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Abstract—Deep Reinforcement Learning (DRL) is an artificial 
intelligence technology that can complete decision-making tasks 
by interaction. It has been successfully applied to various games. 
However, there are still many challenges when this technique is 
applied to the industrial process control due to the low sample 
efficiency and the inability to deal with large time delay. In this 
paper, a novel Model Predictive Control (MPC) guided Reinforce-
ment Learning Control (MP-RLC) scheme is proposed for the 
process control. In this scheme, Model predictive control is 
directly combined with Reinforcement Learning (RL) to guide the 
training process, thus greatly improving the sample efficiency of 
reinforcement learning and effectively solving the problem of time 
delay. The simulation results on both a third-order linear system 
and a nonlinear continuous stirred tank reactor (CSTR) system 
with large time delay demonstrate that this scheme can not only 
accelerate the training process but also improve the control 
performance, which is superior to both standalone RL and MPC 
schemes. The proposed approach may help to pave the way for 
DRL applied to industrial processes. 

Keywords—Deep reinforcement learning, Model predictive 
control, Time delay, Process control. 

I. INTRODUCTION  

Reinforcement Learning (RL) is an artificial intelligence 
technology that has been studied in different fields for a long 
time, such as process control [1], robotics [2] and power systems 
[3], etc., and it has attracted widespread attention in recent years. 
RL can learn an optimal closed-loop control only through 
interacting with the environment, and it possesses two features 
superior to the conventional feedback control. One is RL can 
learn an optimal control almost without any prior knowledge 
required. The other is RL can work as a direct adaptive optimal 
control for nonlinear systems [4]. In recent years, with the rapid 
development of Deep Learning (DL) methods, Deep Reinforce-
ment Learning (DRL) leverages Deep Neural Networks (DNNs) 
as its function approximator [5] which brings RL with the 
capability of controlling not only systems with high dimensional 
input and output but also complex nonlinear systems. Recently, 
DRL has attained great success in computer games and board 
games. For instance, human-level control has been achieved in 
video games [5], and even human experts were defeated by DRL 
in GO game [6]. 

Researchers have done some pioneering works trying to 
apply DRL or similar methods in chemical process control. In 
the 1990s, Hoskins et al. [1] used improved AHC (Adaptive 
Heuristic Critic), essentially a RL algorithm combined with 

neural networks, to deal with the process control problem. Lee 
et al. [7-9] developed a series of ADP (Approximate Dynamic 
Programming or Adaptive Dynamic Programming) algorithms 
for process control tasks. ADP is a type of RL algorithm often 
studied in the control system community [10], and it leverages 
function approximators like neural networks to overcome the 
shortcomings of dynamic programming. Recently, Spielberg et 
al. [11] developed a DRL control scheme, called Deep Deter-
ministic Policy Gradient (DDPG) [12], and gave the test results 
on the numerical linear and nonlinear processes to demonstrate 
the feasibility and effectiveness of DRL, and then Ma et al. [13] 
extended the application of a similar method to a numerical 
polymerization process. More recently, Petsagkourakis et al. [14] 
managed to use DRL for a real batch bioprocess. All of these 
studies show that the development and application of RL 
technology in process control are attracting wide attention. 

However, there are still some challenges in applying RL to 
actual industrial process control. Originated from trial-and-error 
learning, so DRL usually needs a lot of exploratory interactions 
with the environment, which may result in low sample 
efficiency and high consuption of time or resources that may not 
be allowed in practices [15]. Also, RL is an optimization 
algorithm based on Markov Decision Processes (MDP). But for 
most of the actual industrial processes, due to the inevitable time 
delay and slow response, the Markov property of the process 
dynamics cannot be guaranteed, that is, the current action not 
only influences the next state (and reward) but also the later ones. 
Although this problem can be solved by extending the state with 
historical data [11, 13], it also leads to slower convergence with 
a high dimension. 

To improve the sample efficiency of RL, several different 
ways has been proposed [15], and for process control tasks, one 
obvious and appropriate way is to employ a conventional 
feedback control scheme to guide the sample and training 
processes of RL. For instance, Guide Policy Search (GPS) 
developed by Levine et al.[16] uses the optimal control to guide 
the policy search of RL, which greatly improves the sample 
efficiency of the RL. For the time delay problem, a predictive 
model is usually helpful by estimating the delayed time. 
Meanwhile, the predictive model usually can make RL more 
data-efficient because richer information besides reward is used. 
Comprehensively, considering the two solutions above, Model 
Predictive Control (MPC), which is widely used in process 
industries, could be used to guide RL’s training process in this 
scenario.  
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In this paper, a novel Model Predictive Control guided 
Reinforcement Learning Control (MP-RLC) scheme is 
proposed. In this control scheme, the action of the DRL is 
directly guided by the MPC control law in a simple but very 
efficient way. Through the numerical simulations on a linear 
system and the nonlinear continuous stirred tank reactor (CSTR) 
system with large time delay, it is demonstrated that the 
proposed MP-RLC scheme has advantages in two aspects: First, 
the sample efficiency of RL is improved significantly. Second, 
MP-RLC can achieve better control performance even on a non-
linear system with a large time delay.  

Despite that the basic idea of this work is closely related to 
some model-based RL algorithm combined with model 
predictive control [17-19], the way of the guidance proposed in 
this paper is quite different. For example, in MPC-Guided Policy 
Search [18], the guidance is offline and based on the MPC 
runtime data, however, the guiding method proposed in this 
paper is online and directly based on the action of MPC, which 
makes the implementation of the algorithm simpler and results 
in the parallel control structure of MPC and RL during the 
training phase. Besides, PILCO [17] and GP-MPC [19] leverage 
Gaussian Processes as the predictive model and especially for 
GP-MPC, it explicitly uses MPC. They both achieve good 
sample (data) efficiency. However, our method is not limited to 
MPC, it is a framework offering a potential way to combine any 
conventional control scheme with the RL, therefore it is more 
practical in the scenario of industrial process control.  

The rest of the paper is organized as follows: Section Ⅱ 
provides the preliminaries of RL and MPC. Section Ⅲ presents 
the MP-RLC algorithm. Tests on numerical systems and 
discussions are presented in Section Ⅳ, aiming to verify the 
effectiveness of the scheme. Section Ⅴ gives conclusions and 
perspectives. 

II. PRELIMINARIES 

In this paper, MPC is employed to guide RL to complete 
control tasks, thus there are two control methods concerned in 
our scheme. In this section, the brief introductions about RL and 
MPC together with the corresponding algorithms used are given. 

A. Reinforcement Learning(RL) 

RL is a data-driven artificial intelligence algorithm, 
originated from trial-and-error learning. It realizes optimal 
decision-making through continuous interactions with the 
environment. From the viewpoint of control theory, RL can be 
regarded as a direct adaptive optimal control [4]. Fig. 1 shows 
the basic framework of RL. 

There are two core elements in the RL algorithm. One is the 
agent which is working as a self-optimized controller, another 
is the environment E  which is everything except for the agent. 
At every timestep t , the agent executes the control action ( )a t  
according to the states ( )s t  observed from the environment, 
then the environment responses to the action and provides the 
scalar reward ( )r t  based on the performance. The policy

: S A   , a mapping from state space dS     to action 
space mA  , represents how the agent acts in the 

environment. The aim of the agent is to learn an optimal policy 
* to maximize the cumulative rewards.  

Fig. 1. The framework of Reinforcement Learning 

In this paper, a DRL algorithm, Deep Deterministic Policy 
Gradient (DDPG) [12], is employed, which is developed from 
the Deterministic Policy Gradient (DPG) method [20]. It offers 
a deterministic policy and has shown excellent performance in 
the control tasks with continuous action spaces. 

DDPG inherits the framework of the Actor-Critic algorithm 
[21], and it adopts two important techniques of Deep Q-
Network (DQN) [22]. One is a replay buffer used to minimize 
the correlations of the training data, and the other is the separate 
target networks which are helpful for a stable and robust 
training process. Thus, there are four networks, including a 
policy network (Actor), a value network (Critic) and their own 
target networks.  

Mathematically, the training process of DDPG is to update 
the value network and policy network alternatively based on the 
optimality. The final aim of DDPG is to train an optimal 
deterministic policy network * , which can maximize the 
following expected discounted return [23]. 
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agent follows policy  . Silver et al. [20] has proved that the 
deterministic policy gradient J
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where   indicates the policy network parameterized by  .   
is the state distribution, which can be determined by a behavior 
policy different with   because DDPG is off-policy. The value 
network Q  is a mapping from state ( )s t  and action ( )a t  to the 
cumulative rewards defined by: 
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k t
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The loss of value network is as follow: 
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where 

 '( ) ( ( ), ( )) '( ( 1), ( 1) | )Qy t r s t a t Q s t a t      (5) 
The target value function is denoted by Q . To ensure the 

stability of the training process, the target networks’ parameters 
Q  and '  are updated by exponential moving average. 

 (1 )Q Q Q        (6) 

 ' '(1 )         (7) 

where [0,1]   is an update rate.  

 The pseudo-code of a simplified DDPG algorithm is 
summarized in Algorithm 1. More details refer to Lillicrap et al. 
[12] 

Algorithm 1. DDPG 
1. Randomly initialize the weights Q  of the critic  

network  and   of the policy network 
2. Copy Q   to Q   and   to    
3. Reset a replay buffer R  
4. for the episode k  from 1 to P , do 
5.     Get the initial state from the environment 
6.     Initialize a noise ( )t  for exploration   

7.     for the step t  from 1 to T , do 

8.       Get the action ( ) ( ( ) ( )| )a t t ts     

9.       Execute the action to the environment 
10.     Observe the new state ( 1)s t   and reward tr  

11.     Store ( ( ), ( ), ( ), ( 1))s t a t r t s t   in R  

12.     Randomly sample a batch data from R  
13.     Set label ( )y t  for the value network Q  

14.    Update the value network Q by minimizing the 

loss function (4) 

15.     Update policy network   based on the gradient 
J

  given in (2) 

16.     Update the two target networks by (6) and (7) 
17.  end for 
18. end for 

B. Model Predictive Control (MPC) 

MPC is an advanced control technique widely used in 
process industries. The basic idea of the MPC is to use the 
process model to predict the output of the process at every 
timestep, then MPC determines the optimal control sequence 
that minimizes an objective function defined over a receding 
horizon and executes only the first step of the sequence. MPC 
makes the closed-loop control system have better robustness 
than the traditional control schemes. 

In this paper, we choose Generalized Predictive Control 
(GPC) which is a typical MPC scheme proposed by Clarke et al. 
[24]. For simplicity, it is assumed that a process is a single-input-
single-output (SISO) system described by the following 
Controller Auto-Regressive Integrated Moving Average 
(CARIMA) model : 

 1 1( ) ( ) ( ) ( ) ( )A z y t B z u t w t     (8) 

where 1z  represents the unit backward shifting operator, A  
and B  are the following polynomials of 1z determining the 
dynamics of the process, ( )w t  represents the noise or 
uncertainty of the model.  
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The objective function to minimize in GPC is a quadratic 
function of predictive performance over a receding horizon: 
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where ˆ( | )y t i t  is the i -step ahead predictive output of the 

system at time step t , and ry  is the set-points, 1n  and 2n are the 

prediction horizon and the control horizon, respectively.  i  

and  i  denote weighting factors.  

To get the control law, we need to construct the predictive 
outputs first. It can be computed recursively by model (8): 
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Note that 2A  is a non-singular matrix, then it results in 

 
1 1 1

1 1
-1(| ) (| ) ( ) (| )t t t

t n t n t nt 
    -1 -1

2 2 2y A B Δu F A w  (15) 

where 

 1 1( ) (| ) (| )t m t n
t tt     -1 -1

2 1 2 1F A B Δu A A y  (16) 



1

1(| )k
k n

w  consists of disturbance signals in the future, which is 

an unknown variable and here we assume it is the Gaussian 
white noise. Now the predictive model is defined as follows: 
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where -1
2 2G = A B , ( )tF  represents the free-response when both 

outside disturbance signals and control increment of predictive 
control are zero. Equation (17) is the predictive model when 1n  

equals to 2n , but if 1 2n n , G should be modified and the 
predictive model changes to 
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Then the control law that makes objective function reach 
minimum can be derived, 
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In GPC, at every timestep only the first value of 
2 1(| )t

t n Δu  is 

used. So the control law can be written as: 

1

1( ) ( (| ) ( ))t
r t nu t t
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where K  refers to the first row of T -1 Τ(G QG +R) G Q . 

III. MPC GUIDED RL ALGORITHM 

In order to solve the problems of low sample efficiency of 
DRL for process control especially on systems with large time 
delay. We proposed MPC guided RL control scheme in this 
section. By using this approach, we expect to get an RL control 
scheme with better sample efficiency and excellent control 
performance even applied to the nonlinear processes with time 
delay. 

A. Basic elements 

Several basic elements, including state, action, reward and 
two main neural networks of the MP-RLC, should be carefully 
designed according to the specific task. 

1) State:  
For process control, the state used by RL usually consists of 

the real-time output information ( )y t  and the set-point infor-

mation ( )ry t  [25] as follows: 

 ( ),( ( )))  (rs t y t y t  (25) 

 ( ) ( ( ( ),  )) )( - ( )  ry t y t y ts t   (26) 

However, when applied RL to a process with time delay, the 
task turns to a Partially Observed Markov Decision Process 
(POMDP) [26]. To satisfy the Markov property, the following 
extended state should be used: 
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where ( )u t  is the control action executed on the process. yT  and 

aT  are, respectively, the extended timestep lengths of the 
process output and the control action.  

2) Action: 
 The action of the DDPG is the output of the policy network, 

denoted by ( )a t , while the action of GPC, determined by the 

control law (24), is denoted by ( )MPCu t . The action executed on 
the process of MP-RLC in the training phase is the combination 

of ( )a t  and ( )MPCu t , which will be illustrated later. In the 
testing phase, the action is the output of the policy without 
exploration added.  

3) Reward:  
The reward function of RL is the key factor for the control 

performance of the closed-loop system. It is usually designed 
based on the control error. Inspired by the quadratic cost 
function of GPC, the reward function is designed as a truncated 
quadratic function as follows:  
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where ( ) ( ) ( )re t y t y t   indicates the control error and  is a  
tolerance. 

4) Policy and value networks: 
Both policy and value networks are 3-layer neural networks 

with ReLU [27] as the activation function of the hidden layer. 
The policy networks leverage tanh (case 1) or ReLU (case 2) as 
the activation function of the output layer, while the value 
networks’ output layers have no activation function. 
Optimization algorithm Adam is used to train parameters of the 
networks and smooth L1 loss [28] is used to modify the loss of 
the value network in (4). The structures of the policy network 
and value network are shown in Fig. 2. 

Fig. 2. The structures of the policy network (a) and the value network (b). 

 



B. MP-RLC scheme 

To guide the optimization of RL in the training phase, the 
control output of GPC is combined with the action output of the 
policy network leading to the guiding control law as follows: 

( ) ( ) (1 ) ( )MPCu t u t a t        (29) 

where ( )u t  is the control action of MP-RLC and   is the 
weighting factor, which is a hyperparameter selected by trials. 

The block diagram of the MP-RLC scheme is shown in Fig. 
3. It can be seen from the figure that the whole control system 
consists of two parallel control loops, one is the GPC loop and 
the other is the DDPG control loop. In this control scheme, GPC 
plays a guiding role by applying its control action directly to the 
process to obtain more effective state and reward information 
used for DDPG training. 

Fig. 3. Block diagram of the MP-RLC scheme. 

The implementation of the MP-RLC scheme is divided into 
the training phase and testing phase. In the training phase, the 
main task is to optimize the policy network and value network 
by the DDPG algorithm, while in the test phase, the policy 
network, as the process controller, is evaluated.  

The training phase consists of two parts. The first is the 
interaction part, and the second is the updating part. The 
interaction part mainly focuses on obtaining the training data 
through interaction with the process. During the interaction part, 
the GPC and the DDPG’s policy network are implemented as 
controllers according to control law (29), and the process then 
gives the state transition and reward, which are then stored as 
tuples in replay buffer. In the updating part, experience in replay 
buffer are sampled to train the value network and policy network 
according to the optimization algorithm described in the last 
section. The pseudo-code of the algorithm at the training phase 
is summarized in Algorithm 2.  

Algorithm 2. MP-RLC 

1. Randomly initialize the value network Q  and policy 

 network   
2. Initialize Q  and     with Q  and  , respectively. 

3. Set a replay buffer R  

4. Set the initial values 1
0(| )m Δu and 1

0(| )n y  for GPC 

5. for the episode k  from 1 to P , do 
Interaction part: 
6.      Give the set-point ry  for the episode k  

7.      Initialize a queue with the size of 1RST   

8.      Initialize a Gaussian noise ( )t  for exploration   

9.      for the step t  from 1 to T , do 
10.      Sample ( )s t   from the environment 

11.      Get action from the output of the policy network: 

  ( ) ( ) ( )|a t s t t     

12.      Get 1(| )t m
t
 Δu  by the control law (24) 

13.      Get the output of GPC ( ) ( 1) ( )MPC MPCu t u t u t    

14.      Calculate the control ( )u t  by control law (29) 

15.      Execute ( )u t  to the process, and observe ( )y t  

and ( )r t  

16.      Generate extend state as follows: 
 ( 1) (( ,  ( 2)  ),

               , ( ( 1),

( 1) , , ( )

( 1 ( ,) ) ( ) ))2
y y

r a a

s t y y t T

y u t T u t T

t T y t

u tt

   

   

 

 


 

17.      Push the element ( ( ), ( ), ( 1))s t u t s t   into the queue 

18.     Take out the element in the head of the queue and 
insert ( )r t into the element to form a sample data  

( ( ), ( ), ( ), ( 1))RS RS RSs t T u t T r t s t T    , and then 

store it  into the buffer R  
Updating part: 
19.      Randomly sample N  tuples from the buffer R  
20.      Update the weights of the value network Q  by  

minimizing the loss function (4) 
21.      Update the policy network   according to the  

gradient calculated in (2) 
22.      Update the two target networks by (6) and (7)  
23.    end for 
24.end for 

Remark：Step 16 is used to extend the state with historical 

observations and actions, where the lengths yT  and aT  should 

be determined according to the time constant of the predictive 
model. Step 7, 17 and 18 are related to the “reward shifting” 
(RS) operation, in which the shifting step RST  is determined 

according to the estimated time delay of the predictive model. 
When the time delay of the model is significant, the over-
extended state can be avoided by using the reward shifting 
operation. When there is a large model mismatch or uncertainty, 
the Markov property can be guaranteed by selecting a relatively 

large yT  and aT . 

IV. NUMERICAL ILLUSTRATIONS 

In order to demonstrate the feasibility and effectiveness of 
the proposed algorithm, the MP-RLC scheme is implemented 
on two types of numerical systems in this section. One is a third-
order linear system, and the other is a CSTR system, which is a 
typical nonlinear system commonly used in the chemical 
industry [29]. 

A. Case 1: Linear system 

To verify the effectiveness and advantages of our approach, 
the proposed MP-RLC scheme, standalone GPC scheme and 
standalone DDPG algorithm are all implemented and tested on 

 

 



a discrete-time linear system with the 3rd-order dynamics and 
pure time delay, which is modeled by the following discrete 
time transfer function: 

1 2 3
6

1 2 3

2.651 5.298 0.5805
( )

1 1.454 0.5285 0.04736

z z z
G z z

z z z
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
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 


  
  (30) 

Considering the inevitable model mismatch in practical 
applications, it is assumed that the predictive model used for 
controller design is the following simplified first-order plus 
time-delay (FOPD) model obtained by a simple model 
identification algorithm which is omitted for clarity. 
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Fig. 4. Step responses of the process and the simplified model. 

The step responses of the model (31) and the process (30)
are shown in Fig. 4 which illustrates the model mismatch and 
time delay. The parameters used in the MP-RLC and DDPG are 
given in Table 1. 

Table 1. Parameters and hyperparameters for MR-RLC algorithm 
Notation Description Case 1 Case 2 

P  Number of episodes 200 2000 

T  Length of per episode 300 100 

  Combination factor in MP-RLC 0.8 0.5 

1n   Prediction horizon 30 10 

2n  Control horizon 30 10 

   Weighting factor of  GPC. 0.000001 0.173 

   Weighting factor of GPC. 1 1 

N   Minibatch size 128 128 

yT   Output history step in the state 5 20 

aT  Action history step in the state 20 0 

RST  Reward shift step 7 0 

A  Action space [-1,1] [273,500] 

   Tolerance in reward function 5 0.3 

b  Scale factor in reward function 1 5 

c  Scale factor in reward function 1 5 

  Discount factor 0.99 0.99 

   Update rate of target networks 0.001 0.001 

- Length of steps for testing 600 600 

- Learning rate of Critic 0.001 0.001 

- Learning rate of Actor 0.001 0.001 

- Buffer size 1000000 1000000 

- Initial standard deviation of noise 6 20 

- Decay factor of noise per step 0.99999 0.9995 

To compare the efficiency and control performance of the 
three control schemes, the set-point tracking tests are conducted. 
Cumulative Rewards (CR) of one episode defined by (32) and 
the Sum of Absolute Errors (SAE) of one episode defined by 
(33) are used to evaluate the control performance of the three 
algorithms. CR matches the objective of RL and is suitable for 
evaluating the sample efficiency, while SAE is more 
comprehensive for the control performance.  

1

( )
T

t

CR r t


   (32) 

1

( ) ( )
T

r
t

SAE y t y t


    (33) 

Fig. 5. Learning curves of MP-RLC, DDPG, and GPC evaluated by CR(a) and 
SAE(b) on the linear system. 

Fig. 5 shows the CR and SAE curves of the three control 
algorithms, which are evaluated at an interval of 10 episodes 
during the training phase. And it lasted 200 episodes in total.  
The shaded areas represent 95% confidential intervals around 
the mean value based on the 7 experiments with different 
random seeds for training. It can be seen from the figures that 
both CR and SAE values of GPC are constants, indicating that 
the GPC does not have any learning performance during the 
training phase. Besides, to achieve the same CR or SAE value, 
MP-RLC required less episodes of training than the standalone 
DDPG, which illustrates that MP-RLC does have better sample 
efficiency than the DDPG algorithm. In addition, MP-RLC 
leads to a better control performance than GPC and DDPG after 
200 episodes of training. The reason that MP-RLC out-
performed GPC might be the former optimizes the control 
performance under a longer horizon than the later. Table 2 
shows the mean values of CR and SAE for the three control 
algorithms evaluated after 200 episodes. It is shown that the CR 
value of MP-RLC is about 46% greater than that of DDPG, 
while the SAE value is about 62% lower than that of DDPG.  
Fig. 6 shows a comparison of the control performances of MP-
RLC and DDPG after 200 episodes of training. From the output 
responses (Fig. 6(a)(c)) and the control input (Fig. 6(b)(d)), it 
can be seen that the control performance obtained by MP-RLC 
is much better than that of DDPG because of the smaller control 
error and more stability at the steady state. 

Table 2. Mean value of metrics after training. 
Metrics MP-RLC DDPG 

CR 574.713 393.505 

SAE 765.503 2060.577 

 

 

 

 

 

 



Fig. 6. Comparison of the control performances of MP-RLC and DDPG: (a) 
and (b) are, respectively, output response and control input of MP-RLC; (c) and 
(d) are, respectively, output response and control input of the DDPG. 

B. Case 2: Continuous Stirred Tank Reactor (CSTR) 

CSTR is a typical chemical process widely used in the 
modern chemical industry. To keep the safety, stability and 
efficiency of the reaction, the key variables of the process 
should be controlled effectively. For the complicated chemical 
reaction, the temperature control is especially challenging 
because of the complicated heat-releasing or heat-absorption 
dynamics. Thus the temperature control of the CSTR has 
become a benchmark to the control schemes.  

There is an irreversible exothermic reaction from the 
reactant A to product B in the CSTR. According to the law of 
material balance and energy conservation, the continuous-time 
model of CSTR is as follows [29]: 
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 (35) 
where CT  is the only manipulated variable, referring to the 

temperature of the coolant. rT  and AC  are the controlled 
variable, representing the temperature of CSTR and 
concentration of the residual reactant A, respectively. AfC  is 

the feed concentration and fT  is the feed temperature, both of 

which are disturbing variables. The initial value of AC  is 

0.5mol/L and fT  is 350K, which is a steady-state operation 

point. Other parameters we used in the simulation are given in 
Table 3 [29]. To demonstrate the proposed MP-RLC scheme 
has the ability to deal with time delay, it is assumed there is a 
pure input time delay in the process. 

To demonstrate the applicability and effectiveness of 
proposed scheme, MP-RLC, standalone DDPG and standalone 
GPC are applied to the temperature control of a numerical 
CSTR system. The design of GPC is still based on a following 
simplified discrete-time model obtained by a simple model 
identification algorithm. 
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Table 3. Parameters of CSTR 
Parameter Description Value 

q  Volumetric flowrate 100L/min 

AfC  Feed concentration 1mol/L 

fT  Feed temperature 350K 

V  Volume of CSTR 100L 

  Density of A-B mixture 1000g/L 

/E R  Activation energy/Universal gas 
constant 

8750K 

H  Heat of reaction -1.2×104J/mol 

0k  Pre-exponential factor 7.2×1010/min 

pC  Heat capacity 0.239J/(g·K) 

UA  Heat transfer coefficient times area 5×104J/(min·K) 

sT  Sampling time 0.1s 

dT  Pure time delay 0.3s 

In the testing phase, CR(with the same reward ( )r t  as case 
1) and SAE are used to evaluate three algorithms. Hyper-
parameters and some parameters used in the MP-RLC and 
DDPG are given in Table 1. 

Fig. 7. Learning curves of MP-RLC, DDPG, and GPC evaluated by CR (a) and 
SAE (b) on the CSTR system. 

Fig. 7 shows the CR and SAE curves of the three control 
algorithms, which are evaluated at an interval of 10 episodes 
during the training phase. MP-RLC can result in higher CR 
values and lower SAE than standalone DDPG, which shows 
that MP-RLC has better sample efficiency than standalone 
DDPG. Moreover, MP-RLC get slightly higher CR value than 
standalone GPC. But Fig. 7(b) shows that MP-RLC get almost 
same SAE value as GPC, which means the optimization ability 
of RL are somewhat limited by GPC. One might wonder why 
we need to use RL, the reason is that we expect RL can gurantee 
the continuous improvement of the control performance and 
finally leads to a better control control performance than GPC. 
Table 4 indicates MP-RLC outperforms DDPG at the end of 
training by about 13 times on CR and about 94% on SAE 
because of DDPG’s collapse after the 500th episode. The 
simulation results demonstrate that the proposed MP-RLC 
scheme can be used for the process control of the nonlinear 
system with a significant time delay. 

 

 

 

 

 



Fig. 8. Comparison of the control performances of MP-RLC and DDPG: (a) 
and (b) are, respectively, the output response and control input of MP-RLC; (c) 
and (d) are, respectively, the output response and control input of DDPG. 

Table 4. Control performance of MP-RLC and DDPG 
Metrics MP-RLC DDPG 

CR 2293.706 155.384 
SAE 124.321 2312.689 

V. CONCLUSIONS 

For the complicated process control problem, RL algorithm 
cannot find the optimal policy quickly due to the low sample 
efficiency. To solve this problem, an MPC guided RL scheme 
is proposed in this paper. The proposed scheme executes 
actions by directly combining the outputs of MPC with the 
actions of the DDPG in the training phase, which results in the 
more effective training data. Two typical simulation cases are 
conducted on a third-order linear system and the CSTR 
nonlinear system both with time delay. The simulation results 
show that our proposed scheme possesses higher sample 
efficiency than RL scheme without guidance and can achieve 
better control performance. The future work can focus on that 
how to free RL from the limitation of guiding algorithm along 
with iterations. This paper provides a new method to apply RL 
technique to the process control. 
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