

Model Predictive Control Guided Reinforcement
Learning Control Scheme

Huimin Xie1, Xinghai Xu1, Yuling Li2, Wenjing Hong1, Jia Shi1*
1Department of Chemical and Biochemical Engineering, Xiamen University, Xiamen, China

2Department of Earth Science and Engineering, Imperial College London, London, UK
{onewarmhear, xinghai_xu}@163.com, yuling.li19@imperial.ic.uk, {whong, jshi}@xmu.edu.cn

Abstract—Deep Reinforcement Learning (DRL) is an artificial
intelligence technology that can complete decision-making tasks
by interaction. It has been successfully applied to various games.
However, there are still many challenges when this technique is
applied to the industrial process control due to the low sample
efficiency and the inability to deal with large time delay. In this
paper, a novel Model Predictive Control (MPC) guided Reinforce-
ment Learning Control (MP-RLC) scheme is proposed for the
process control. In this scheme, Model predictive control is
directly combined with Reinforcement Learning (RL) to guide the
training process, thus greatly improving the sample efficiency of
reinforcement learning and effectively solving the problem of time
delay. The simulation results on both a third-order linear system
and a nonlinear continuous stirred tank reactor (CSTR) system
with large time delay demonstrate that this scheme can not only
accelerate the training process but also improve the control
performance, which is superior to both standalone RL and MPC
schemes. The proposed approach may help to pave the way for
DRL applied to industrial processes.

Keywords—Deep reinforcement learning, Model predictive
control, Time delay, Process control.

I. INTRODUCTION

Reinforcement Learning (RL) is an artificial intelligence
technology that has been studied in different fields for a long
time, such as process control [1], robotics [2] and power systems
[3], etc., and it has attracted widespread attention in recent years.
RL can learn an optimal closed-loop control only through
interacting with the environment, and it possesses two features
superior to the conventional feedback control. One is RL can
learn an optimal control almost without any prior knowledge
required. The other is RL can work as a direct adaptive optimal
control for nonlinear systems [4]. In recent years, with the rapid
development of Deep Learning (DL) methods, Deep Reinforce-
ment Learning (DRL) leverages Deep Neural Networks (DNNs)
as its function approximator [5] which brings RL with the
capability of controlling not only systems with high dimensional
input and output but also complex nonlinear systems. Recently,
DRL has attained great success in computer games and board
games. For instance, human-level control has been achieved in
video games [5], and even human experts were defeated by DRL
in GO game [6].

Researchers have done some pioneering works trying to
apply DRL or similar methods in chemical process control. In
the 1990s, Hoskins et al. [1] used improved AHC (Adaptive
Heuristic Critic), essentially a RL algorithm combined with

neural networks, to deal with the process control problem. Lee
et al. [7-9] developed a series of ADP (Approximate Dynamic
Programming or Adaptive Dynamic Programming) algorithms
for process control tasks. ADP is a type of RL algorithm often
studied in the control system community [10], and it leverages
function approximators like neural networks to overcome the
shortcomings of dynamic programming. Recently, Spielberg et
al. [11] developed a DRL control scheme, called Deep Deter-
ministic Policy Gradient (DDPG) [12], and gave the test results
on the numerical linear and nonlinear processes to demonstrate
the feasibility and effectiveness of DRL, and then Ma et al. [13]
extended the application of a similar method to a numerical
polymerization process. More recently, Petsagkourakis et al. [14]
managed to use DRL for a real batch bioprocess. All of these
studies show that the development and application of RL
technology in process control are attracting wide attention.

However, there are still some challenges in applying RL to
actual industrial process control. Originated from trial-and-error
learning, so DRL usually needs a lot of exploratory interactions
with the environment, which may result in low sample
efficiency and high consuption of time or resources that may not
be allowed in practices [15]. Also, RL is an optimization
algorithm based on Markov Decision Processes (MDP). But for
most of the actual industrial processes, due to the inevitable time
delay and slow response, the Markov property of the process
dynamics cannot be guaranteed, that is, the current action not
only influences the next state (and reward) but also the later ones.
Although this problem can be solved by extending the state with
historical data [11, 13], it also leads to slower convergence with
a high dimension.

To improve the sample efficiency of RL, several different
ways has been proposed [15], and for process control tasks, one
obvious and appropriate way is to employ a conventional
feedback control scheme to guide the sample and training
processes of RL. For instance, Guide Policy Search (GPS)
developed by Levine et al.[16] uses the optimal control to guide
the policy search of RL, which greatly improves the sample
efficiency of the RL. For the time delay problem, a predictive
model is usually helpful by estimating the delayed time.
Meanwhile, the predictive model usually can make RL more
data-efficient because richer information besides reward is used.
Comprehensively, considering the two solutions above, Model
Predictive Control (MPC), which is widely used in process
industries, could be used to guide RL’s training process in this
scenario.

* Corresponding author. This work is supported by NSFC(61573295),
National Key R&D Program of China (2017YFA0204902) and Tencent AI Lab
Rhino-Bird Focused Research Program.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

In this paper, a novel Model Predictive Control guided
Reinforcement Learning Control (MP-RLC) scheme is
proposed. In this control scheme, the action of the DRL is
directly guided by the MPC control law in a simple but very
efficient way. Through the numerical simulations on a linear
system and the nonlinear continuous stirred tank reactor (CSTR)
system with large time delay, it is demonstrated that the
proposed MP-RLC scheme has advantages in two aspects: First,
the sample efficiency of RL is improved significantly. Second,
MP-RLC can achieve better control performance even on a non-
linear system with a large time delay.

Despite that the basic idea of this work is closely related to
some model-based RL algorithm combined with model
predictive control [17-19], the way of the guidance proposed in
this paper is quite different. For example, in MPC-Guided Policy
Search [18], the guidance is offline and based on the MPC
runtime data, however, the guiding method proposed in this
paper is online and directly based on the action of MPC, which
makes the implementation of the algorithm simpler and results
in the parallel control structure of MPC and RL during the
training phase. Besides, PILCO [17] and GP-MPC [19] leverage
Gaussian Processes as the predictive model and especially for
GP-MPC, it explicitly uses MPC. They both achieve good
sample (data) efficiency. However, our method is not limited to
MPC, it is a framework offering a potential way to combine any
conventional control scheme with the RL, therefore it is more
practical in the scenario of industrial process control.

The rest of the paper is organized as follows: Section Ⅱ
provides the preliminaries of RL and MPC. Section Ⅲ presents
the MP-RLC algorithm. Tests on numerical systems and
discussions are presented in Section Ⅳ, aiming to verify the
effectiveness of the scheme. Section Ⅴ gives conclusions and
perspectives.

II. PRELIMINARIES

In this paper, MPC is employed to guide RL to complete
control tasks, thus there are two control methods concerned in
our scheme. In this section, the brief introductions about RL and
MPC together with the corresponding algorithms used are given.

A. Reinforcement Learning(RL)

RL is a data-driven artificial intelligence algorithm,
originated from trial-and-error learning. It realizes optimal
decision-making through continuous interactions with the
environment. From the viewpoint of control theory, RL can be
regarded as a direct adaptive optimal control [4]. Fig. 1 shows
the basic framework of RL.

There are two core elements in the RL algorithm. One is the
agent which is working as a self-optimized controller, another
is the environment E which is everything except for the agent.
At every timestep t , the agent executes the control action ()a t
according to the states ()s t observed from the environment,
then the environment responses to the action and provides the
scalar reward ()r t based on the performance. The policy

: S A  , a mapping from state space dS   to action
space mA , represents how the agent acts in the

environment. The aim of the agent is to learn an optimal policy
* to maximize the cumulative rewards.

Fig. 1. The framework of Reinforcement Learning

In this paper, a DRL algorithm, Deep Deterministic Policy
Gradient (DDPG) [12], is employed, which is developed from
the Deterministic Policy Gradient (DPG) method [20]. It offers
a deterministic policy and has shown excellent performance in
the control tasks with continuous action spaces.

DDPG inherits the framework of the Actor-Critic algorithm
[21], and it adopts two important techniques of Deep Q-
Network (DQN) [22]. One is a replay buffer used to minimize
the correlations of the training data, and the other is the separate
target networks which are helpful for a stable and robust
training process. Thus, there are four networks, including a
policy network (Actor), a value network (Critic) and their own
target networks.

Mathematically, the training process of DDPG is to update
the value network and policy network alternatively based on the
optimality. The final aim of DDPG is to train an optimal
deterministic policy network * , which can maximize the
following expected discounted return [23].

  () (1)J G   (1)

where () ()
T k t

k t
G t r k 


 . ()G t , called return, refers to the

(discounted) cumulative rewards from timestep t to T (for
continous control tasks =T ),  is the discount factor and

[]  refers to the expected random variable given that the

agent follows policy  . Silver et al. [20] has proved that the
deterministic policy gradient J

 is the following expected

gradient of action-value function Q parameterized by Q .

()~ (), (()|)

(), () ()()~

[(, |) |]

[(, |) | (() |) |]
t

Q

s t s s t a s t

Q
a s s t a s s s ts t

J Q s a

Q s a s t

  



    


 



  
 

  

  

  




(2)

where  indicates the policy network parameterized by  . 
is the state distribution, which can be determined by a behavior
policy different with  because DDPG is off-policy. The value
network Q is a mapping from state ()s t and action ()a t to the
cumulative rewards defined by:

 ((), () |) ()QQ s t a t G t
  

()
T k t

k t
r k  


    (3)

The loss of value network is as follow:

 2

()~ , ()~ , ()~
() [(((), () |) ())]Q Q

s t a t r t E
L Q s t a t y t 
   (4)

where

 '() ((), ()) '((1), (1) |)Qy t r s t a t Q s t a t     (5)
The target value function is denoted by Q . To ensure the

stability of the training process, the target networks’ parameters
Q  and ' are updated by exponential moving average.

 (1)Q Q Q       (6)

 ' '(1)        (7)

where [0,1]  is an update rate.

 The pseudo-code of a simplified DDPG algorithm is
summarized in Algorithm 1. More details refer to Lillicrap et al.
[12]

Algorithm 1. DDPG
1. Randomly initialize the weights Q of the critic

network and  of the policy network
2. Copy Q to Q  and  to  
3. Reset a replay buffer R
4. for the episode k from 1 to P , do
5. Get the initial state from the environment
6. Initialize a noise ()t for exploration

7. for the step t from 1 to T , do

8. Get the action () (() ()|)a t t ts   

9. Execute the action to the environment
10. Observe the new state (1)s t  and reward tr

11. Store ((), (), (), (1))s t a t r t s t  in R

12. Randomly sample a batch data from R
13. Set label ()y t for the value network Q

14. Update the value network Q by minimizing the

loss function (4)

15. Update policy network  based on the gradient
J

 given in (2)

16. Update the two target networks by (6) and (7)
17. end for
18. end for

B. Model Predictive Control (MPC)

MPC is an advanced control technique widely used in
process industries. The basic idea of the MPC is to use the
process model to predict the output of the process at every
timestep, then MPC determines the optimal control sequence
that minimizes an objective function defined over a receding
horizon and executes only the first step of the sequence. MPC
makes the closed-loop control system have better robustness
than the traditional control schemes.

In this paper, we choose Generalized Predictive Control
(GPC) which is a typical MPC scheme proposed by Clarke et al.
[24]. For simplicity, it is assumed that a process is a single-input-
single-output (SISO) system described by the following
Controller Auto-Regressive Integrated Moving Average
(CARIMA) model :

 1 1() () () () ()A z y t B z u t w t    (8)

where 1z represents the unit backward shifting operator, A
and B are the following polynomials of 1z determining the
dynamics of the process, ()w t represents the noise or
uncertainty of the model.

 1 1 2
1 2() 1 n

nA z a z a z a z        (9)

 1 1 2
1 2() m

mB z b z b z b z       (10)
We use the following notations for convenience:

 
1 1 2

1 2 , 1, ,
(:) ()

k t t t
f t t f k

 
 

 1

2

T

1 1 1 2(|) () (1) ()t
tf f t f t f t t  

The objective function to minimize in GPC is a quadratic
function of predictive performance over a receding horizon:

1 2

2

2 2

1 1

(, (: 1))

ˆ()(() (|)) () (1)
n n

r
i i

J t u t t n

i y t i y t i t i u t i 
 

 

        
 (11)

where ˆ(|)y t i t is the i -step ahead predictive output of the

system at time step t , and ry is the set-points, 1n and 2n are the

prediction horizon and the control horizon, respectively.  i

and  i denote weighting factors.

To get the control law, we need to construct the predictive
outputs first. It can be computed recursively by model (8):

   
1

1 1

- 1 - 1
1

1
1

(|) (|)
(|)

(|) (|)

t n t m
t t t

t nt t
t n t n

y u
w

y u

 



  

   
          

1 2 1 2A A B B (12)

where

 

1 2 1

1 2 1

3 2 1

1

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

n n n

n n

n

a a a a

a a a a

a a a a

a

 



 
 
 
 
 
 
    

1 2A A

 
 
 

       
 

 (13)

 

1 2 2 1

1 3 2 1

4 3 2

2 1

0 0 0

0 0 0

0 0 0 0

0 0 0

m m m

m m

m

b b b b b

b b b b b

b b b b

b b

 



 
 
 
 
 
 
    

1 2B B

 
 
 

       
 

 (14)
Note that 2A is a non-singular matrix, then it results in

1 1 1

1 1
-1(|) (|) () (|)t t t

t n t n t nt 
    -1 -1

2 2 2y A B Δu F A w (15)

where

 1 1() (|) (|)t m t n
t tt     -1 -1

2 1 2 1F A B Δu A A y (16)

1

1(|)k
k n

w consists of disturbance signals in the future, which is

an unknown variable and here we assume it is the Gaussian
white noise. Now the predictive model is defined as follows:

1

1
1ˆ (| |) (|) ()t t

t n tt t
  y GΔu F (17)

where -1
2 2G = A B , ()tF represents the free-response when both

outside disturbance signals and control increment of predictive
control are zero. Equation (17) is the predictive model when 1n

equals to 2n , but if 1 2n n , G should be modified and the
predictive model changes to

1 2

1
1ˆ (| |) (|) ()t t

t n t nt t
   y GΔu F (18)

The predictive model
1

1ˆ (| |)t
t n t
y is substituted into the

objective function and written in matrix form,

1 1 2 2

2

1 1
1 1

(, (: 1))

ˆ ˆ(|) (| |) (|) (|)t t T t t
t n t n t n t n

t u t t n

t 
     

 

   

J

e Qe u R u
 (19)

where,

1 1 1

1 1 1ˆ ˆ(| |) (|) (| |)t t t
t n r t n t nt t  
   e y y (20)

 1diag((1), (2), , ())n  Q  (21)

 2diag((1), (2), , ())n  R  (22)
Then the control law that makes objective function reach
minimum can be derived,

2 1

1
1(|) ((|) ())t t

t n r t n t
   T -1 ΤΔu (G QG + R) G Q y F (23)

In GPC, at every timestep only the first value of
2 1(|)t

t n Δu is

used. So the control law can be written as:

1

1() ((|) ())t
r t nu t t

  K y F (24)

where K refers to the first row of T -1 Τ(G QG +R) G Q .

III. MPC GUIDED RL ALGORITHM

In order to solve the problems of low sample efficiency of
DRL for process control especially on systems with large time
delay. We proposed MPC guided RL control scheme in this
section. By using this approach, we expect to get an RL control
scheme with better sample efficiency and excellent control
performance even applied to the nonlinear processes with time
delay.

A. Basic elements

Several basic elements, including state, action, reward and
two main neural networks of the MP-RLC, should be carefully
designed according to the specific task.

1) State:
For process control, the state used by RL usually consists of

the real-time output information ()y t and the set-point infor-

mation ()ry t [25] as follows:

 (),(())) (rs t y t y t (25)

 () (((),)))(- () ry t y t y ts t  (26)

However, when applied RL to a process with time delay, the
task turns to a Partially Observed Markov Decision Process
(POMDP) [26]. To satisfy the Markov property, the following
extended state should be used:

() ((, (1)),

, ((), (1), (

() , , (1)

())1))a

y y

r a

t Ts t y y t T

y u t T u t u t

t

T

y

t

   

    

 
 (27)

where ()u t is the control action executed on the process. yT and

aT are, respectively, the extended timestep lengths of the
process output and the control action.

2) Action:
 The action of the DDPG is the output of the policy network,

denoted by ()a t , while the action of GPC, determined by the

control law (24), is denoted by ()MPCu t . The action executed on
the process of MP-RLC in the training phase is the combination

of ()a t and ()MPCu t , which will be illustrated later. In the
testing phase, the action is the output of the policy without
exploration added.

3) Reward:
The reward function of RL is the key factor for the control

performance of the closed-loop system. It is usually designed
based on the control error. Inspired by the quadratic cost
function of GPC, the reward function is designed as a truncated
quadratic function as follows:

2

2

()
(1), ()

()

() , ()

e t
b e t

r t

c e t e t







   

 

 (28)

where () () ()re t y t y t  indicates the control error and  is a
tolerance.

4) Policy and value networks:
Both policy and value networks are 3-layer neural networks

with ReLU [27] as the activation function of the hidden layer.
The policy networks leverage tanh (case 1) or ReLU (case 2) as
the activation function of the output layer, while the value
networks’ output layers have no activation function.
Optimization algorithm Adam is used to train parameters of the
networks and smooth L1 loss [28] is used to modify the loss of
the value network in (4). The structures of the policy network
and value network are shown in Fig. 2.

Fig. 2. The structures of the policy network (a) and the value network (b).

B. MP-RLC scheme

To guide the optimization of RL in the training phase, the
control output of GPC is combined with the action output of the
policy network leading to the guiding control law as follows:

() () (1) ()MPCu t u t a t      (29)

where ()u t is the control action of MP-RLC and  is the
weighting factor, which is a hyperparameter selected by trials.

The block diagram of the MP-RLC scheme is shown in Fig.
3. It can be seen from the figure that the whole control system
consists of two parallel control loops, one is the GPC loop and
the other is the DDPG control loop. In this control scheme, GPC
plays a guiding role by applying its control action directly to the
process to obtain more effective state and reward information
used for DDPG training.

Fig. 3. Block diagram of the MP-RLC scheme.

The implementation of the MP-RLC scheme is divided into
the training phase and testing phase. In the training phase, the
main task is to optimize the policy network and value network
by the DDPG algorithm, while in the test phase, the policy
network, as the process controller, is evaluated.

The training phase consists of two parts. The first is the
interaction part, and the second is the updating part. The
interaction part mainly focuses on obtaining the training data
through interaction with the process. During the interaction part,
the GPC and the DDPG’s policy network are implemented as
controllers according to control law (29), and the process then
gives the state transition and reward, which are then stored as
tuples in replay buffer. In the updating part, experience in replay
buffer are sampled to train the value network and policy network
according to the optimization algorithm described in the last
section. The pseudo-code of the algorithm at the training phase
is summarized in Algorithm 2.

Algorithm 2. MP-RLC

1. Randomly initialize the value network Q and policy

 network 
2. Initialize Q and   with Q and  , respectively.

3. Set a replay buffer R

4. Set the initial values 1
0(|)m Δu and 1

0(|)n y for GPC

5. for the episode k from 1 to P , do
Interaction part:
6. Give the set-point ry for the episode k

7. Initialize a queue with the size of 1RST 

8. Initialize a Gaussian noise ()t for exploration

9. for the step t from 1 to T , do
10. Sample ()s t from the environment

11. Get action from the output of the policy network:

  () () ()|a t s t t   

12. Get 1(|)t m
t
 Δu by the control law (24)

13. Get the output of GPC () (1) ()MPC MPCu t u t u t  

14. Calculate the control ()u t by control law (29)

15. Execute ()u t to the process, and observe ()y t

and ()r t

16. Generate extend state as follows:
 (1) ((, (2)),

 , ((1),

(1) , , ()

(1 (,)) ()))2
y y

r a a

s t y y t T

y u t T u t T

t T y t

u tt

   

   

 

 



17. Push the element ((), (), (1))s t u t s t  into the queue

18. Take out the element in the head of the queue and
insert ()r t into the element to form a sample data

((), (), (), (1))RS RS RSs t T u t T r t s t T    , and then

store it into the buffer R
Updating part:
19. Randomly sample N tuples from the buffer R
20. Update the weights of the value network Q by

minimizing the loss function (4)
21. Update the policy network  according to the

gradient calculated in (2)
22. Update the two target networks by (6) and (7)
23. end for
24.end for

Remark：Step 16 is used to extend the state with historical

observations and actions, where the lengths yT and aT should

be determined according to the time constant of the predictive
model. Step 7, 17 and 18 are related to the “reward shifting”
(RS) operation, in which the shifting step RST is determined

according to the estimated time delay of the predictive model.
When the time delay of the model is significant, the over-
extended state can be avoided by using the reward shifting
operation. When there is a large model mismatch or uncertainty,
the Markov property can be guaranteed by selecting a relatively

large yT and aT .

IV. NUMERICAL ILLUSTRATIONS

In order to demonstrate the feasibility and effectiveness of
the proposed algorithm, the MP-RLC scheme is implemented
on two types of numerical systems in this section. One is a third-
order linear system, and the other is a CSTR system, which is a
typical nonlinear system commonly used in the chemical
industry [29].

A. Case 1: Linear system

To verify the effectiveness and advantages of our approach,
the proposed MP-RLC scheme, standalone GPC scheme and
standalone DDPG algorithm are all implemented and tested on

a discrete-time linear system with the 3rd-order dynamics and
pure time delay, which is modeled by the following discrete
time transfer function:

1 2 3
6

1 2 3

2.651 5.298 0.5805
()

1 1.454 0.5285 0.04736

z z z
G z z

z z z

  


  

 


  
 (30)

Considering the inevitable model mismatch in practical
applications, it is assumed that the predictive model used for
controller design is the following simplified first-order plus
time-delay (FOPD) model obtained by a simple model
identification algorithm which is omitted for clarity.

1
7

1 1

32.19
(z)

1 0.889

z
G z

z







 (31)

Fig. 4. Step responses of the process and the simplified model.

The step responses of the model (31) and the process (30)
are shown in Fig. 4 which illustrates the model mismatch and
time delay. The parameters used in the MP-RLC and DDPG are
given in Table 1.

Table 1. Parameters and hyperparameters for MR-RLC algorithm
Notation Description Case 1 Case 2

P Number of episodes 200 2000

T Length of per episode 300 100

 Combination factor in MP-RLC 0.8 0.5

1n Prediction horizon 30 10

2n Control horizon 30 10

 Weighting factor of GPC. 0.000001 0.173

 Weighting factor of GPC. 1 1

N Minibatch size 128 128

yT Output history step in the state 5 20

aT Action history step in the state 20 0

RST Reward shift step 7 0

A Action space [-1,1] [273,500]

 Tolerance in reward function 5 0.3

b Scale factor in reward function 1 5

c Scale factor in reward function 1 5

 Discount factor 0.99 0.99

 Update rate of target networks 0.001 0.001

- Length of steps for testing 600 600

- Learning rate of Critic 0.001 0.001

- Learning rate of Actor 0.001 0.001

- Buffer size 1000000 1000000

- Initial standard deviation of noise 6 20

- Decay factor of noise per step 0.99999 0.9995

To compare the efficiency and control performance of the
three control schemes, the set-point tracking tests are conducted.
Cumulative Rewards (CR) of one episode defined by (32) and
the Sum of Absolute Errors (SAE) of one episode defined by
(33) are used to evaluate the control performance of the three
algorithms. CR matches the objective of RL and is suitable for
evaluating the sample efficiency, while SAE is more
comprehensive for the control performance.

1

()
T

t

CR r t


 (32)

1

() ()
T

r
t

SAE y t y t


  (33)

Fig. 5. Learning curves of MP-RLC, DDPG, and GPC evaluated by CR(a) and
SAE(b) on the linear system.

Fig. 5 shows the CR and SAE curves of the three control
algorithms, which are evaluated at an interval of 10 episodes
during the training phase. And it lasted 200 episodes in total.
The shaded areas represent 95% confidential intervals around
the mean value based on the 7 experiments with different
random seeds for training. It can be seen from the figures that
both CR and SAE values of GPC are constants, indicating that
the GPC does not have any learning performance during the
training phase. Besides, to achieve the same CR or SAE value,
MP-RLC required less episodes of training than the standalone
DDPG, which illustrates that MP-RLC does have better sample
efficiency than the DDPG algorithm. In addition, MP-RLC
leads to a better control performance than GPC and DDPG after
200 episodes of training. The reason that MP-RLC out-
performed GPC might be the former optimizes the control
performance under a longer horizon than the later. Table 2
shows the mean values of CR and SAE for the three control
algorithms evaluated after 200 episodes. It is shown that the CR
value of MP-RLC is about 46% greater than that of DDPG,
while the SAE value is about 62% lower than that of DDPG.
Fig. 6 shows a comparison of the control performances of MP-
RLC and DDPG after 200 episodes of training. From the output
responses (Fig. 6(a)(c)) and the control input (Fig. 6(b)(d)), it
can be seen that the control performance obtained by MP-RLC
is much better than that of DDPG because of the smaller control
error and more stability at the steady state.

Table 2. Mean value of metrics after training.
Metrics MP-RLC DDPG

CR 574.713 393.505

SAE 765.503 2060.577

Fig. 6. Comparison of the control performances of MP-RLC and DDPG: (a)
and (b) are, respectively, output response and control input of MP-RLC; (c) and
(d) are, respectively, output response and control input of the DDPG.

B. Case 2: Continuous Stirred Tank Reactor (CSTR)

CSTR is a typical chemical process widely used in the
modern chemical industry. To keep the safety, stability and
efficiency of the reaction, the key variables of the process
should be controlled effectively. For the complicated chemical
reaction, the temperature control is especially challenging
because of the complicated heat-releasing or heat-absorption
dynamics. Thus the temperature control of the CSTR has
become a benchmark to the control schemes.

There is an irreversible exothermic reaction from the
reactant A to product B in the CSTR. According to the law of
material balance and energy conservation, the continuous-time
model of CSTR is as follows [29]:

0

/
() exp()A Af A A

r

q E R
C C C k C

v T
   


 (34)

0

/
() exp() ()r f r A c r

p r p

q H E R UA
T T T k C T T

V C T V C 
 

    


 (35)
where CT is the only manipulated variable, referring to the

temperature of the coolant. rT and AC are the controlled
variable, representing the temperature of CSTR and
concentration of the residual reactant A, respectively. AfC is

the feed concentration and fT is the feed temperature, both of

which are disturbing variables. The initial value of AC is

0.5mol/L and fT is 350K, which is a steady-state operation

point. Other parameters we used in the simulation are given in
Table 3 [29]. To demonstrate the proposed MP-RLC scheme
has the ability to deal with time delay, it is assumed there is a
pure input time delay in the process.

To demonstrate the applicability and effectiveness of
proposed scheme, MP-RLC, standalone DDPG and standalone
GPC are applied to the temperature control of a numerical
CSTR system. The design of GPC is still based on a following
simplified discrete-time model obtained by a simple model
identification algorithm.

3
2

0.1754
()

0.8154
G z z

z



 (36)

Table 3. Parameters of CSTR
Parameter Description Value

q Volumetric flowrate 100L/min

AfC Feed concentration 1mol/L

fT Feed temperature 350K

V Volume of CSTR 100L

 Density of A-B mixture 1000g/L

/E R Activation energy/Universal gas
constant

8750K

H Heat of reaction -1.2×104J/mol

0k Pre-exponential factor 7.2×1010/min

pC Heat capacity 0.239J/(g·K)

UA Heat transfer coefficient times area 5×104J/(min·K)

sT Sampling time 0.1s

dT Pure time delay 0.3s

In the testing phase, CR(with the same reward ()r t as case
1) and SAE are used to evaluate three algorithms. Hyper-
parameters and some parameters used in the MP-RLC and
DDPG are given in Table 1.

Fig. 7. Learning curves of MP-RLC, DDPG, and GPC evaluated by CR (a) and
SAE (b) on the CSTR system.

Fig. 7 shows the CR and SAE curves of the three control
algorithms, which are evaluated at an interval of 10 episodes
during the training phase. MP-RLC can result in higher CR
values and lower SAE than standalone DDPG, which shows
that MP-RLC has better sample efficiency than standalone
DDPG. Moreover, MP-RLC get slightly higher CR value than
standalone GPC. But Fig. 7(b) shows that MP-RLC get almost
same SAE value as GPC, which means the optimization ability
of RL are somewhat limited by GPC. One might wonder why
we need to use RL, the reason is that we expect RL can gurantee
the continuous improvement of the control performance and
finally leads to a better control control performance than GPC.
Table 4 indicates MP-RLC outperforms DDPG at the end of
training by about 13 times on CR and about 94% on SAE
because of DDPG’s collapse after the 500th episode. The
simulation results demonstrate that the proposed MP-RLC
scheme can be used for the process control of the nonlinear
system with a significant time delay.

Fig. 8. Comparison of the control performances of MP-RLC and DDPG: (a)
and (b) are, respectively, the output response and control input of MP-RLC; (c)
and (d) are, respectively, the output response and control input of DDPG.

Table 4. Control performance of MP-RLC and DDPG
Metrics MP-RLC DDPG

CR 2293.706 155.384
SAE 124.321 2312.689

V. CONCLUSIONS

For the complicated process control problem, RL algorithm
cannot find the optimal policy quickly due to the low sample
efficiency. To solve this problem, an MPC guided RL scheme
is proposed in this paper. The proposed scheme executes
actions by directly combining the outputs of MPC with the
actions of the DDPG in the training phase, which results in the
more effective training data. Two typical simulation cases are
conducted on a third-order linear system and the CSTR
nonlinear system both with time delay. The simulation results
show that our proposed scheme possesses higher sample
efficiency than RL scheme without guidance and can achieve
better control performance. The future work can focus on that
how to free RL from the limitation of guiding algorithm along
with iterations. This paper provides a new method to apply RL
technique to the process control.

REFERENCES

[1] J. Hoskins and D. Himmelblau, "Process control via artificial neural
networks and reinforcement learning," Computers & chemical
engineering, vol. 16, no. 4, pp. 241-251, 1992.

[2] H. Benbrahim and J. A. Franklin, "Biped dynamic walking using
reinforcement learning," Robotics and Autonomous Systems, vol. 22, no.
3-4, pp. 283-302, 1997.

[3] D. Ernst, M. Glavic, and L. Wehenkel, "Power systems stability control:
reinforcement learning framework," IEEE transactions on power systems,
vol. 19, no. 1, pp. 427-435, 2004.

[4] R. S. Sutton, A. G. Barto, and R. J. Williams, "Reinforcement learning is
direct adaptive optimal control," IEEE Control Systems Magazine, vol. 12,
no. 2, pp. 19-22, 1992.

[5] V. Mnih et al., "Human-level control through deep reinforcement
learning," Nature, vol. 518, no. 7540, p. 529, 2015.

[6] D. Silver et al., "Mastering the game of go without human knowledge,"
Nature, vol. 550, no. 7676, pp. 354-359, 2017.

[7] J. M. Lee and J. H. Lee, "Neuro-dynamic programming method for mpc,"
IFAC Proceedings Volumes, vol. 34, no. 25, pp. 143-148, 2001.

[8] J. M. Lee and J. H. Lee, "Approximate dynamic programming-based
approaches for input–output data-driven control of nonlinear processes,"
Automatica, vol. 41, no. 7, pp. 1281-1288, 2005.

[9] J. M. Lee, N. S. Kaisare, and J. H. Lee, "Choice of approximator and
design of penalty function for an approximate dynamic programming
based control approach," Journal of process control, vol. 16, no. 2, pp.
135-156, 2006.

[10] F. L. Lewis and D. Vrabie, "Reinforcement learning and adaptive
dynamic programming for feedback control," IEEE circuits and systems
magazine, vol. 9, no. 3, pp. 32-50, 2009.

[11] S. Spielberg, A. Tulsyan, N. P. Lawrence, P. D. Loewen, and R. B.
Gopaluni, "Towards Self‐Driving Processes: A Deep Reinforcement
Learning Approach to Control," AIChE Journal, 2019.

[12] T. P. Lillicrap et al., "Continuous control with deep reinforcement
learning," 2015.

[13] Y. Ma, W. Zhu, M. G. Benton, and J. Romagnoli, "Continuous control of
a polymerization system with deep reinforcement learning," Journal of
Process Control, vol. 75, pp. 40-47, 2019.

[14] P. Petsagkourakis, I. O. Sandoval, E. Bradford, D. Zhang, and E. A. del
Rio-Chanona, "Reinforcement learning for batch bioprocess
optimization," Computers & Chemical Engineering, vol. 133, p. 106649,
2020.

[15] T. A. Badgwell, J. H. Lee, and K.-H. Liu, "Reinforcement learning–
overview of recent progress and implications for process control," in
Computer Aided Chemical Engineering, vol. 44: Elsevier, 2018, pp. 71-
85.

[16] S. Levine and V. Koltun, "Guided policy search," in International
Conference on Machine Learning, 2013, pp. 1-9.

[17] M. Deisenroth and C. E. Rasmussen, "PILCO: A model-based and data-
efficient approach to policy search," in Proceedings of the 28th
International Conference on machine learning (ICML-11), 2011, pp. 465-
472.

[18] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, "Learning deep control
policies for autonomous aerial vehicles with mpc-guided policy search,"
in 2016 IEEE international conference on robotics and automation
(ICRA), 2016, pp. 528-535: IEEE.

[19] S. Kamthe and M. P. Deisenroth, "Data-efficient reinforcement learning
with probabilistic model predictive control," arXiv preprint
arXiv:1706.06491, 2017.

[20] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
"Deterministic policy gradient algorithms," 2014.

[21] V. R. Konda and J. N. Tsitsiklis, "Actor-critic algorithms," in Advances
in neural information processing systems, 2000, pp. 1008-1014.

[22] V. Mnih et al., "Human-level control through deep reinforcement
learning," Nature, vol. 518, p. 529, 02/25/online 2015.

[23] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[24] D. W. Clarke, C. Mohtadi, and P. Tuffs, "Generalized predictive control—
Part I. The basic algorithm," Automatica, vol. 23, no. 2, pp. 137-148, 1987.

[25] S. P. K. Spielberg, R. B. Gopaluni, and P. D. Loewen, "Deep
reinforcement learning approaches for process control," in 2017 6th
International Symposium on Advanced Control of Industrial Processes
(AdCONIP), 2017, pp. 201-206.

[26] M. Hausknecht and P. Stone, "Deep recurrent q-learning for partially
observable mdps," in 2015 AAAI Fall Symposium Series, 2015.

[27] V. Nair and G. E. Hinton, "Rectified linear units improve restricted
boltzmann machines," in Proceedings of the 27th international
conference on machine learning (ICML-10), 2010, pp. 807-814.

[28] R. Girshick, "Fast r-cnn," in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440-1448.

[29] J. D. Hedengren, "A nonlinear model library for dynamics and control,"
Yeast, vol. 7, p. 24, 2008.

