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Abstract—In this study, we propose a novel method of ac-
quiring the latent space (composed of task-specific and domain-
specific subspaces) of data. The layered neural networks acquire
the effective features for a given task in its internal layers as a
latent space. If the acquired latent space is relevant only to the
task and invariant to the data domain, it can be adapted to a
new domain. Therefore, our goal is to acquire the latent space in
which all the features relevant to the task are contained in a task-
specific subspace, whereas all the features relevant to the data
domain are contained in a domain-specific subspace. The method
iterates two simple training steps. First, a classifier acquires
a task-specific space in its final layer through a conventional
supervised learning. Whereas a domain-specific space is obtained
as its complementary subspace in the complete latent space. The
latter is realized by an autoencoder training using both subspaces.
In the second step, two input data are used, and two task-
specific representations and two domain-specific representations
are exchanged to generate two composite data. Further training
of the classifier using the composite data forces each subspace
to be more specific to either the task or the domain. Computer
experiments are conducted on three famous datasets of hand-
written digits as three different domains. The visualization of
the obtained task-specific space shows the clusters corresponding
to the digit classes, whereas the domain-specific space shows
the areas corresponding to the datasets. The domain adaptation
to an unlearned dataset using the task-specific representation
obtained by our method demonstrates a higher performance than
an alternative method.

Index Terms—latent space decomposition, composite data,
domain invariance, Wasserstein GAN, domain adaptation

I. INTRODUCTION

Supervised training of neural networks generally requires
a large amount of data to attain a high performance in a
recognition task. However, it is often difficult and costly to
obtain an adequate amount of the labeled data in real world
problems. One of the solutions is developed as an unsupervised
domain adaptation. The basic idea is to find a similar but
different data domain for which the label is easier to obtain for
the same task. If it is found, a neural network is trained by the
labeled data in the found domain. Then, the features obtained
in the internal layers are expected to be effective also for the
original problem with the same task. For this adaptation to
work well, the acquired features should be relevant only to
the task and be invariant to the data domain. Therefore, the
extraction of domain-invariant features is indispensable for the
domain adaptation. Not limited to the domain adaptation, the

domain-invariant representation is effective to cope with the
variations of the data distribution referred to as the domain
shift[1].

The current study proposes a novel method to obtain the
domain-invariant representation. II introduces the recent re-
lated works. The proposed algorithm is described in III, and
it is applied to the benchmark datasets in IV to evaluate its
effectiveness.

II. RELATED STUDIES ON TASK-SPECIFIC
DOMAIN-INVARIANT REPRESENTATION

The acquisition of a domain-invariant representation of data
is indispensable for unsupervised domain adaptation. A task-
specific representation without detrimental variations in the
data is important in machine learning. Some recent related
studies are briefly introduced in the context of the domain
adaptation in II-A, and the representation learning in II-B.

Let us define some important terms and abbreviations to
simplify the following descriptions. Data x is mapped by the
encoder E to its internal representation z. This is passed to
classifier C to output the class label y. This indicates that z =
E(x) and y = C(z). The decoder D is an inverse mapping of
E which referred to as x = D(z). The objective of this study is
to obtain an effective z for classification using C. All of E,C,
and D are given by deep neural networks. These networks are
composed of convolution, fully connected or deconvolution
layers in the following studies.

A. Domain-invariant representation for domain adaptation

Domain adaptation is to utilize a classifier composed of E
and C through z, which is trained by data x in one domain, in
a similar domain. The former is denoted as a source domain
whereas the latter is denoted as a target domain. It is useful
when it is difficult to obtain an adequate amount of labeled
data for the training in the target domain.

One of the main unsupervised approaches is to obtain E
and z, which are commonly useful in both domains[2], [3],
[4]. M. Ghifary et al.[3] obtained a shared representation z
by the trainings of the classification in a source domain and
of the reconstruction in a target domain. Moreover, because
the data distributions in both domains are expected to be
similar, the similarity between both distributions in z is used
as the measure to be minimized by the unsupervised training.
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E. Tzeng et al.[5] used maximum mean discrepancy (MMD)
proposed by A. Gretton et al.[6] to measure the distance
between the distributions in the final layer of E. In addition,
M. Long et al.[7] extended the definition of MMD to multiple
kernels, and applied it to multiple layers. Y. Ganin et al.[8]
introduced an adversarial training between E and a domain
classifier in order to exclude any domain-relevant features from
z. Moreover, the adversarial discriminative domain adaptation
(ADDA) proposed by E. Tzeng et al.[9] introduced a domain
encoder instead of sharing one encoder by both domains to be
trained in an adversarial way[10] against a discriminator that
measures the distance between source and target distributions
in the common z.

The above methods assume a source as a single domain
whereas our method does not, and the effectiveness for a
source with multiple domains is demonstrated in IV.

Another idea is to directly transform the data x between the
two domains. K. Bousmalis et al.[11] proposed the generative
adversarial networks (GAN)-based method to generate a target
data from a source data with the same label y. Moreover,
J. Hoffman et al.[12] used the CycleGAN-based method to
obtain a transformation in both directions between a source
and a target, and used the label y of the source data to the
corresponding target data.

B. Task-specific representation without detrimental variations

There are many attempts to learn the representation without
detrimental variations in the data. Data variations such as a
noise or a lighting condition in a photo image are both irrele-
vant and detrimental or nuisance factors for the classification.
The following have been proposed to discard such factors s
contained in the x, not to be mapped to z. Here, s is assumed
to be known in advance. The variational auto-encoder[13]-
based variational fair auto-encoder by C. Louizos et al.[14]
forces the distribution in z to be independent of s based on
the MMD. In an adversarial approach proposed by Q. Xie
et al.[15], E learns to exclude the information on s through
an adversarial training against a discriminator that conversely
infers s from z. Whereas A. Jaiswal et al.[16] proposed an
unsupervised adversarial training to obtain the representation
that is divided into invariant factors and nuisance factors under
the constraint of mutual independence.

Our proposed method is a straightforward training of E,C,
and D to obtain a task-specific representation. The key idea
is to generate composite data from the roughly decomposed
representations to use them for the further fine decomposition
into two subspaces.

III. PROPOSED METHOD OF LATENT SPACE
DECOMPOSITION

A. Basic idea of the decomposition through training by com-
posite data

Let us consider a task to classify data x to class y. Then, a
classifier needs to extract effective features from x. Here, we
are making reference to the lower dimensional representation
z of data x from which x can be reconstructed as a complete

latent representation z of x. Both the encoder E and the
decoder D are defined in the same way as in II. Given the
classification task, the goal of the proposed algorithm is to
decompose z into two subspaces: task-specific zT and domain-
specific zD subspaces in which all the features necessary for
the classification are included in zT , and not in zD. The
decomposition indicates z = zT × zD, where zD is the
complement of zT , and does not contain any feature relevant to
the task. However, any detrimental factors should be contained
in zD.

The proposed training for the decomposition iterates the fol-
lowing two steps (Fig. 1). The first step of the decomposition
is described in III-B. Task-specific zT and its encoder ET are
acquired through a supervised training of the classification,
and the domain-specific zD and its encoder ED are acquired
through a training of the reconstruction of x from zT × zD.
III-C describes the second step to enforce the independence
between zT and zD. This indicates that all the task-related
features should be contained in zT and not in zD. The
additional training of the classifier uses the composite data
that are generated from zT and zD obtained in the first step.
The iteration of the above two steps leads to the further
independence of the two subspaces. Finally, the obtained task-
specific zT and its encoder ET are expected to possess a
generalization ability for the task, and be effective for the
adaptation to a new domain. However, zD is supposed to
contain factors that are irrelevant or detrimental to the task
and related to the domain.

III-D describes the unsupervised domain adaptation based
on the obtained zT . ET is used as a source encoder, and
a target encoder for any new domain is acquired by the
adversarial training on the common space zT .

B. Rough decomposition by the training of the classification
and the reconstruction

First step of the training for rough decomposition is shown
in Fig. 1(a). The data x is input to both encoders ET and ED

to be mapped to zT and zD respectively. The classifier C gets
zT to output y whereas the decoder D gets both zT and zD
to reconstruct the original x.

The loss functions Lc and Lr (for the classification and
reconstruction respectively) to be minimized for the training
of ET , ED, C, and D are given by

Lc = −E(x,y)∼P (x,y)[

K∑
k=1

1[k=y] logC(ET (x)) ] , (1)

Lr = Ex∼P (x,y)[|x−D(ET (x), ED(x))|2] , (2)

where P (x, y) is the data distribution on which the expectation
E is defined, and 1[k=y] is indicated to take the output value
of C for only the correct class y. K is the number of classes.
The classification loss Lc is given by the cross entropy, and the
reconstruction loss Lr is given by the L2 norm. Therefore, the
total loss for the training is given by the weighted summation
of αLr + βLc with the hyper parameters α and β.



(a) First step (b) Second step
Fig. 1. Two steps of the training in the proposed method (a) First step to acquire the task- and domain-specific spaces zT and zD respectively by the
supervised trainings of the classification by ET and C and of the reconstruction by ET , ED, and D (b) Second step for higher separability by the additional
training of the classifier using the composite data x̃ generated from x1 and x2

C. Fine decomposition by the additional training of the clas-
sification using artificial composite data

The second step enforces the separation of task-relevant
and task-irrelevant features by further training the classifier
C and the task-specific encoder ET . The key idea is to use
artificial composite data for the training. The composite data
is generated by the decoding from zT ×zD, where zT and zD
are encoded from two different inputs: x1 and x2 respectively.
If the composite data successfully inherits the task-specific
features from x1 and the domain-specific features from x2,
then it is expected to possess the same zT with x1 and the
same zD with x2.

Fig. 1(b) shows the training by the composite data in the
second step. Two different data x1,x2 ∼ P (x, y) are input
to encoders ET and ED respectively, and mapped to zT1 ≡
ET (x1) and zD2 ≡ ED(x2). Then, the composite data x̃ is
generated by the decoder D as D(zT1, zD2). The composite
data x̃ is again input to the task-specific encoder ET , and
mapped to z̃T ≡ ET (x̃). In order to enforce that x̃ inherits
the task-specific features only from x1 through zT1 and not
from x2 through zD2, the classifier C is trained to output the
same class with x1, and encoder ET is trained to map to the
same point zT1.

Therefore, the loss functions L̃c and LzT to be minimized
for the additional training of C and ET are given by

L̃c = −E(x̃,y1)[

K∑
k=1

1[k=y1] logC(ET (x̃)) ] , (3)

LzT = Ex̃[ |zT1 − ET (x̃)|2 ] , (4)

where y1 is the correct class of x1. The total loss is given
by the weighted summation of γL̃c + δLzT with the hyper
parameters γ and δ. The training of C and ET by the back-
propagation for x̃ should not propagate to the D and ET which
generate x̃.

The two steps of the training are iterated. To ensure the
reconstruction accuracy in the first step, a three-times longer
training is taken for the first step in the computer experiments
in IV.

D. Domain adaptation using task-specific space zT

The main purpose of the above decomposition is to obtain
the task-specific space zT for the classification task indepen-
dent of the domain. The obtained zT is used for the adaptation
to a different domain.

Several approaches of the domain adaptation are proposed to
train the encoder ET in the adversarial way as described in II.
Among these approaches, adversarial discriminative domain
adaptation (ADDA) by E. Tzeng et al.[9] is explained in
detail with the loss function being used in the training. This
is adopted in our model. This indicates that the encoder ET

obtained in III-B and III-C is used as a source encoder, and it
is trained to acquire the target encoder ET using the adversarial
training against the discriminator D.

The target encoder ET is trained to encode the data x in a
new domain (i.e., a target domain) to the same task-specific
space zT . The initial state of ET is made the same as source
encoder ET . Therefore, the distribution on zT mapped by ET
according to the target data distribution (x ∼ Pt(x)) differs
from that of the source data x. The discriminator D measures
this difference in the two distributions to distinguish the two
domains whereas the target encoder ET is trained to decrease
the difference.

The loss function of this adversarial training for the target
encoder ET to be minimized and for discriminator D to be
maximized is given by

LDA = Ex∼P (x)[D(ET (x))]− Ex∼Pt(x)[D(ET (x))]
− λ(|∇ẑD(ẑ)|2−1)2 , (5)

where P (x) and Pt(x) are the distributions of the source data
x and the target data x respectively. ẑ is an internal point in
zT defined by ẑ ≡ εET (x) + (1− ε)ET (x), ε ∈ U [0, 1].



In the following adversarial training, the Wasserstein dis-
tance is used for the loss according to Wasserstein GAN[17].
Moreover, the improved method WGAN-GP[18] is applied in
the experiments in IV. In addition, the hyper parameter is set
to λ = 10, and the training for discriminator D takes five
times longer than that for ET .

IV. COMPUTER EXPERIMENTS

The proposed method is applied to a well-known classifica-
tion problem of hand-written digits image data, where a task
is a classification into ten classes. Three different datasets are
used as the three domains.

First, the method is applied to the mixture of two datasets.
The acquired two subspaces zT and zD are analyzed by the
generated composite data, and the visualizations of the data
distributions in each subspace using t-SNE[19] are conducted
in IV-C. Thereafter, the obtained zT is used for an adaptation
to the third dataset by the ADDA in IV-D, and the classification
accuracy is compared to an alternative method in IV-E.

A. Three datasets of hand-written digits

The hand-written digit image data are obtained from the
following three datasets: MNIST[20], USPS, as well as
SVHN[21], and they are used for the classification into ten
digits of zero to nine. Seven hundred data for each digit (i.e.,
7,000 data in total) are obtained from each dataset for the
training. Because the image data are colored in the SVHN
whereas they are in a gray scale in the MNIST and the USPS,
three identical images are fed into the RGB channels for the
latter datasets. The image size is normalized to 32×32 pixels.

B. Settings of the neural networks

The neural network structure of each encoder ET , ED, and
ET is based on LeNet[20], and the number of output units (i.e.,
the dimension of each subspace) is set to 500. The structures
of both the classifier C and the discriminator D are fully
connected three-layered networks with the number of units at
each layer being 500− 500− 10, and the activation function
is rectified linear (Relu). The network of decoder D has one
fully connected layer and two deconvolution layers.

The training of all the above networks is optimized by
Adam[22], and the training rate is 0.001. The batch size is 128,
and all the training data are input once per each epoch in a
randomized order. The results obtained after 200 epochs of the
training are shown below. The values of the hyper parameters
in the proposed method are α = 0.1, β = 100, γ = 1 and
δ = 10.

C. Decomposition into two subspaces

The training data are sampled from both the USPS and the
SVHN in the experiment.

First, the reconstructed data after the training are shown
in Fig. 2. Figs. 2(a) and (b) show the original test input
data and their reconstruction from the decoder D for USPS
and SVHN respectively. Each data is well reconstructed in
both color and shape. Whereas Fig.2(c) shows the composite

data that are decoded from the task-specific representation of
the USPS data and the domain-specific representation of the
SVHN data in their corresponding positions in (a) and (b).
The obtained images indicate that the subspaces zT and zD
are highly specific to task and domain respectively.

Thereafter, the data distribution in each 500-dimensional
subspace is visualized in a two-dimensional plane using t-
SNE[19]. The test data for the visualization are sampled from
the USPS and the SVHN data, 100 data for each of ten classes
from each dataset.

Fig. 3 shows the distribution in the domain-specific sub-
space zD. The two clusters that correspond to the two datasets
of the USPS and the SVHN are found in Fig. 3(a). However,
no structure corresponds to the class found in (b). Therefore,
the domain-specific subspace zD possesses features related to
the dataset (i.e., the domain); however, few of the features are
relevant to the classification.

The distribution in the task-specific subspace zT is visual-
ized in IV-D with the third domain data before and after the
domain adaptation.

D. Adaptation to a new domain

Thereafter, the obtained zT is used for an adaptation to the
third dataset, the MNIST by ADDA.

The visualization of the data distribution in zT using the
t-SNE is shown in Fig. 4. One thousand test data of the
MNIST are added to those of the USPS and the SVHN. Fig. 4
shows the distribution of 1,000 data from three datasets in their
common zT . The upper row (a)-(c) visualizes the zT that is
obtained by an ordinary classifier training, while the lower
row (d)-(f) shows the zT that is obtained by the proposed
method. The left and middle columns ((a), (b) and (d), (e))
are the distributions mapped by the source encoder ET before
the adaptation, while the target data distribution in the right
column ((c) and (f)) is mapped by the target encoder ET after
the adaptation. The color of the data indicates the dataset in
the left and right columns ((a), (c) and (d), (f)), while the
color indicates ten different digits in the middle column ((b)
and (e)).

First, the comparison between the upper and lower figures
shows that the clusters are formed for each class of digit (e)
but not for each dataset (d), especially in the proposed method.
The difference is clearly seen for SVHN, comparing (a) and
(d). Moreover, within the cluster of each digit class, three
regions are formed, corresponding to three datasets in (b) and
(e), especially for digits ‘1’, ‘2’ and ‘8’.

Second, the mappings by the target encoder ET after the
adaptation (in both (c) and (f)) show that each class of
target dataset of the MNIST becomes overlapped with the
corresponding cluster of the source datasets because of the
adversarial training in ADDA.

E. Comparison of classification accuracy after adaptation

Evaluation of the domain adaptation is given by the clas-
sification accuracy in the target domain. In addition to the
adaptation from the source USPS and SVHN to the target



(a) x1 and D(ET (x1), ED(x1)) for x1 ∈ USPS (b) x2 and D(ET (x2), ED(x2)) for x2 ∈ SVHN (c) D(ET (x1), ED(x2))

Fig. 2. Output images from decoder D after the training. (a) Input (left) and its reconstruction (right) for the USPS data. Each row of 5×10 images corresponds
to class y = 0, . . . , 9. (b) Input (left) and its reconstruction (right) for the SVHN data (c) Composite data from the USPS in (a) for zT = ET (x1) and the
SVHN in (b) for zD = ED(x2)

(a) Two clusters
corresponding to two datasets

(b) No cluster for each class

Fig. 3. Visualization of the data distribution on zD using t-SNE. (a) Colored
by each dataset. The USPS data are shown in blue whereas the SVHN data
are shown in orange. (b) Colored by each class. Ten classes are indicated by
ten colors.

MNIST in IV-D, the other two ways of adaptation: USPS,
MNIST → SVHN, and MNIST, SVHN → USPS are studied.
The UAI by Jaiswal et al.[16] is compared to the proposed
method as an alternative approach to obtain the domain
invariant representation zT .

Fig. 5 shows the classification accuracy in the target domain
during the 200 epochs of the training by ADDA from the
source USPS and SVHN to the target MNIST. Three methods
(a classifier training, UAI, and our method) to obtain zT
are compared. The accuracy increases during ADDA in our
method whereas it decreases in the other two methods. Ten
trials of ADDA experiments show the same tendency. The
obtained results show that the domain invariant representation
zT is an essential requirement for domain adaptation based on
the distance between the data distributions, and our method
provides a more effective representation for the task, particu-
larly when the source domain is not single.

Table I shows the classification accuracy obtained for three
ways of adaptation, comparing a simple classifier training, the

UAI, our method with only the first step, and our method with
the iterative two steps. The accuracies before and after the
adaptation are indicated by the arrow. A simple average of the
maximum and the minimum accuracies among the ten trials is
shown with the deviation from the average. The improvement
by the adaptation is significantly seen in our proposed method.
Though our method fails when it is without the second step
of the training in the case of MNIST, SVHN → USPS, it
(our method) never fails in any trails with the iteration of
two steps, and never shows a drop in the accuracy during the
ADDA training that is found in the other methods in Fig. 5.

V. CONCLUSION

A novel method has been proposed to obtain the domain
invariant representation by layered neural networks. The la-
tent representation is decomposed into domain-invariant and
domain-specific subspaces, and the composite data generated
from the two subspaces are used for further fine decom-
position. Therefore, the domain-invariant representation is
extracted even if the training data are sampled from multiple
domains. The computer experiments demonstrate the effective-
ness by the classification accuracy after the domain adaptation.
The subsequent steps include the extension of the proposed
method to multiple target domains and its application to the
real world problems.
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