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Abstract—Collaborative filtering (CF) is one of the most
effective approaches for recommender systems by exploiting user-
item behavior interactions. However, in real applications, the
rating matrix is usually sparse, causing a poor performance.
Numerous CF methods tend to incorporate the side information
for the enrichment of priors. Cross-domain recommendation is
an alternative to alleviate these two problems by referring to
the knowledge of relevant domains. Due to the sparsity of the
ratings and side information, the resulting latent factors might
not be effective as expected. In this paper, we incorporate both
the side information and deep knowledge transfer in CF models.
A general architecture of deep transfer collaborative filtering
with geometry preservation (DTCFGP) is proposed by integrating
cross-domain collective matrix factorization, deep feature learn-
ing and the graph modeling. We exhibit a instantiations of our
architecture by employing non-negative matrix tri-factorization
and stacked denoising autoencoder (SDAE) in both source and
target domains, where the common latent factors are taken as a
bridge between domains due to its across-domain stability and
data geometric structure is evaluated by using a nearest neighbor
graph modeling. Extensive experiments on various real-world
datasets demonstrate the effectiveness of our proposed approach
in comparison to state-of-the-art approaches.

Index Terms—recommendation, collaborative filtering, deep
learning, transfer learning, non-negative matrix tri-factorization

I. INTRODUCTION

Recommendation becomes more important and draws much
more attention in current information-explosion era. A great
number of classical recommendation methods have been pro-
posed during the last decade, which could be largely classified
into two categories: content-based methods and collaborative
filtering (CF) based methods [32]. Content-based methods
consider user profile or item content information for rec-
ommendation while CF-based methods ignore the content
information and utilize the user’s past activities or preferences
for recommendation. Thus, CF-based methods are more likely
to be selected for real recommendation applications owing to
a better performance.

Matrix factorization techniques are the main cornerstone,
which can learn effective latent factors for users and items

*Equal contribution, joint first authors.
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from the rating matrix ( [6], [18], [29]). Moreover, neural CF
methods are recently designed by using neural networks to
learn the interaction function from the original data ( [7], [13]).
However, both matrix factorization and neural CF methods
suffer from two main issues: data sparsity and cold start.
When the historical data is sparse, it is hard to achieve a
satisfactory performance by using these methods. On the other
hand, before acquiring the ratings assigned by a large number
of users, we are unable to implement the recommendation.

In order to overcome these problems, one solution is to
integrate CF with the side information to exploit piror features
( [33], [34]), where the side information can be either utilized
as a regularization [6] or tightly coupled with CF by using
deep learning ( [20], [39]). These hybrid methods seek to
combine the side information and CF-based methods for a
better performance. Nevertheless, due to the sparsity of the
ratings as well as side information, the resulting latent factors
might not be effective as expected [3].

Another solution is to address these problems by transfer-
ring or learning the knowledge from relevant domains to the
current domain (called target domain) and then utilizing cross-
domain recommendation techniques [14]. In real applications,
we can track the same user’s participation in a couple of
recommendation systems to acquire various information in
different domains. Due to the factorization on a sparse rating
matrix, it is better to use deep transfer structures to learn
effective latent factors. It does improve the recommendation
performance in the target domain by deep cross-domain learn-
ing ( [15], [21]). However, no prior work has tightly integrated
cross-domain collective matrix factorization and deep structure
for recommendations.

Furthermore, from the angle of geometric structure, the
original data samples may be randomly drawn from a latent
distribution expanded by a low-dimensional manifold embed-
ded in a high-dimensional space [2]. This geometric structure
indicates that close samples are more likely to be assigned
identical labels while far samples are assigned different labels.
This kind of geometry should be preserved when the common
latent factors are taken as the bridge for knowledge transfer
[24]. Otherwise, the transfer learner is incapable of estimating
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labels smoothly.
In this paper, we attempt to integrate cross-domain collec-

tive matrix factorization and deep structure for recommenda-
tion, where we minimize the variation of the geometric struc-
ture during the knowledge transfer. A general architecture of
deep transfer collaborative filtering with geometry preservation
(DTCFGP) is proposed by integrating cross-domain matrix tri-
factorization and deep learning, where the geometric structure
is evaluated and preserved via graph modeling.

Deep structure in DTCFGP deals with both the ratings
and the side information to achieve effective latent repre-
sentations. Non-negative matrix tri-factorization is considered
in this paper because it decomposes an association matrix
that provides additional degree of freedom and represents
a common component of both domains [5]. On one hand,
non-negative matrix tri-factorization on the ratings generates
private latent factors for both users and items in each domain,
which are respectively connected with an individual deep
structure and the graph model. On the other hand, this tri-
factorization generates common latent factors, implying the
association between users’ latent factors and items’ latent
factors, which are treated as a bridge between source and target
domains due to the across-domain stability [44]. DTCFGP
jointly optimizes deep representation learning, cross-domain
CF and data geometric structure in the process of knowledge
transfer.

II. RELATED WORK

We aim to propose deep transfer collaborative filtering with
geometry preservation. In general, our work is related to the
following topics: matrix factorization based CF, deep learning-
based CF, and matrix factorization based transfer learning.

A. Matrix factorization based CF

Matrix factorization is the most popular technique to derive
latent factor models. By adopting different loss functions, a
variety of matrix factorization models have been investigated,
such as non-negative matrix factorization [19], probabilistic
matrix factorization [29], Bayesian probabilistic matrix fac-
torization [28], and max-margin matrix factor [27]. One of
important matrix factorization methods is collective matrix
factorization and its tri-factorization variants ( [4], [10], [19],
[33]). Non-negative matrix tri-factorization provides additional
degree of freedom by decomposing the rating matrix as the
product of three matrices [5].

Incorporating the side information in matrix factorization
approaches has shown a promising performance in handling
with the sparsity issue ( [25], [26]). Bayesian matrix factor-
ization approach with side information and Dirichlet process
mixtures are proposed in [26]. A variational Bayesian matrix
factorization method is proposed in [17] while a hierarchical
Bayesian matrix factorization method is proposed in [25],
where the side information is utilized in both works. However,
the resulting latent factors are still not so good as expected
when the rating matrix and side information are sparse [6].

Different from these methods, we further take the advantage
of deep structure and knowledge transfer.

B. Deep learning based CF

Deep learning is a very powerful tool for learning represen-
tations these years. Deep learning based CF is comparatively
new, which could alleviate the sparse problem to certain extent.
Restricted Boltzmann machine is modified in [30] for CF tasks
while ordinal Boltzmann machines are proposed in [36] for
CF tasks. Recently, some deep learning models learn latent
factors from the side information by combining deep structure
and CF ( [6], [20], [21], [39]) . In [20], a deep collaborative
filtering model is presented by integrating matrix factorization
and Bayesian stacked denoising autoencoders, where only
item’s features are extracted by deep learning. In [39], deep
collaborative filtering is proposed by combining marginalized
denoising auto-encoder and matrix factorization, which learns
deep features for both users and items. In [6], a hybrid deep
collaborative filtering model is proposed by involving the side
information with SDAEs. A deep heterogeneous autoencoder
is proposed in [21] for collaborative filtering on multiple
data sources, where the time-series sequence is learned by
using long short-term memory (LSTM) structure while non-
time-series sources are encoded by using the conventional
autoencoders. In ( [8], [16]), the authors use transfer learning
but miss to preserve the geometric structure. Different from
these methods, we further consider the transfer of knowledge
from related domains and meanwhile preserve the geometric
structure.

C. Matrix factorization based transfer learning

Knowledge can be transferred across domains by using mul-
tiple decomposed matrices via collective matrix factorization
[33]. In transfer learning, some common latent factors are
taken as a bridge to link source and target domains [24].
Previous matrix factorization based transfer learners usually
uncover these latent factors by optimizing predefined objective
functions, including maximizing the empirical likelihood (
[40], [44], [45]), or preserving the intrinsic geometric structure
( [22], [35], [37], [38]). Its tri-factorization variants have
been extensively studied for transfer learning recently [11].
Collective matrix factorization jointly factorizes multiple ma-
trices with correspondences between rows and columns while
sharing a set of common latent factors across different matrices
[23]. Collective matrix factorization based methods maximize
the empirical likelihood among multiple domains and the
common latent factors are then used as a bridge for knowledge
transfer [44]. Recently, the geometric structure instead of the
empirical likelihood has been explored for transfer learning,
including cross-domain spectral classification [22], manifold
alignment ( [37], [38]) and transfer component analysis [35].
Most of the prior works consider these two objectives sep-
arately without exploring the benefit of integrating them in
a unified manner ( [31], [42], [41]). One exception is that
the authors in [24] attempt to propose matrix factorization
with graph co-regularization. Different from all these methods



above, aside from optimization on two objective functions,
we further take the advantage of deep structure ( [1], [14],
[15]) and a hybrid modes to integrate the ratings and side
information.

III. NOTATIONS AND OVERVIEW

Define Ds as the source domain and Dt as the target domain
in this paper. For convenience, the domain indices are denoted
as d ∈ {s, t}. Table III summarizes the primary symbols used
in our approach.

In a recommendation setting, the user-item matrix in domain
Dd can be decomposed as the production of three non-
negative matrices Rd = UdHVT

d , where Ud indicates the
user latent factors, Vd indicates the item latent factors, and H
indicates the association of Ud and Vd. Non-negative matrix
tri-factorization is integrated with deep structure by private
latent factors Ud, Vd and each deep representation, where an
individual deep structure deals with both the side information
and the ratings. The source domain Ds is connected with the
target domain Dt via the common latent factors H.

Geometric structure implies a strategy that close samples
are more likely to be assigned the same label while far
samples tend to assign a different label, which should be
preserved when the common latent factors H are taken as
a bridge for cross-domain recommendation [24]. Based on the
ratings on items, we could conduct an item graph G

(v)
d with

vertices each representing an item in domain Dd. According
to the duality property between users and items, the users
are also sampled from a distribution supported by another
low-dimensional manifold [9]. Thus we could also construct
a user graph G

(u)
d with vertices each representing a user in

domain Dd. Define by A
(u)
d and A

(v)
d the similarity matrix

for the graph G
(u)
d and G

(v)
d , respectively, which might be

a cos function or a Laplacian function [24], [43]. Define
O

(v)
d = diag(

∑
i(A

(v)
d )ij to calculate the Laplacian matrix.

We have an individual deep structure to learn effective latent
representations of users or items in each domain, which takes
the ratings and/or the side information as input in various
ways. In total, we design four deep structures for users and
items in source and target domains. Based on the general
block diagram, we propose a specific instantiations, where we
employ SDAE as our deep structure.

IV. METHODOLOGIES

A. DTCFGP

In DTCFGP, as shown in Fig. 1, the SDAE deals with both
the ratings and the side information, where the ratings are the
primary input of the SDAE and the side information is the
primary input. The information generated from the transfor-
mation and feature extraction (TFE) is taken as the primary
input instead of the raw ratings to avoid the sparsity. The
transformation is similar to [6] and feature extraction considers
statistical characteristics. Specifically, we have F

(u)
d = [Rd]F

and F
(v)
d =

[
RT

d

]
F

, where the operator [·]F considers each row
of the matrix and sequentially concatenates one-hot coding

TABLE I
SUMMARY OF PRIMARY NOTATIONS, WHERE INFO MEANS INFORMATION.

Notation Description
md,nd Number of users and items in Dd

Rd = [rd,ij ]md×nd Rating matrix in Dd

Cd = [cd,ij ]md×nd Indicative matrix of Rd in Dd

Ud = [ud,ij ]md×k1
Latent factors of users in Dd

ud,i ∈ R1×k1 Latent factor of user i in Dd

Vd = [vd,ij ]nd×k2
Latent factors of items in Dd

vd,j ∈ R1×k2 Latent factor of item j in Dd

H ∈ Rk1×k2 Common latent factors
x
(u)
d , x(v)

d Rating vectors in terms of users/items
F

(u)
d , F(v)

d TFE results in terms of users/items
p
(u)
d , p(v)

d Side INFO of users/items in Dd

W
(u)
d = [W

(u)
d,l ]1×L

(u)
d

Weights of users’ SDAE in Dd

W
(v)
d = [W

(v)
d,l ]1×L

(v)
d

Weighs of items’ SDAE in Dd

b
(u)
d , b(u)

d,l , b(v)
d , b(v)

d,l Biases of users/items’ SDAE in Dd

h
(u)
d,o , h(v)

d,o Latent representations in SDAE

h
(ui)
d,o , p(u)

d,i ;h
(vj)

d,o , p(v)
d,j Corresponding to ud,i, vd,j in Dd

L
(u)
d , L(v)

d Number of layers in SDAE
z
(u)
d , z(u)d,l , z(v)d , z(v)d,l Weights for the secondary input

A
(u)
d , A(v)

d Similarity matrix for Graph G
(u)
d , G(v)

d

of the maximum, the minimum, the median, the mode, the
quartiles and the rounding mean. Moreover, f

(u)
d,i and f

(v)
d,j ,

the vector in F
(u)
d and F

(v)
d , are obtained to feed SDAEs.

The side information is regarded as a whole p
(u)
d (or p

(v)
d ),

integrated by directly importing to all layers except the output
layer. Therefore, considering the user’s SDAE, the hidden
representation at layer l and the outputs are obtained as

h
(u)
d,l = g

(
W

(u)
d,l h

(u)
d,l−1 + z

(u)
d,l p̃

(u)
d,i + b

(u)
d,l

)
f̂
(u)
d,i = f

(
W

(u)

d,L
(u)
d

h
(u)

d,L
(u)
d

+ b
(u)

d,L
(u)
d

)
p̂
(u)
d,i = f

(
z
(u)

d,L
(u)
d

h
(u)

d,L
(u)
d

+ b
(u)
d,n

)
(1)

where l ∈ {1, 2, · · · , L(u)
d − 1}; p̃

(u)
d,i are the corrupted side

information; g(·) and f(·) are activation functions for the
hidden and output layers; b

(u)
d,n is the biases in the output layer

for the side information. f
(u)
d,i is the input to the first layer and

f̂
(u)
d,i denotes the output. Similar results can be obtained for the

item’s SDAE by replacing (u) with (v), i with j.
1) Loss Function: The overall loss function of DTCFGP

algorithm consists of the matrix tri-factorization loss, the
loss of geometric structure, the reconstruction loss of the
side information and the ratings, and the approximation error
between deep representations and private latent factors.

The loss of matrix tri-factorization in source and target
domains can be expressed as

min
θm

Lm =
∑

d∈{s,t}

∥∥Cd �
(
Rd −UdHVT

d

)∥∥2 , (2)



Fig. 1. Structure of the proposed DTCFGP.

where θm = {Us,Vs,H,Ut,Vt}, the binary matrix Cd is
an indicator of sparsity and � is the element-wise operation.
Here, UdHVT

d can be further written as[
UdHVT

d

]
ij

= [ud,iHc
1,ud,iHc

2, · · · ,ud,iHc
k2
]vT

d,j

= ud,i

[
Hr

1v
T
d,j ,Hr

2v
T
d,j , · · · ,Hr

k1
vT
d,j

]
, (3)

where Hc
k with k ∈ {1, 2, · · · , k1} denotes the column of

H and Hr
k with k ∈ {1, 2, · · · , k2} denotes the row of

H. By defining ūd,i ,
[
ud,iHc

1, · · · ,ud,iHc
k2

]
and v̄T

d,j ,[
Hr

1v
T
d,j , · · · ,Hr

k1
vT
d,j

]
, (3) is simplified as[

UdHVT
d

]
ij
= ūd,iv

T
d,j = ud,iv̄

T
d,j . (4)

Accroding to [24], preserving the users and items’ geometric
structure in Dd is to minimize the energy of graphs G(u)

d and
G

(v)
d

min
θm

Lg =
1

2

∑
d

∑
ij

‖ud,i − ud,j‖2
(
A

(u)
d

)
+

1

2

∑
d

∑
ij

‖vd,i − vd,j‖2
(
A

(v)
d

)
=

∑
d

tr
(
UT

d(O
(u)
d −A

(u)
d )Ud

)
+

∑
d

tr
(
VT

d(O
(v)
d −A

(v)
d )Vd

)
. (5)

Furthermore, the reconstruction loss at both source and
target domains can be expressed as

min
θr

Lr =
∑
d

αd

∑
i

(
f
(u)
d,i − f̂

(u)
d,i

)2
+

∑
d

βd
∑
j

(
f
(v)
d,j − f̂

(v)
d,j

)2
+

∑
d

(1− αd)
∑
i

(
p
(u)
d,i − p̂

(u)
d,i

)2
+

∑
d

(1− βd)
∑
j

(
p
(v)
d,j − p̂

(v)
d,j

)2
. (6)

where θr =
{

W
(u)
s ,b

(u)
s ,W

(v)
s ,b

(v)
s ,W

(u)
t ,b

(u)
t ,W

(v)
t ,b

(v)
t

}
;

αd and βd are penalty parameters.
Besides, the approximation error between deep representa-

tions and latent factor vectors can be expressed as

min
θa

La =
∑
d

ρd
∑
i

(
ud,i − h

(ui)
d,o

)2
+

∑
d

γd
∑
j

(
vd,j − h

(vj)
d,o

)2
,

(7)

where θa =
{
∪d∈{s,t}θd

}
with

θd ,
{

Ud,Vd,W
(u)
d ,b

(u)
d ,W

(v)
d ,b

(v)
d

}
,

ρd and γd are penalty parameters.
Consequently, the overall loss function of DTCFGP is

finally obtained as

min
Θ
J = Lm + λgLg + Lr + La + λfreg, (8)

where Θ = θm∪θr∪θa, and freg indicates the regularization
term that prevents overfitting,

freg =
∑
d

∑
i

‖ud,i‖2 +
∑
j

‖vd,j‖2


+
∑
d

{
‖W(u)

d ‖
2 + ‖W(v)

d ‖
2 + ‖b(u)

d ‖
2 + ‖b(v)

d ‖
2
}

and λ is a penalty parameter.
2) Optimization: To solve this problem, an alternative op-

timization algorithm is considered by utilizing the following
three-step procedure.

Step I: Given all weights W
(u)
d , W

(v)
d , and biases b

(u)
d , b

(v)
d

in source and target domains, the gradients of the overall loss



function J in (8) with respect to ud,i and vd,j , d ∈ {s, t},
can be obtained as

∂J
∂ud,i

= −
∑
j

cd,ij
(
rd,ij − ud,iv̄

T
d,j

)
v̄d,j

+ρd

(
ud,i − h

(ui)
d,o

)
+λreg

[(
O

(u)
d −A

(u)
d

)
Ud

]
i∗
+ λud,i,

∂J
∂vd,j

= −
∑
i

cd,ij
(
rd,ij − ūd,iv

T
d,j

)
ūd,j

+γd

(
vd,j − h

(vj)
d,o

)
+λreg

[(
O

(v)
d −A

(v)
d

)
Vd

]
j∗

+ λvd,j , (9)

where the binary cd,ij indicates whether the corresponding
rating is observed (= 1) or not (= 0); [·]i∗ denotes the row i
of a matrix, and λreg is the penalty parameter of the graph.
By using coordinate ascent similar to [39], we have

ud,i =
(
V̄dCd,iV̄

T
d +

(
ρd + λregL

(u)
d,ii + λ

)
I
)−1

(
V̄dCd,iRd,i + ρdh

(ui)
d,o + λregL

(u)
d,ioUd

)
,

vd,j =
(
ŪdCd,jŪ

T
d +

(
γd + λregL

(v)
d,jj + λ

)
I
)−1

(
ŪdCd,jRd,j + γdh

(vj)

d,o + λregL
(v)
d,joVd

)
, (10)

with Ūd = [ūd,i]
k1
1 , V̄d = [v̄d,j ]

k2
1 , Cd,i =

diag(ci1, · · · , cik2
), Cd,j = diag(c1j , · · · , ck1j),

Rd,i = (Rd,i1, · · · ,Rd,ik2)
T, Rd,i = (Rd,1j , · · · ,Rd,k1j)

T;
L
(u)
d,ii ,

[(
O

(u)
d −A

(u)
d

)
Ud

]
ii

and L
(u)
d,io is[(

O
(u)
d −A

(u)
d

)
Ud

]
i∗

with the ith element replaced

by 0; L
(v)
d,jj ,

[(
O

(v)
d −A

(v)
d

)
Vd

]
jj

and L
(v)
d,jo is[(

O
(v)
d −A

(v)
d

)
Vd

]
j∗

with the jth element replaced

by 0.

Step II: Fixed the private latent factors Ud and Vd, d ∈
{s, t}, the update of common latent factors H can be obtained
as

H← H�

√√√√ ∑
d∈{s,t}UT

d (Cd �Rd)Vd∑
d∈{s,t}UT

d (Cd � (UdHVT
d))Vd

, (11)

where � is the element-wise operation defined as above.
Step III: Fixed the private latent factors Ud, Vd and the

common latent factors H, d ∈ {s, t}, all weights W
(u)
d , W

(v)
d ,

and biases b
(u)
d , b

(v)
d , of SDAEs in both domains, can be

learned by backpropagation with Adam method

∂J
∂W

(u)
d

= −ρd
∑
i

(
ud,i − h

(ui)
d,o

) ∂h
(ui)
d,o

∂W
(u)
d

+ αd

∑
i

(
f
(u)
d,i − f̂

(u)
d,i

) ∂ f̂
(u)
d,i

∂W
(u)
d

+ λW
(u)
d ,

∂J
∂W

(v)
d

= −γd
∑
j

(
vd,j − h

(vj)

d,o

) ∂h
(vj)

d,o

∂W
(v)
d

+ βd
∑
j

(
f
(v)
d,j − f̂

(v)
d,j

) ∂ f̂
(v)
d,j

∂W
(v)
d

+ λW
(v)
d (12)

∂J
∂b

(u)
d

and ∂J
∂b

(v)
d

can be easily obtained by replacing W with
b in (12).

The weights z
(u)
d for x

(u)
d and z

(v)
d for x

(v)
d can be updated

and learned by

∂J
∂z

(u)
d

= −ρd
∑
i

(
ud,i − h

(ui)
d,o

) ∂h
(ui)
d,o

∂z
(u)
d

+ (1− αd)
∑
i

(
p
(u)
d,i − p̂

(u)
d,i

) ∂p̂
(u)
d,i

∂z
(u)
d

+ λz
(u)
d ,

∂J
∂z

(v)
d

= −γd
∑
j

(
vd,j − h

(vj)

d,o

) ∂h
(vj)

d,o

∂z
(v)
d

+ (1− βd)
∑
j

(
p
(v)
d,j − p̂

(v)
d,j

) ∂p̂
(v)
d,j

∂z
(v)
d

+ λz
(v)
d . (13)

V. EXPERIMENTS

A. Dataset

The MovieLens-100K dataset consists of 100K ratings of
943 users and 1682 movies while the MovieLens-1M dataset
consists of 1 million ratings of 6040 users and 3706 movies,
which are collected from different years [12]. Each rating is
an integer in the range of 1 to 5. The ratings are highly sparse,
where no ratings occupy 93.7% in MovieLens-100K dataset
and 95.8% in MovieLens-1M dataset. The side information for
users contains the user’s age, gender, occupation and zipcode
while the side information for items contains the category
of movie genre and release date. The BookCrossing dataset
[46] contains 1149780 books from 278858 users, where each
rating is an integer from 0 to 10 and no ratings occupy 99.9%.
Some attributes of books and users are also provided and being
utilized as the side information.

To incorporate the side information in movie recommenda-
tion, the side information for users are encoded into a binary
valued vector of length 29 in both domains. On the other
hand, the side information for items are encoded into a binary
valued vector of length 18 in both domains. Similarly, for book
recommendation, the side information is encoded into binary
vectors for users and items.

We organize MLK(s) vs MLM(t), MLM(s) vs MLK(t)
and BC(s) vs MLK(t) as three pairs, where one acts as the
relevant domain and the other acts as the target domain. For
all compared methods, we train each compared method with



TABLE II
PERFORMANCE COMPARISON IN TERMS OF RMSE.

Algorithm MLK(s) vs MLM(t) MLM(s) vs MLK(t) BC(s) vs MLK(t)
60% 80% 95% 60% 80% 95% 60% 80% 95%

NMF 1.0258 1.0127 1.0040 1.0381 1.0276 1.0195 1.0381 1.0276 1.0195
CDL 1.0207 1.0168 0.9984 1.0113 1.0027 0.9871 1.0207 1.0168 0.9984
aSDAE 0.9345 0.9272 0.9222 0.9933 0.9779 0.9702 0.9933 0.9779 0.9702
PMF 0.9204 0.9131 0.9100 0.9590 0.9380 0.9236 0.9590 0.9380 0.9236
RGCMF 0.9173 0.9123 0.9079 0.9585 0.9366 0.9213 0.9614 0.9371 0.9220
CMF 0.9090 0.8857 0.8746 0.9476 0.9232 0.9162 0.9476 0.9232 0.9162
DCF 0.8864 0.8632 0.8571 0.9348 0.9157 0.8981 0.9348 0.9157 0.8981
DTCF 0.8666 0.8527 0.8465 0.9260 0.9104 0.8992 0.9297 0.9109 0.9009
DTCFGP 0.8640 0.8516 0.8454 0.9195 0.9034 0.8943 0.9190 0.9050 0.8949

TABLE III
PERFORMANCE COMPARISON IN TERMS OF MAE.

Algorithm MLK(s) vs MLM(t) MLM(s) vs MLK(t) BC(s) vs MLK(t)
60% 80% 95% 60% 80% 95% 60% 80% 95%

NMF 0.8241 0.8207 0.8169 0.8283 0.8249 0.8225 0.8283 0.8249 0.8225
CDL 0.8209 0.8187 0.8116 0.8173 0.8146 0.8061 0.8209 0.8187 0.8116
aSDAE 0.7475 0.7398 0.7347 0.8019 0.7848 0.7765 0.8019 0.7848 0.7765
PMF 0.7619 0.7553 0.7517 0.7903 0.7815 0.7694 0.7903 0.7815 0.7694
RGCMF 0.7232 0.7186 0.7124 0.7741 0.7702 0.7649 0.7843 0.7782 0.768
CMF 0.7214 0.7066 0.6993 0.7876 0.7652 0.7447 0.7876 0.7652 0.7447
DCF 0.7122 0.6918 0.6852 0.7632 0.7407 0.7236 0.7632 0.7407 0.7236
DTCF 0.6799 0.6686 0.6628 0.7247 0.7118 0.7040 0.7273 0.7122 0.7045
DTCFGP 0.6785 0.6683 0.6627 0.7206 0.7073 0.7010 0.7198 0.7084 0.7003

different percentages (60%, 80% and 95%) of ratings. We
randomly select the training dataset from the whole dataset,
and use the remaining data as the test dataset. We repeat the
evaluation five times with different randomly selected training
data and the average performance is reported.

B. Evaluation Metric

We employ the root mean squared error (RMSE), the mean
absolute error (MAE) and Recall@K as evaluation metrics,
which are defined respectively as

1) RMSE:

RMSE =

√√√√ 1

NT

∑
Rt

ij∈T

(
Rt

ij − R̂t
ij

)2
, (14)

2) MAE:

MAE =

∑
Rt

ij∈T

∣∣∣Rt
ij − R̂t

ij

∣∣∣
NT

, (15)

where Rt
ij is the ground-truth rating of user i for item j, R̂t

ij

denotes the estimated rating of Rt
ij , and NT is the total number

of ratings in the test dataset T .
3) Recall@K:

Recall@K =
Number of Hits @K

|GT |
, (16)

where Number of Hits @K is the number of test items that
appear in the recommended list and GT is the ground-truth.

C. Baselines

In order to evaluate the performance of our proposed
schemes, we consider the following various methods in our
experiments.

• NMF - Conventional non-negative matrix factorization
method [19];

• CDL - Collaborative deep learning [39] is a hierarchical
deep Bayesian model to achieve deep representation
learning for the item information and collaborative fil-
tering for the user-item matrix.

• aSDAE - Additional denoising autoencoder [6] is a
single-domain model, where both the side information
and raw rating are fused by using an autoencoder.

• PMF - Probabilistic matrix factorization [29] is an effec-
tive model to factorize the user-item matrix to user and
item factors. It assumes there exists Gaussian observation
noise and Gaussian priors on the latent factors.

• RGCMF - Graph co-regularized collective matrix tri-
factorization [24] is a transfer model which preserves
the geometric structure in each domain. Revised GCMF
(RGCMF) is a revision of the original GCMF. We im-
prove this method by considering the data sparsity, where
no side information is considered in the recommendation.

• CMF - Collective matrix factorization [33] is a model
which simultaneously factorizes multiple sources, includ-
ing the user-item matrix and matrices containing the
additional side information.

• DCF - Deep collaborative filtering [20] is a recommen-
dation model which combines PMF with marginalized
denoising stacked autoencoders to achieve good recom-
mendation.

• DTCF - Deep Transfer Collaborative Filtering [8] is
a recommendation model integrating collective matrix
factorization and deep transfer learning.

• DTCFGP - Our proposed DTCFGP scheme.

For our DTCFGP scheme, we set the parameters αd and



(a) 60% of ratings (b) 80% of ratings

Fig. 2. Performance comparison in terms of Recall@K.

βd as 0.95, the parameters γd, ρd as 2, the regularization
coefficient λ as 0.3, and the weight of graph λreg as 0.9.
We use a masking noise with a noise level of 0.1 to get the
corrupted input from the side information. In terms of the
SDAE, the number of layers for each encoder or decoder is set
to 2 in our experiments. So the total number of layers for the
autoencoder is thus equal to 5. Moreover, the dimensionality
of learned latent factors is set to 30 for users and 100 for
items. The size of the hidden layer is 80 for MovieLens-100K
and MovieLens-1M and 120 for BookCrossing.

D. Summary of Experimental Results

1) Performance Comparison: Tables II and III shows re-
spectively the average RMSE and MAE of NMF, CDL,
aSDAE, PMF, RGCMF, CMF, DCF, DTCF and our DTCFGP
schemes on three pairs of datasets, where the lowest value of
each dataset is highlighted in boldface. From Tables II and III,
it is observed that CMF, CDL, DCF, DTCF and our DTCFGP
schemes achieve a better performance than PMF, indicating the
effectiveness of incorporating the side information. Moreover,
CDL, DCF, DTCF and our DTCFGP schemes outperform
PMF and CMF, indicating that deep structures can admire
better feature quality of the side information. Furthermore,
it is noticed that our DTCFGP schemes obtain both a lower
RMSE and a lower MAE than that of CDL, aSDAE, DCF
and DTCF. In the end, DTCFGP is superior to DTCF, which
is clearly due to the preserving of the geometric structure.
We will further discuss the effect of geometric structure on
the results in our model in the ablation study. Meanwhile, the
decline becomes significant when the percentage of training
data reduces, which validates the effectiveness of cross-domain
learning for recommendation.

To sum up, the proposed DTCFGP schemes depict an evi-
dent superiority in comparison to the state-of-the-art methods
in terms of the RMSE and MAE, which demonstrates the
effectiveness of our schemes.

From Tables II and III, it is also observed that the per-
formance on the data pair of BookCrossing vs MovieLens-
100k is better than that on the data pair of MovieLens-1M vs
MovieLens-100K. This may because the difference between
BookCrossing and MovieLens-100K is much larger, so that
cross-domain learning can transfer more information from
closer domains.

2) Recall@K Analysis: Fig. 2 shows the Recall@K results
on MovieLens dataset, where seven superior baselines are
compared to our DTCFGP schemes in terms of RMSE. As
seen, only the cases with 60% and 80% training data are

Fig. 3. Ablation Test Results of DTCFGP schemes

considered, because in the case of 95% training data, these
models performs approximately close to 1, indicating limited
information.

Generally speaking, the conclusion drawn from the RMSE
and MAE remains essentially unchanged when considering the
Recall@K analysis. Moreover, it is observed that DTCFGP,
DTCF and CMF have a high overlapping, indicating that
they lie in the first class in terms of Recall@K. aSDAE and
RGCMF have a large overlapping, implies that they lie in the
second class, better than PMF. In both cases, DCF performs
worst. The overlapping occurs because the model has a less
impact than the structure of the data. Nevertheless, our model
outperforms baselines in all cases, i.e. whatever K changes in
a wide range of 10 to 50.

3) Ablation Study: To justify the effectiveness of our
architecture design, a careful ablation study is conducted.
Specifically, our model combines matrix tri-factorization with
a shared weight matrix H and deep structure in both source
and target domains. They are integrated to incorporate both
cross-domain information and the side information.

we replace the side information in deep structure with the
results of TFE block and name it as DTCFGP_woSideinfo;
Specifically, we remove the graph structure and name it as
DTCFGP_woGraph; we remove the knowledge transfer and
name it as DTCFGP_woTrans; correspondingly, we remove
the TFE block and name it as DTCFGP_woTFE.

Test results on movie and book datasets in terms of RMSE
are shown in Fig. 3, where a couple of observations are worth
being highlighted as follows
• In most cases, the removal of arbitrary component in

DTCFGP schemes causes the performance drop, indicat-
ing that each component in DTCFGP is indispensable.

• Knowledge transfer also has a considerable influence
on the performance improvement except the minority
cases, indicating that the transferred knowledge from
relevant domains is generally important. In Fig. 3, the
transferred knowledge becomes the primary source of
rich information because the TFE block misses providing
abundant information.

Evaluation results using RMSE, MAE and Recall@K, and
ablation analysis in experiments show that 1) DTCFGP out-
performs baselines; 2) deep structure, the preservation of
graph structure and knowledge transfer across domains indeed
improve the performance; and 3) geometric preservation is of
importance to domain transfer. Strictly speaking, please be
noted that only movie vs book pair transfers across domains
while other two pairs using movie datasets do not really owing



to high relevance; nevertheless, experiments demonstrate that
DTCFGP works well for all cases.

VI. CONCLUSION

Cross-domain deep collaborative filtering is proposed for
recommendations by referring to the knowledge in relevant
domains, where the loss of data geometric structure is min-
imized in the process of knowledge transfer to guarantee to
predict labels smoothly. Non-negative matrix tri-factorization
is integrated with deep structure in both source and target
domains, where common latent factors construct a bridge
between domains. The geometric structure is modeled by
two designed graphs in source and target domains. Effective
latent representations of users and items are learned by jointly
optimizing the matrix tri-factorization, SDAEs and geometric
structure. Extensive experimental results on movie and book
datasets show that our proposed approach achieves a better
performance in comparison to state-of-the-art related works,
in terms of multiple evaluation metrics and ablation analysis.
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