group-wise

reservoir

layer

State

rearrangement

layer

State

rearrangement

layer

Concatenated states

"

 "#

#$ "#

"

 "#

 "#

"

 "#

 "#

"

 $#

 "#

"

 $#

 $#

"

 "#

#$ "#

"

 "#

#$ "#

"

 "#

#$ "#

Concatenation

layer

Readout

layer

 ! ! "#!

 "#

" ! "# " ! $# " ! %# " ! &#

"

 "#

 "#

"

%&

"

%&

"

%&

"

%&

(a) Deep Multi-Span ESN

 ! "#

 !"!#

 !"

 ! !"

 !"

 ! !"

 !"

 ! !"

 !"

 ! !"

Concatenated states

 ! "#

 !"

 !"

 ! $#

 !"

 !"

 ! %#

 !"

 !"

 ! &#

 !"

 !"

 ! "#!

 !"

 ! $#!

 !"

 ! %#!

 !"

 ! &#!

 !"

 ! "#!

 !"$#

 $#

 ! $#!

 !"$#

 $#

 ! %#!

 !"$#

 $#

 ! &#!

 !"$#

 $#

 ! "#

 !"!#

 $#

 ! $#

 !"!#

 $#

 ! "#

 !"!#

 !#

 ! $#

 !"!#

 !#

 ! "#

 !"$#

 ! $#

 !"$#

 ! %#

 !"$#

 ! &#

 !"$#

 ! $#

 !"!#

 ! %#

 !"!#

 ! &#

 !"!#

"#$

Group-wise

reservoir

layer

State

rearrangement

layer

Group-wise

reservoir

layer

State

rearrangement

layer

Concatenation

layer

Readout

layer

 !"

 !"

 !"

 !"

 !"

 !"

 #$!"

 !"

 #$!"

 !"

 #$!"

 !"

 #$#"

 !"

 #$#"

 #"

 #$!"

 ! !"

 #$!"

 ! !"

 #$!"

 ! !"

 #$!"

 ! !"

 #$#"

 ! !"

 #$#"

 ! !"

 #$#"

 ! #"

 #$#"

 ! #"

" ! "# " ! $# " ! %# " ! &#

"#$

"#$

"#$

(b) Deep Multi-Temporal ESN

Fig. 2. (a): A two-layer Deep Multi-Span ESN, (b) A two-layer Deep Multi-Temporal ESN.

where τ =
(
(t− 1) ·G(l) + 1

)
+ (g − 1) mod G(l) and “→”

symbolizes the collection process. In the distribution process,
s(l) (τ) is distributed to the g-th group of the (l+1)-th reservoir
layer as input u(l+1)

(g) (t), which can be formulated as follows:

s(l) (τ)→ u
(l+1)
(g) (t) ,

where

{
g = (τ − 1) mod G(l+1) + 1

t = (τ − 1) /G(l+1) + 1
. (6)

Note that the group number of the first reservoir layer is
G(1) = 1 and u

(1)
(1) (t) = u (t). The state rearrangement

layer in Fig. 2(a) shows the collection and distribution pro-
cesses between two adjacent reservoir layers. Through the
state rearrangement layer, Deep Multi-Span ESN can capture
different time-span features. Our experiments demonstrate that
the multi-span features facilitate the performance in nonlinear
time-series prediction tasks, as described in Sec. IV.

3) Concatenation layer: In the concatenation layer, all the
states corresponding to the τ -th time-step, collected in the
state rearrangement layer, are vertically concatenated together.
Hence, the concatenated state vector of τ -th time-step, sym-
bolized as s (τ), is represented as follows:

s (τ) =
{

s(1) (τ) ; s(2) (τ) ; ...; s(NL) (τ)
}
∈ RNLNR . (7)

Unlike Deep-ESN and Mod-DeepESN, the original inputs are
not contained in the concatenated state s (τ) since we found
that the original inputs have no benefits in our proposed
models.

4) Readout layer: For the sake of low-computational cost,
we inherited the basic idea of the readout layer of Deep-
ESN [22] and employed the closed-form linear-regression for
computing output weights Wout ∈ RNY ×NLNR . However,
since various time-span features are collected as a high-
dimensional concatenated state matrix, it unavoidably leads to
an increase of its multicollinearity which would greatly affect

the prediction performance. Therefore, we leverage the ridge
regression with Tikhonov regularization [27] for computing
Wout as follows:

Wout = YST
(
SST + λE

)−1
, (8)

where S = {s (τ = 1) , s (τ = 2) , ..., s (τ = NT)} ∈
RNLNR×NT . The parameter λ symbolizes the Tikhonov reg-
ularization factor. The matrix E ∈ RNLNR×NLNR denotes
the identity matrix. A study [28] reported that the calculation
of ST

(
SST + λE

)−1
with the singular value decomposition

(SVD) [29] will be beneficial for improving the accuracy of
regression. Therefore, we leverage SVD for computing Wout

in the whole experiments.

B. A Variation: Deep Multi-Temporal ESN

Figure 2(b) shows a modified model of Deep Multi-Span
ESN, called Deep Multi-Temporal ESN. It is obvious that
Deep Multi-Temporal ESN uses similarly the group-wise
reservoir layer proposed in Sec. II-A1.

However, unlike the Deep Multi-Span ESN, various time-
span features are extracted in the last group-wise reservoir
layer. We slightly modified the state rearrangement layer
proposed in Sec. II-A2. The states collected from the (NL−1)-
th reservoir layer are copied as D duplicated distributions. The
input to the g-th group corresponding to the d-th duplicated
states in the last reservoir layer is represented as u

(NL,d)
(g) (t).

The d-th duplication of states are divided into G(d) = 2d−1

groups. The distribution process of the (NL − 1)-th state
rearrangement layer can be re-formulated as follows:

s(NL−1) (τ)→ u
(NL,d)
(g) (t) ,

where

{
g = (τ − 1) mod G(d) + 1

t = (τ − 1) /G(d) + 1
.

(9)

In the collection process of the last state rearrangement layer,
the states corresponding to the d-th duplication s

(NL,d)
(g) (τ) are

collected as follows:

x
(NL,d)
(g) (t)→s(NL,d) (τ) , (10)

where τ =
(
(t− 1) ·G(d) + 1

)
+ (g − 1) mod G(d). Further,

for the concatenation layer of Deep Multi-Temporal ESN, only
the states in the last state rearrangement layer are vertically
concatenated, which can be formulated as follows:

s (τ) =
{
s(NL,1) (τ) ; s(NL,2) (τ) ; ...; s(NL,D) (τ)

}
∈ RDNR .

(11)
The readout layer of Deep Multi-Temporal ESN is the same
as that of Deep Multi-Span ESN described in Sec. II-A4. Note
that the feature diversity of Deep Multi-Temporal ESN only
relies on the number of duplications D. Therefore, unlike Deep
Multi-Span ESN, various temporal features can be extracted
at the last reservoir layer in the total model.

III. ANALYSIS

A. Computational Complexity

In this section, analyses of computational complexity for
Deep Multi-Span ESN and Deep Multi-Temporal ESN are
given.

We assume that there are NL reservoir layers in the two
proposed deep models. The size of each group-wise reservoir
is NR and the time length of NU -dimensional input data
is NT . Hence, the computational cost for the group-wise
reservoir layer is given as follows:

C(l)
res = O

(
NTNRNU/G

(l) +NT (NR)
2
/G(l)

)
. (12)

There is a loop in distribution and collection processes in
the state rearrangement layer. Therefore, the computational
cost for the state rearrangement layer can be represented as
Crea = O (2NT). The computational cost for the concatena-
tion layer is given by Ccon = O (NT). In the readout layer, the
computational cost for calculating YST and

(
SST + λI

)−1

are O (NYNRNLNT) and O
(

(NRNL)
2
NT + (NRNL)

3
)

,

respectively. Multiplying YST with
(
SST + λI

)−1
costs

O
(
NY (NRNL)

2
)

. Note that NU � NR, NY � NR, and
NL � NR. Therefore, the total computational complexity of
Deep Multi-Span ESN can be formulated as follows:

Ctotal =

NL∑
l=1

G(l)C(l)
res +NLCrea + Ccon + Creg

≈ O

(
NL∑
l=1

(
NT (NR)

2
)

+NT (NRNL)
2

)
≈ O

(
NLNT (NR)

2
)
. (13)

For Deep Multi-Temporal ESN, the computational cost
for the first (NL − 1) reservoir layers is Cres = (NL −
1)(NT (NR)

2
+ NTNRNU). The computational cost for the

d-th group-wise reservoir in the last reservoir layer is given
as follows:

C(NL)
res (d) = O

(
NTNRNU/G

(d) +NT (NR)
2
/G(d)

)
.

(14)
The computational costs for the state rearrangement layer, the
concatenation layer, and the readout layer are the same as
those of Deep Multi-Span ESN. In summary, the total cost of
Deep Multi-Temporal ESN can be formulated as follows:

Ctotal = Cres +

D∑
d=1

G(d)C(NL)
res (d) +NLCrea + Ccon + Creg

≈ O
(

(NL +D − 1)
(
NT (NR)

2
+NTNRNU

))
≈ O

(
(NL +D − 1)NT (NR)

2
)
. (15)

From Eq. (13) and Eq. (15), multiplying reservoir states with
inner weights dominates the total computational complexity
in the Deep Multi-Span ESN and Deep Mutli-Temporal ESN.
Note that computational complexities given by Eq. (13) and
Eq. (15) have the same magnitude as those reported for Deep-
ESN [21] and Deep-ESN [22], which indicates our proposed
models can provide multi-temporal features without extra
computational complexity added. Moreover, the calculations of
the group states in the last layer of Deep Multi-Temporal ESN
are mutually independent, and therefore, parallel computation
can be applied for deceasing the operation time in practice.

B. Relationship with Existing ESN Models
Although our proposed models are able to extract multi-span

features from input sequences, there is a very close relationship
with existing ESN models. Deep Multi-Temporal ESN can be
transformed into the DeepESN when D is fixed at 1. Deep
Multi-Temporal ESN with D = 1 and NL = 1 and Deep
Multi-Span ESN with NL = 1 are reduced to the standard
ESN.

On the other hand, since the basic element in each group-
wise reservoir layer of the proposed models is the standard
ESN, the other improvement method for ESNs can be used
for boosting the prediction performance of our proposed two
models as well (see Sect.IV-D2).

IV. NUMERICAL EXPERIMENTS
A. Task Description

Benchmark prediction tasks were conducted for evaluating
our proposed models using the Lorenz system , the Mackey-
Glass system, and the 10-th order nonlinear auto-regressive
moving average (NARMA-10) system.

1) Lorenz system: Lorenz system [30] is a chaotic system
of ordinary differential equations which can be represented as
follows:

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz, (16)

TABLE I
DATA PARTITION FOR LORENZ SYSTEM, MGS-17, AND NARMA-10

TASKS

Training Validation Testing Washout
Lorenz 3000 1000 1000 300

MGS-17 6400 1600 2000 300
NARMA-10 2560 640 800 120

TABLE II
THE PARAMETER SETTINGS OF DEEP MULTI-SPAN ESN, DEEP

MULTI-TEMPORAL ESN, AND DEEPESN

Parameters Symbol Value
Input scaling θ 0.1
Leaking rate α

(l)
(g)

0.9
Density of inner weights η 0.1

Regularizing factor λ 1e-10
Reservoir size NR [100, 100, 1000]
Spectral radius ρ [0.60, 0.05, 1.10]

with the standard parameter setting: σ = 10, β = 8/3, and
ρ = 28. The initial state was set at (x (0) , y (0) , z (0)) =
(12, 2, 9). The time-series data were collected with sampling
interval ∆t = 0.02 and re-scaled by scaling factor 0.1. In this
task, we employed the x values to predict six-step-ahead y
values, which can be represented as u (t) = x (t) and y (t) =
y (t+ 6).

2) Mackey-Glass system: The Mackey-Glass System
(MGS) [31] can be represented as follows:

y(t+ 1) = y(t) + δ ·
(
a

y(t− ϕ/δ)
1 + y(t− ϕ/δ)n

− by(t)

)
, (17)

where a, b, n, and δ are fixed at 0.2, −0.1, 10, and 0.1, respec-
tively. The MGS shows chaotic behavior when ϕ > 16.8. We
followed the setting in previous works [7], [22], [32] and tested
our models by setting ϕ = 17 (MGS-17). The task is to predict
84-step-ahead time-series data, which can be represented as
u (t) = y (t) and y (t) = y (t+ 84).

3) NARMA-10 system: The NARMA-n system [33] is a
nonlinear dynamical system which is represented as follows:

y(t+ 1) = α · y(t) + β · y(t) ·
n∑
i=1

y(t− i)

+ γ · u(t− n) · u(t) + σ, (18)

where n, α, β, γ, and σ are fixed at 10, 0.3, 0.05, 1.5, and
0.1, respectively. The input u (t) is sampled randomly from
uniform distribution in the range of [0, 0.5]. This challenging
prediction task is widely used for evaluating RC models since
long temporal dependency and rich randomness are included
in the time sequence. In this task, we set u (t) = u (t) and
y (t) = y (t).

The partition of training set, validation set, testing set,
and washout on the above three time-series data are listed
in Table I. For fair comparison, the partition of training set,
validation set, and testing set is the same as that in [22], [23].

B. Evaluation Metrics

Three metrics, root-mean-square error (RMSE), normalized
root mean square error (NRMSE), and mean absolute percent-
age error (MAPE) were leveraged in the experiments. They are
defined as follows:

RMSE =

√√√√ 1

NT

NT∑
τ=1

(y(t)− ŷ(t))
2
, (19)

NRMSE =
RMSE√

1
NT

∑NT

t=1 (y (t)− y)
2
, (20)

MAPE =
1

NT

NT∑
t=1

|y(t)− ŷ(t)|
y(t)

, (21)

where y (t) indicates the t-th observation value in the NT -
length label data, ŷ (t) represents the t-th observation value
in the NT -length prediction data, and y (t) denotes the mean
value of the NT -length target data.

C. Simulation Setting

In the following experiments, the parameter setting of Deep
Multi-Span ESN, Deep Multi-Temporal ESN, and the baseline
counterpart DeepESN were set as listed in Table II. The input
scaling for input data θ, the leaking rate α(l)

(g), the density of
inner weights η, and the Tikhonov regularization factor λ are
fixed at 0.1, 0.9, 0.1, and 1e-10, respectively. The reservoir
size was varied in the range of [100, 1000] with the interval
of 100. The spectral radius of inner weights was adjusted to
be in the range of [0.60, 1.10] with the interval of 0.05. We
repeated 20 independent trials for each parameter setting.

For simulations, Pytorch 1.10 was employed for implement-
ing the proposed Deep Multi-Span ESN and Deep Multi-
Temporal ESN. The module of ridge regression in Scikit-learn
0.21.3 was used for implementing the readout layer of the two
proposed models.

D. Results

1) Lorenz system: In this section, we compare the pre-
diction performance of our proposed methods with that of
DeepESN [21]. Table III shows the prediction performance
of the three models under the best settings: NR = 900,
ρ = 0.95, and D = 2. Our proposed methods outperform
the baseline DeepESN and in particular Deep Multi-Temporal
ESN produces the best performance. Further, the correspond-
ing predicted time series and the absolute error of Deep Multi-
Temporal ESN under the best settings are shown in Fig. 3(a).

2) MGS-17: In this section, we compare the prediction
performance of our proposed methods with those reported in
[22]. The research [37] reported that Intrinsic Plasticity (IP)
[38] can improve the prediction results of RC model on MGS-
17 by maximizing output information of each reservoir neuron.
This effective way of information transformation relies on
minimizing the KL-divergence between Gaussian-distribution

TABLE III
COMPARISON OF AVERAGE RESULTS ON THE SIX-STEP-AHEAD PREDICTION FOR LORENZ SYSTEM.

RMSE(STD) NRMSE(STD) MAPE(STD) Layers
DeepESN [21] 1.23E-04±(5.84E-05) 1.40E-04±(6.63E-05) 1.81E-03±(1.10E-03) 3

Deep Multi-Span ESN 1.19E-04±(3.82E-05) 1.35E-04±(4.33E-05) 7.35E-04±(4.56E-04) 3
Deep Multi-Temporal ESN 8.66E-05±(2.28E-05) 9.82E-05±(1.73E-05) 6.10E-04±(3.57E-04) 3

TABLE IV
COMPARISON OF AVERAGE RESULTS ON THE 84-STEP-AHEAD PREDICTION FOR MGS-17.

Models RMSE(STD) NRMSE(STD) MAPE(STD) Layers
ESN [32] 4.37E-02±(6.31E-03) 2.01E-01±(2.91E-02) 7.03E-01±(1.27E-01) 1
ϕ-ESN [34] 8.60E-03±(1.63E-03) 3.96E-02±(7.49E-03) 1.00E-01±(2.13E-02) 2
R2 SP [35] 2.72E-02±(4.27E-03) 1.25E-01±(1.96E-02) 1.00E-01±(2.13E-02) 2
MESN [36] 1.27E-03±(2.50E-03) 5.86E-02±(1.15E-02) 1.91E-01±(4.22E-02) 7

Mod-DeepESN [23] 7.22E-03±(*) 2.75E-02±(*) 5.55E-01±(*) 3
Deep-ESN [22] 1.12E-03±(1.87E-04) 5.17E-03±(8.61E-04) 1.51E-02±(3.06E-03) 8

Deep Multi-Span ESN (NR = 300) 1.47E-04±(4.65E-05) 6.59E-04±(2.07E-04) 1.36E-04±(4.41E-05) 3
Deep Multi-Temporal ESN (NR = 300) 1.36E-04±(5.48E-05) 6.11E-04±(2.45E-04) 1.26E-04±(5.11E-05) 3

Deep Multi-Span ESN (best) 2.91E-05±(1.02E-05) 1.30E-04±(4.60E-05) 2.66E-05±(9.34E-06) 3
Deep Multi-Temporal ESN (best) 1.93E-05±(5.48E-06) 8.63E-05±(2.45E-05) 1.51E-05±(4.99E-06) 2

TABLE V
COMPARISON OF AVERAGE RESULTS ON THE NARMA-10 TIME-SERIES PREDICTION

Models RMSE(STD) NRMSE(STD) MAPE(STD) Layers
ESN [32] 2.76E-02±(2.25E-03) 2.45E-01±(2.00E-02) 5.72E-02±(5.01E-03) 1
ϕ-ESN [34] 1.92E-02±(2.00E-03) 1.69E-01±(1.75E-02) 3.94E-02±(4.13E-03) 2
R2 SP [35] 2.05E-02±(2.38E-03) 1.81E-01±(2.21E-02) 4.30E-02±(5.43E-03) 2
MESN [36] 1.91E-02±(2.73E-03) 1.68E-01±(2.40E-02) 4.07E-02±(5.59E-03) 2

Deep-ESN [22] 1.39E-02±(1.33E-03) 1.21E-01±(1.16E-02) 2.19E-02±(2.48E-03) 4
Deep Multi-Span ESN (NR = 300) 6.96E-03±(2.53E-04) 6.92E-02±(2.52E-03) 1.51E-02±(6.62E-04) 3

Deep Multi-Temporal ESN (NR = 300) 7.07E-03±(2.38E-04) 7.03E-02±(2.36E-03) 1.57E-02±(5.33E-04) 3
Deep Multi-Span ESN (NR = 400) 6.61E-03±(2.31E-04) 6.58E-02±(2.30E-03) 1.46E-02±(4.74E-04) 3

Deep Multi-Temporal ESN (NR = 400) 6.84E-03±(2.28E-04) 6.81E-02±(2.57E-03) 1.51E-02±(5.75E-04) 3

0 200 400 600 800 1000
Time-step

−2

−1

0

1

2

Va
lu
e

Target cruve
Predicted cruve

0 200 400 600 800 1000
Time-step

−1.0

−0.5

0.0

0.5

1.0

Ab
so
lu
te
 V
al
ue

1e−4

(a) Lorenz

0 250 500 750 1000 1250 1500 1750 2000
Time-step

0.4

0.6

0.8

1.0

1.2

1.4

Va
lu
e

Target cruve
Predicted cruve

0 250 500 750 1000 1250 1500 1750 2000
Time-step

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Ab
so
lu
te
 V
al
ue

1e−4

(b) MGS-17

0 200 400 600 800 1000
Time-step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lu
e

Target cruve
Predicted cruve

0 200 400 600 800 1000
Time-step

−3

−2

−1

0

1

2

Ab
so
lu
te
 V
al
ue

1e−2

(c) NARMA-10

Fig. 3. The prediction curve and the absolute error on Lorenz system, MGS-17 and NARMA-10

and empirical output distribution. The IP rule can be briefly described as follows:

xout = tanh (gxin + b) , (22)

where xin ∈ RNR and xout ∈ RNR are the input vector and
the output vector of the reservoir units, respectively and g
and b denote the gain vector and the bias vector of the non-
linear tangent hyperbolic activation, respectively. The gradient-
decent algorithm was employed to compute the gradients of
g and b as follows:

∆b =− ε(
(
xout/σ

2
) (

2σ2 + 1− x2
out + µxout

)
−
(
µ/σ2

)
), (23)

∆g = εg + ∆bxin, (24)

where µ and σ denote the mean and standard deviation of
Gaussian-distribution, respectively, and ε means the learning
rate. We set the parameters of IP rules at µ = 0, σ = 0.1,
and ε = 0.0005, the updating epoch at Nepoch = 10, and the
threshold of the updating process at φ = 0.1. Table IV shows
the best prediction performance of our proposed models in
comparison with those reported in [22]. The best performance
of Deep Multi-Temporal ESN was obtained under the best
parameter setting: NR = 900, ρ = 1, and D = 3. Deep
Multi-Span ESN obtained the best performances under the best
parameter setting: NR = 800, and ρ = 1. Since the reported
performances of Deep-ESN are obtained by using eight layers
of 300 reservoir neurons, we also show those of our proposed
models with settings: NR = 300, ρ = 1, and D = 3. The Deep
Multi-Temporal ESN yields the overwhelming results even
with two reservoir layers. It is shown that better prediction
performances were obtained by using the same reservoir size
in each layer of our proposed models as those in Deep-ESN.
We can see that The predicted time series and the absolute
error curve corresponding to the best results of Deep Multi-
Temporal ESN are shown in Fig. 3(b).

3) NARMA-10: The best prediction performance of our
proposed models and those reported in [22] are listed in Table
V. The Deep Multi-Temporal ESN kept D = 3. It is obvious
that our proposed methods give the best prediction results
under the parameter setting: NR = 400 and ρ = 0.80. Note
that we also list the performance of our proposed methods
with the same reservoir size NR = 300 as that in Deep-
ESN. For the best results obtained by Deep Multi-Span ESN
with NL = 3, the corresponding predicted time series and the
absolute error are shown in Fig. 3(c).

V. DISCUSSION

In order to clarify the effect of the number of layers,
the reservoir size, and the number of multi-span groups
on the performance in nonlinear time-series prediction, we
investigated the prediction performances of Deep Multi-Span
ESN, Deep Multi-Temporal ESN, and DeepESN under the
best parameter settings by varying the reservoir size NR from
100 to 1000. Figure 4 presents RMSE values plotted against
reservoir size for different parameter settings in the three time-
series prediction tasks. We find that the overall RMSE of the
two proposed models are better than those based on DeepESN
when more reservoir layers are added. For example, DeepESN
can achieve the lowest RMSE with the two reservoir layers on

the NARMA-10 dataset. However, the Deep Multi-Span ESN
and Deep Multi-Temporal ESN outperform DeepESN in the
case of three reservoir layers on all the time-series datasets. In
addition, we observed that excessive time-span groups will not
lead to better results as shown in Figs. 4(a)-4(b). Therefore,
the number of groups, the reservoir size, and the number
of layers, should be appropriately determined depending on
different time-series data.

Multicollinearity [39] of features is an important factor
affecting regression performance. A high multicollinearity
tends to lead a bad prediction performance. Therefore, we
compared multicollinearity in each layer (group) of DeepESN,
Deep Multi-Span ESN, and Deep Multi-Temporal ESN. Here,
the condition number is used for measuring the degree of
multicollinearity, which can be formulated as follows:

Cond (S) =
σmax (S)

σmin (S)
, (25)

where S is the feature matrix, and σmax and σmin are maximal
and minimal singular values of S, respectively. Commonly,
a higher condition number represents more collinearity in
the target matrix. For DeepESN and Deep Multi-Span ESN,
Sl ∈ RNR×NT represents collection matrix of features in the
l-th reservoir layer. For Deep Multi-Temporal ESN, Sd ∈
RNR×NT is the collection matrix of the d-th group in the
last reservoir layer. The condition numbers for DeepESN,
Deep Multi-Span ESN, and Deep Multi-Temporal ESN for
the Lorenz system, MGS-17, and NARMA-10 are shown in
Fig. 5. It is obvious that multi-span features extracted by our
proposed models lead to lower multicollinearity than the same
time-span features extracted by DeepESN, which may be the
major reason for the higher prediction performance of our
models compared with those of other ESN-based models.

VI. CONCLUSION

In this paper, two novel deep RC models with the ability
to extract multi time-span features, Deep Multi-Span ESN
and Deep multi-Temporal ESN, have been proposed. The
analysis of the computational costs of the two proposed models
have shown the computational efficiency. The prediction per-
formances on the Lorenz system, MGS-17 and NARMA-10
have shown significant effectiveness of the proposed models
for nonlinear time-series prediction tasks. Also, we have
evaluated the performance of the two proposed models by
varying the number of reservoir layers, the reservoir size,
and the number of time-span groups. Finally, the investigation
of multicollinearity in the various layers (groups) have been
given.

As future works, we will continue to study how the proposed
models are applied to other temporal processing tasks such as
time series classification tasks.

ACKNOWLEDGEMENTS

This work was partially supported by JST-Mirai Program
Grant Number JPMJMI19B1, Japan (GT) and partially based

(a) Lorenz system (b) MGS-17 (c) NARMA-10

Fig. 4. The average RMSE of DeepESN, Deep Multi-Span ESN and Deep Multi-Temporal ESN on Lorenz system, MGS-17 and NARMA-10 with variations
of the reservoir size from 100 to 1000.

(a) Lorenz system (b) MGS-17 (c) NARMA-10

Fig. 5. The average condition number of DeepESN, Deep Multi-Span ESN and Deep Multi-Temporal ESN on Lorenz system, MGS-17 and NARMA-10.

on results obtained from a project (No. 18102285-0) subsi-
dized by the New Energy and Industrial Technology Develop-
ment Organization (NEDO) (GT).

REFERENCES

[1] M. Casdagli, “Nonlinear prediction of chaotic time series,” Physica D:
Nonlinear Phenomena, vol. 35, no. 3, pp. 335–356, 1989.

[2] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
no. 2, pp. 179–211, 1990.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[4] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[5] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International Conference on Machine
Learning, 2013, pp. 1310–1318.

[6] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[7] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” Science, vol.
304, no. 5667, pp. 78–80, 2004.

[8] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[9] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, “Recent advances
in physical reservoir computing: A review,” Neural Networks, 2019.

[10] H. Jaeger, “The “echo state” approach to analysing and training recur-
rent neural networks-with an erratum note,” Bonn, Germany: German
National Research Center for Information Technology GMD Technical
Report, vol. 148, no. 34, p. 13, 2001.

[11] K. G. Boroojeni, M. H. Amini, S. Bahrami, S. S. Iyengar, A. I. Sarwat,
and O. Karabasoglu, “A novel multi-time-scale modeling for electric
power demand forecasting: From short-term to medium-term horizon,”
Electric Power Systems Research, vol. 142, pp. 58–73, 2017.

[12] M. D. Skowronski and J. G. Harris, “Automatic speech recognition using
a predictive echo state network classifier,” Neural Networks, vol. 20,
no. 3, pp. 414–423, 2007.

[13] D. Liu, J. Wang, and H. Wang, “Short-term wind speed forecasting based
on spectral clustering and optimised echo state networks,” Renewable
Energy, vol. 78, pp. 599–608, 2015.

[14] Y. Xia, B. Jelfs, M. M. Van Hulle, J. C. Prı́ncipe, and D. P. Mandic,
“An augmented echo state network for nonlinear adaptive filtering of
complex noncircular signals,” IEEE Transactions on Neural Networks,
vol. 22, no. 1, pp. 74–83, 2010.

[15] J. P. Donate and P. Cortez, “Evolutionary optimization of sparsely
connected and time-lagged neural networks for time series forecasting,”
Applied Soft Computing, vol. 23, pp. 432–443, 2014.

[16] D. Li, M. Han, and J. Wang, “Chaotic time series prediction based
on a novel robust echo state network,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 23, no. 5, pp. 787–799, 2012.

[17] T. Akiyama and G. Tanaka, “Analysis on Characteristics of Multi-Step
Learning Echo State Networks for Nonlinear Time Series Prediction,”
in 2019 International Joint Conference on Neural Networks (IJCNN),
2019, pp. 1–8.

[18] H. Wang and X. Yan, “Optimizing the echo state network with a bi-
nary particle swarm optimization algorithm,” Knowledge-Based Systems,
vol. 86, pp. 182–193, 2015.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[20] L. Deng, D. Yu, and J. Platt, “Scalable stacking and learning for
building deep architectures,” in 2012 IEEE International Conference on
Acoustics, Speech and Signal processing (ICASSP). IEEE, 2012, pp.
2133–2136.

[21] C. Gallicchio and A. Micheli, “Deep Reservoir Computing: A Critical
Analysis.” in ESANN, 2016.

[22] Q. Ma, L. Shen, and G. W. Cottrell, “Deep-esn: A multiple projection-
encoding hierarchical reservoir computing framework,” arXiv preprint
arXiv:1711.05255, 2017.

[23] Z. Carmichael, H. Syed, and D. Kudithipudi, “Analysis of Wide and
Deep Echo State Networks for Multiscale Spatiotemporal Time Series
Forecasting,” arXiv preprint arXiv:1908.08380, 2019.

[24] M. H. Loorak, C. Perin, N. Kamal, M. Hill, and S. Carpendale, “Times-
pan: Using visualization to explore temporal multi-dimensional data
of stroke patients,” IEEE transactions on visualization and computer
graphics, vol. 22, no. 1, pp. 409–418, 2015.

[25] J. R. Bellegarda, “Large vocabulary speech recognition with multispan
statistical language models,” IEEE Transactions on Speech and Audio
Processing, vol. 8, no. 1, pp. 76–84, 2000.

[26] T. Strauss, W. Wustlich, and R. Labahn, “Design strategies for weight
matrices of echo state networks,” Neural Computation, vol. 24, no. 12,
pp. 3246–3276, 2012.

[27] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67,
1970.

[28] W. N. van Wieringen, “Lecture notes on ridge regression,” arXiv preprint
arXiv:1509.09169, 2015.

[29] G. H. Golub and C. Reinsch, Singular value decomposition and least
squares solutions. Springer, 1971, pp. 134–151.

[30] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmo-
spheric Sciences, vol. 20, no. 2, pp. 130–141, 1963.

[31] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,” Science, vol. 197, no. 4300, pp. 287–289, 1977.

[32] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert, “Optimization
and applications of echo state networks with leaky-integrator neurons,”
Neural Networks, vol. 20, no. 3, pp. 335–352, 2007.

[33] A. F. Atiya and A. G. Parlos, “New results on recurrent network
training: unifying the algorithms and accelerating convergence,” IEEE
Transactions on Neural Networks, vol. 11, no. 3, pp. 697–709, 2000.

[34] C. Gallicchio and A. Micheli, “Architectural and markovian factors of
echo state networks,” Neural Networks, vol. 24, no. 5, pp. 440–456,
2011.

[35] J. B. Butcher, D. Verstraeten, B. Schrauwen, C. R. Day, and P. W.
Haycock, “Reservoir computing and extreme learning machines for non-
linear time-series data analysis,” Neural Networks, vol. 38, pp. 76–89,
2013.

[36] Z. K. Malik, A. Hussain, and Q. J. Wu, “Multilayered echo state
machine: A novel architecture and algorithm,” IEEE Transactions on
Cybernetics, vol. 47, no. 4, pp. 946–959, 2016.

[37] M.-H. Yusoff, J. Chrol-Cannon, and Y. Jin, “Modeling neural plasticity
in echo state networks for classification and regression,” Information
Sciences, vol. 364, pp. 184–196, 2016.

[38] B. Schrauwen, M. Wardermann, D. Verstraeten, J. J. Steil, and
D. Stroobandt, “Improving reservoirs using intrinsic plasticity,” Neu-
rocomputing, vol. 71, no. 7-9, pp. 1159–1171, 2008.

[39] E. R. Mansfield and B. P. Helms, “Detecting multicollinearity,” The
American Statistician, vol. 36, no. 3a, pp. 158–160, 1982.

