
Poem Generation using Transformers and Doc2Vec
Embeddings

Marvin C. Santillan
College of Computer Studies

De La Salle University
Manila, Philippines

marvin santillan@dlsu.edu.ph

Arnulfo P. Azcarraga
Colloge of Computer Studies

De La Salle University
Manila, Philippines

arnulfo.azcarraga@dlsu.edu.ph

Abstract—Poems are sequences of words that express ideas
and emotions in an imaginative style, some following strict
literary syntax or form. They are artistic expressions, and their
generation requires in-depth knowledge and mastery of language.
As such, poem generation is considered a very challenging task
in Natural Language Processing and has been attracting research
interest in the recent decade. We propose a method of generating
poems using transformers, coupled with doc2vec embeddings
in order to assess the automatically generated poems. In this
method, we first train a transformer and a doc2vec model using
a poem dataset. Then the trained transformer takes an input
text and produces several generated poems. To have an objective
basis for assessing the generated poems, we present a preliminary
attempt at measuring the quality of a machine-generated poem by
computing the cosine similarity score, referenced to the trained
doc2vec model. This score is used as a basis for choosing the
final output poem. The results show that this method ensures
good cohesion between the machine-generated poem and the
given input text. We then also explore the implication of the
transformer training to the doc2vec embeddings of its output
poems, which are shown to be more similar to poems (documents)
in the train set as training progresses. Finally, we demonstrate
how transformers can learn some poetry styles by exposing them
to poems of specific poets.

Index Terms—poem generation, transformers, doc2vec embed-
ding, pre-training.

I. INTRODUCTION

A poem is a sequence of words that expresses ideas or
emotions in a powerfully vivid and imaginative style, often
subject to some rules on syntax and literary form. Poetry,
indeed, is a literary art work whose content sometimes reflects
the ideological underpinning of society and culture. There
are various types of poems. They may follow metrical and
rhythmic patterns while others do not have strict structure but
all are considered as artistic expressions [1].

Poetry requires in-depth knowledge and mastery of language
in order to convey the intended message via semantic and
aesthetic form. Automatically creating poems is considered as
one of the challenging tasks in Natural Language Processing
(NLP) because it requires content and form understanding.
Automated poem generation is typically a subfield of Natural
Language Generation (NLG) together with applications and
problems like dialogue system, text summarization, and text
paraphrasing [2].

Automatic poem generation had been attracting interest
in the recent decade. Approaches vary from applying gram-
matical and semantic template [2], [3]; statistical machine
translation [4], [5] together with summarization techniques
[6]; use of finite state machine and unsupervised learning [7],
[8]; deep learning like recurrent neural network [9]–[11]; and
generative adversarial training [12].

In the works of [5]–[8], [10], poem generation is facilitated
by a context word or topic to which the poem to be generated
must be related. In [8] word2vec embeddings were used to
capture words related to the given topic and these words were
filtered and eventually made part of the final poem output.
Recurrent Neural Networks (RNN) based approaches leverage
on the RNN’s ability to learn content and style from the
dataset that is fed to them. Recognizing the fact that RNNs
tend to forget historical input quickly, [11] attention-based
LSTM model to capture dependencies between sentences and
thereby facilitating cohesion in the output prose. The attention
mechanism allows the network to memorize long distance
patterns making it an important ingredient in transduction
systems like poem generation.

Reference [13] exploited the use of attention mechanism and
proposed transformer architecture. It is like other transduction
models that is implemented via encoder-decoder structure
where the encoder maps sequence of representation (x1, x2,
x3,.. xn) to continuous representation (z1, z2, z3,.. zn) and given
that sequence of zi, the decoder generates output sequence
(y1, y2, y3,.. ym). However, the transformer uses stacked self-
attention and point-wise, fully connected layers to implement
its encoder and decoder. Aside from the advantage of learning
long-range dependencies effectively, transformers are also
noted to be computationally simpler than other architectures,
and its operation requires less sequential computation because
most of its computation can be parallelized.

This research explores generating poems using a transformer
and doc2vec embedding. We first discuss our methods in the
next section, then we present our experiments and results,
and the last section talks about our conclusion. The main
contributions of this research are as follows:

• Propose a method of generating poems leveraging from
a pre-trained transformer model and retraining the model
using various poem dataset.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

• Explore the use of doc2vec embedding in assessing
poems generated by a transformer, which can also be
utilized in similar text generation system.

II. METHODS

In this section, we present our methods. We first describe
our problem formulation and present our Poem generation
approach that uses a transformer and doc2vec embedding.

A. Problem Formulation

The goal of this project is to generate poems using trans-
formers. The system will accept an input text to direct the
generation of the poem. The output poem and the input text
must be related in some way. That is:

T (s) ⇒ p (1)

where T(s) is the transformer T taking input poem seed s and
producing output poem p.

B. Approach

The task requires the training of a transformer T, which will
be used to generate the output poem p with the provided text
input s. For this purpose, we will use the transformer model
of [14]. However, due to memory considerations, we opted for
the 117 million parameter version. This model is not trained
with a poem dataset but with WebText. However, advantages
can be gained from using a pre-trained model on a similar
NLP task as stated in [15]. Transformer T will then be further
trained using a poem corpus to fine tune its poem generating
capability.

Another requirement for this poem generation task is, the
input text s must be related to poem output p. To accomplish
this, a doc2vec model of [16] will be used. Doc2vec model
projects documents into a vector space where documents that
are similar will be represented by vectors which are close
to each other as stated in [17]. Fig. 1 visualizes a sample
doc2vec projection. To capture the most related poem output p,
Transformer T will then be allowed to produce several output
pi, then each pairs (s, pi) will be referenced against doc2vec
model, whichever pi whose projection has the highest cosine
similarity with the projection of s will be the final output p.

Fig. 2 depicts this overall approach of generating poems
with the Transformer and Doc2Vec referring to the trained
models using the poem dataset. Preprocessing tokenizes and
prepares input text before it can be accepted by both models.
Scoring rates the candidate output poems, as described in the
previous paragraph.

C. Dataset

Poem corpus used for training the transformer and doc2vec
models is taken from UniM-Poem dataset of [12]. UniM-
Poem was refined by excluding poems that are less than 50
characters in length. This is further divided into two dataset,
those which are 50 to 200 characters in length (short poem
dataset) and those which are above 200 characters in length
(long poem dataset), each with 58955 and 32381 number of

Fig. 1. Sample doc2vec document vector projection showing similar docu-
ments projected closer to each other.

Fig. 2. Diagram of generating poems using transformer and doc2vec
embedding.

poems respectively. Detailed information about these datasets
is listed in Table I.

Another dataset used for the experiments in this research is
the poem dataset from poetryfoundation.org downloaded from
kaggle.com. This dataset is composed of 506 poems. However,
only those from poet Sir Thomas Wyatt (22), Sir Philip Sidney
(42), Edmund Spenser (34), and John Donne (41) were used.
Added to this pool is the sonnets of Shakespeare (154). This
dataset (poet dataset) has a total of 293 poems.

All datasets used for training any of the transformers have
their individual document delimited by ”<endoftext>” token,
this will also be used to indicate a poem chunk in the output
text of the transformers.

TABLE I
DETAILED INFORMATION OF DATASETS EXTRACTED FROM UNIM-POEM

DATASET.

Dataset #Poem #Line/Poem #Char/Line #Word/Line
long poem 32381 7.85 37.82 6.91
short poem 58955 4.57 28.61 5.64

D. Model Training

a) Transformer: Several transformers were trained using
different datasets at end with the experiments conducted on
this research. All transformer training used the same hyperpa-
rameters, such as learning rate of 0.00002 and batch size of 2.
Adam was used as optimizer. A copy of the model was saved
every 100 steps. The number of training steps for each model
varies and is specified in each experiment conducted.

b) Doc2Vec: Gensim Python library was used for imple-
menting the doc2vec models. All doc2vec models used Para-
graph Vector Distributed Bag-Of-Words (DBOW) algorithm
during training. Vector size was set to 300, words that appear
only once on the training corpus were ignored, and window
size was set to 15, as suggested in [18]. The number of training
epochs varies per model and is mentioned for each experiment
conducted. Other hyperparameters used the default values as
provided by the Gensim library.

III. EXPERIMENTS AND RESULTS

A. Transformer Generated Poems

Three transformers were trained using long poem dataset,
short poem dataset, and a dataset composed of a single poem
from long poem dataset (single poem) for 1500 steps, 1900
steps, and 100 steps respectively. The models were allowed
to generate 10 samples of up to 50 tokens each. Then sam-
ples were split if a delimiter token appears as a substring.
Corresponding doc2vec models were also trained using each
mentioned datasets for the assessment of the output poems.
Both doc2vec models for the long poem and short poem were
trained for 1000 epochs, while for the single poem was only
trained for 400 epochs. Using the input poem seed in Fig. 3,
the corresponding output poem for each transformer appears
in Fig. 4, 5 and 6. Since the transformer model is pre-
trained (base model) and already capable of generating text,
its output was also generated for reference. Fig. 9 shows
the base model’s output. All outputs appear truncated as a
consequence of the generation set-up.

Fig. 3. Input poem seed.

Fig. 4. Output of the long poem transformer.

Fig. 5. Output of the short poem transformer.

Fig. 6. Output of the single poem transformer.

Fig. 7. Another output of the single poem transformer using a different input
poem seed.

Fig. 8. Lone poem on single poem dataset.

Fig. 9. Output of the base model transformer.

The input poem seed in Fig. 3 is about life and contains
the word “happiness”. All transformer models managed to
generate poem, with the base, short poem, and long poem
models also mentioning the word “happiness” signifying relat-
edness between the input and output poems. The base model’s
output, however, made reference to “Albert Einstein” which is
doubtful to be part of a poem text.

The single poem transformer, on the other hand, seems to
be talking about an entirely different topic. A closer look at
its outputs shows that they are alike regardless of the input
poem seed used. This suggests that it cannot generalized and
that it is tied to a variation of a particular output. Fig. 7
shows another output of the single poem transformer using
a different seed. A review of its training statistics show that
at step 100 of its training, the loss value plateaus at 0.01150
signifying overfitting, and indeed, all of its outputs are very
similar to the sole poem in its training dataset as shown in
Fig. 8.

Examining the length of the transformers’ output, it doesn’t
necessarily follow that the long poem transformer will pro-
duce longer poems than that of the short poem transformer,
as evidenced by the sample. This might be because of the
relatively small number of training iteration steps for both of
the transformers and that it is not enough for the transformers
to learn the average number of characters per poem as reflected
by the corpus on their respective dataset.

It is noticeable that the structure of the output of the
base model is different from the other models. Each line
is lengthy and sentence-like, whereas most poem text has
a phrase-like structure. Arguably, the transformers retrained
using poems are more poetic than the base model.

Table II shows the top five outputs of the long poem
transformer on the same input poem seed in Fig. 3. The
scores are based on the cosine similarity of the input to each
respective output based on their projection to the doc2vec
model of the long poem dataset. All output relates to the
input since most of them are about life and happiness. The
top output has a large margin compared to the other outputs.
This is primarily because of the word ‘happiness’ which is
common to the input and the output poem.

B. Transformer Training Progress

A good language model captures the probability of the
words in the target language. Just like other transduction mod-
els, a transformer should generate text that is more similar to
their training dataset as the training progresses. This indicates
that the model is indeed learning from its dataset. To show this
in our poem transformer, a copy of the model was evaluated
at every 500 steps of training. Sample outputs were generated
using three different input poem seeds. Then, each output
was referenced to its respective doc2vec model. The cosine
similarity score of the output to the most similar document
in the dataset was calculated and averaged over the number
of each input poem seeds. The graph of the result appears
in Fig. 10. The similarity score on step zero represents the

TABLE II
LONG POEM TRANSFORMER’S SAMPLE OUTPUT AND RATING.

Output Poem Rating
spread it everywhere
live to the joys hence forth
live to health naught but happiness

0.43552

to suffer not of frost-cold
much in heaven’s care
will follow life and shall gird
it enfold this
in a garden of foliage

0.27648

across all three forms of life
what can be done for the good which you have received
what can be left aside to say
she’s gone to sleep

0.26391

the bliss endless beyond
oh dawn incarnate hearts of wine
where the exultation of life seems to hail
oh dawn incarnate hearts and hearts and hearts

0.23559

we do not speak for truth or created being
but these words that i say to you
is orthodox wisdom of man’s nature
of man his true nature

0.23451

score of the base model. The graph shows a trend of increased
output to dataset similarity as the training progresses.

Fig. 10. Transformer’s Output-Dataset similarity scores.

C. Transformer Poet

Can a transformer learn style from a specific poet? To
check, poems made by several poets were extracted from the
kaggle poem dataset and were used to train a transformer.
The top poets with the largest number of poem on the poem
dataset were used; these are Sir Thomas Wyatt, Shakespeare,
Sir Philip Sidney, Edmund Spencer, and John Donne. One
transformer was trained for each poet for 300 steps and
respective doc2vec model for 400 epochs. Then, a poem was
generated for each using three input poem seeds. The output
poem of each poet transformers using one of the input poem
seed appears in Fig. 11, 12, 13, 14 and 15. Also, a transformer
and a doc2vec model were trained using poems from all of the

poets for 1500 steps and 1000 epochs, respectively. Its output
sample appears in Fig. 16.

Fig. 11. Wyatt transformer’s sample output.

Fig. 12. Shakespeare transformer’s sample output

Fig. 13. Sidney transformer’s sample output.

All poet transformers were able to generate output that is
poem-like. They were able to learn how to use new lines
and punctuation. It is interesting to note that certain poem
style transpired in some of the output. In Fig. 12, a rhyming
words at the end of the first and third lines appeared. This
is a typical characteristic of Shakespearean sonnets. Also, in
Fig. 14, the word ‘THENOT’ appeared. Thenot is actually a

Fig. 14. Spenser transformer’s sample output.

Fig. 15. Donne transformer’s sample output.

character in one of Spenser’s eclogues; a poem usually cast
as pastoral dialogues. However, all outputs seem less related
to the input poem seed which is about “life and happiness”.
Most talked about love and god. This might be because of the
small training dataset used that may only contain poems that
are about specific category of topics.

We wanted to check if each transformer is indeed producing
poems that are similar to the poems of the poet used in its
training. That is, can we identify the output of each transformer
as belonging to the poet in their respective datasets? For this
purpose, we used the doc2vec model trained using poems
of all the poets. Using three input poem seeds, we allowed
each poet transformer to produce several output, then checked
which among the document in the doc2vec model has the
highest cosine similarity with each output. Then we counted
to which poet that particular document belongs to. We tallied
the results and computed for the hit-rate by dividing it with
the total number of output generated by each poet transformer.
We then normalized the hit-rate by dividing it with the total

Fig. 16. All poet transformer’s sample output.

TABLE III
NORMALIZED HIT-RATE OF POET TRANSFORMER’S OUTPUT WITH THE

POET’S POEM IN THE DATASET.

Normalized Hit-Rate
Transformer Sidney Donne Spenser Wyatt Shakespeare
Sidney 0.00595 0.00136 0.00408 0.00505 0.00289
Donne 0.00325 0.00499 0.00134 0.00103 0.00384
Spenser 0.00384 0.00000 0.01328 0.00000 0.00251
Wyatt 0.00397 0.00136 0.00408 0.01768 0.00162
Shakespeare 0.00106 0.00108 0.00196 0.00606 0.00462
Shakespeare2 0.00000 0.00000 0.00151 0.00117 0.00599

number of document that each poet has in the training dataset
of the doc2vec model. The results appear in the Table III.

Table III shows that the majority of the poet transform-
ers are indeed producing output that can be identified as
belonging to its own dataset than to other poets (results in
bold). However, Shakespeare transformer output seems to be
more similar to Wyatt’s poem. Looking at the training details
of the poet transformers, all are uniformly trained for 300
steps, but Shakespeare transformer has the highest number
of training poems. To compensate, we further trained the
Shakespeare transformer for another 300 steps and rerun the
experiment. The result also appears in Table III with the label
of “Shakespeare2”, and this shows that the transformer is now
producing more similar output with the Shakespeare poems.
Over-all, it can be said that the transformers are producing
poems that are similar to the poems of the poet used in their

respective training, therefore their output can be identified as
belonging to their corresponding poet.

IV. CONCLUSION AND FUTURE RESEARCH

In this research, we have presented a method of generating
poems from given input poem seed using a transformers and
a doc2vec embeddings. This method leverages from a pre-
trained model, which is then finetuned using poem dataset and
uses cosine similarity score from a doc2vec model to assess
generated poem output. The results show that this method
ensures good cohesion between the output and the given input
text. We also demonstrated that a transformer can capture the
style of the poem eminent in its training set and that given
enough training, transformers can produce output that can be
identified as belonging to a particular poet.

In the future, we would like to apply this method of
generating poems in a different language domain and consider
more qualitative assessment, like meter and rhythm, of the
transformers’ output poems. It is also interesting to investigate
the behavior of doc2vec embedding of transformers’ output as
an indicator of train overfitting.

REFERENCES

[1] C. Melin, “Between the lines: When culture, language and poetry meet
in the classroom,” Language Teaching, vol. 43, no. 3, p. 349–365, 2010.

[2] H. Gonçalo Oliveira, “Automatic generation of poetry: an overview,”
2009.

[3] H. G. Oliveira and H. Gonc, “PoeTryMe : a versatile platform for
poetry generation PoeTryMe : a versatile platform for poetry generation,”
Computational Creativity, Concept Invention, and General Intelligence,,
vol. 1, no. November, pp. 1–7, 2015.

[4] M. Zhou, L. Jiang, and J. He, “Generating {C}hinese Couplets and
Quatrain Using a Statistical Approach,” in Proceedings of the 23rd
Pacific Asia Conference on Language, Information and Computation,
Volume 1. Hong Kong: City University of Hong Kong, dec 2009,
pp. 43–52. [Online]. Available: https://www.aclweb.org/anthology/Y09-
1006

[5] J. He, M. Zhou, and L. Jiang, “Generating Chinese Classical Poems
with Statistical Machine Translation Models,” in AAAI, 2012.

[6] R. Yan, H. Jiang, M. Lapata, S.-d. Lin, X. Lv, and X. Li, “I, poet: Auto-
matic Chinese poetry composition through a generative summarization
framework under constrained optimization,” in IJCAI International Joint
Conference on Artificial Intelligence, 2013, pp. 2197–2203.

[7] E. Greene, T. Bodrumlu, and K. Knight, “Automatic Analysis of
Rhythmic Poetry with Applications to Generation and Translation,”
in Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing. Cambridge, MA: Association for
Computational Linguistics, oct 2010, pp. 524–533. [Online]. Available:
https://www.aclweb.org/anthology/D10-1051

[8] M. Ghazvininejad, X. Shi, Y. Choi, and K. Knight, “Generating
Topical Poetry,” in Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Austin, Texas: Association
for Computational Linguistics, nov 2016, pp. 1183–1191. [Online].
Available: https://www.aclweb.org/anthology/D16-1126

[9] X. Zhang and M. Lapata, “{C}hinese Poetry Generation with Recurrent
Neural Networks,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing ({EMNLP}). Doha, Qatar:
Association for Computational Linguistics, oct 2014, pp. 670–680.
[Online]. Available: https://www.aclweb.org/anthology/D14-1074

[10] X. Yi, R. Li, and M. Sun, “Generating Chinese Classical
Poems with RNN Encoder-Decoder,” apr 2016. [Online]. Available:
https://arxiv.org/abs/1604.01537

[11] Q. Wang, T. Luo, D. Wang, and C. Xing, “Chinese Song Iambics
Generation with Neural Attention-based Model,” apr 2016. [Online].
Available: https://arxiv.org/abs/1604.06274

[12] B. Liu, J. Fu, M. P. Kato, and M. Yoshikawa, “Beyond
Narrative Description: Generating Poetry from Images by
Multi-Adversarial Training,” apr 2018. [Online]. Available:
https://arxiv.org/abs/1804.08473

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” jun
2017. [Online]. Available: https://arxiv.org/abs/1706.03762

[14] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language Models are Unsupervised Multitask Learners,” 2018.

[15] A. Radford, “Improving Language Understanding by Generative Pre-
Training,” 2018.

[16] Q. V. Le and T. Mikolov, “Distributed Representations of
Sentences and Documents,” may 2014. [Online]. Available:
http://arxiv.org/abs/1405.4053

[17] G. Fisher, M. Israni, and Z. Robert, “Exploring Optimizations
to Paragraph Vectors,” CS224n: Natural Language Processing
with Deep Learning, pp. 1–7, 2017. [Online]. Available:
https://web.stanford.edu/class/cs224n/reports/2760664.pdf

[18] J. H. Lau and T. Baldwin, “An Empirical Evaluation of doc2vec with
Practical Insights into Document Embedding Generation,” jul 2016.
[Online]. Available: https://arxiv.org/abs/1607.05368

