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Abstract—Automatic image manipulation can be used to make
subtle changes at the pixel level resulting in morphism from
one domain to another. This is desirable in tasks such as
creating mock expressions for an individual or dynamic scene
generation in autonomous driving. This type of morphism can
be achieved using an adversarial model where the generator
and the discriminator compete to produce fake images of the
target domain. Due to high variance among the images, it is
difficult to learn an optimal loss function. Previously, manifold
matching of clusters in the source domain with labeled samples
and the target domain that is generated was used to overcome
this limitation. To generate videos it is common to use three-
dimensional convolution however, such a model has very high
complexity. Instead, in this paper we use manifold constrained
model selection to do a constrained clustering of the combined
manifold with fixed start and end images for the morphism. We
show that each step in the principal path connecting the centroids
is analogous to a single time delay in the video sequence. Hence,
we can construct a cascade of models using samples from a pair
of connected centroids such that one model is used to initialize
the next. We apply the model to smile generation from neutral
face expression and for predicting the next few frames while
driving on real roads. We are able to outperform the baselines
in the quality of images generated and the computational cost
for training the model.

Index Terms—Adversarial Networks, Bayesian Model Selec-
tion, Manifold Learning, Video Generation

I. INTRODUCTION

Automatic image manipulation can be used to generate
and annotate images for several tasks such as different facial
expressions of the same person [1], [2]. It may also be used
for visually pleasing animations where the landscape or objects
are changing. In such a model as we vary the source image x
then the corresponding generated images y will also change a
lot [3]. Here, the source domain is labeled image samples that
are easily available. The target domain are samples we want
to generate, as they are not easily available [4]. For example,
we may want to generate a smiling face given a single neutral
face image.

Such manipulation can be done at pixel level by training an
image generator and an image discriminator adversarially in a
min-max game. After several iterations of gradient descent on
each pixel independently the input image devoid of the sought
features will be adjusted enough to result in surreal images
giving a dreaming effect. For example, an existing image can
be altered so that it is ‘more cat like’, or we can make an
animal or other patterns appear in a cloud [5].

In particular, the generative adversarial network (GAN) is a
framework for estimating a generative model via an adversarial
process [6]. GANs are popular networks in natural language
processing research [7], [8] but also in multimodal analysis [9],
[10], especially in the area of image-to-image translation. This
task is defined as the transformation of a certain representation
of a scene into another representation of the same scene. GAN
have become popular due to their ability to generate sur-
prisingly realistic images. Other applications include semantic
segmentation of satellite and cityscape images [11].

A GAN is made up of a generator and a discriminator [12].
As shown in Figure 1, a generator aims to generate the
smiling face from the input neutral face and random noise. The
discriminator on the other hand will classify a generated smile
image as real or fake. However, training the discriminator
suffers from two limitations: firstly, the gradients often vanish
during adversarial training and secondly the gradients may
have large variances across samples [13], [14]. In this paper,
we overcome these limitations by constraining the learning
along a high density manifold. Previously, regularized k-means
has shown good results in image morphism from one shape
to another [15].

Figure 1 shows a sample video for smile generation. Here,
we can select a pair of face images labelled as neutral and
smiling. Next, the entire set of images in the training videos
are clustered such that the k centroids lie on the principal path
connecting the given pair of images [16]. Face images that
lie far from the principal path can be discarded as noise. We
train the first GAN only using images that lie close to the first
centroid. Similarly, the second GAN is initialized with weights
of the first GAN and then trained using images that lie close
to the second centroid in the path. In this way, a cascade of
GANs and the adaptive error is a weighted sum of the errors
of all the models [17]. We refer to the resulting model as
Constrained Adaptive Manifold Error Learning (CAMEL).

The organization of the paper is as follows: Section II
reviews related works and datasets on image translation;
Section III provides the preliminary concepts necessary to
understand the present work; Section IV details the proposed
model for generating videos; in Section V we validate our
method on two real world datasets and finally we provide
conclusions in Section VI.
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Fig. 1. Flowchart for the principal path GAN. For each cluster along the principal path t = 1 to Nc a virtual GANt is trained.

II. RELATED WORK AND CONTRIBUTIONS

Video prediction aims to learn a nonlinear transformation
function between given frames to predict subsequent frames.
Learning to generate future frames in a video sequence has
wide application in reinforcement learning based games and
robotics. Video representation is commonly done using sub-
sampling on a fixed number of input frames or pooling over
frames [18]. Most previous authors describe video generation
as a two-step process: first is motion generation and second
is content generation. For example, ImaGINator uses spatio-
temporal fusion to generate expressions from a single facial
image and emotion label [19]. However, complex cityscapes
cannot be modeled using a single image.

Recent work decompose a video into a static background,
a mask and moving objects prior to training a GAN [20]. The
traditional GAN suffers from high complexity and vanishing
gradients during training. To overcome this, Wasserstein or
Earth Movers GAN was proposed where the loss function is
defined as the cost of transporting pixels from source to target
distribution This is achieved by constraining the weights to be
in a range that results in instability and slow convergence [21].

GAN’s also need paired images in the source and target
domain during training. CycleGAN overcome this problem by
mimicking the cycle consistency in machine translation where
a phrase translate from English to French should translate from
French back to English. Hence, in this model the image output
from one generator is used as input to the second and the
output from the second generator is matched with the original
input [22].

Another author divided the task of generating videos into
content subspace and motion subspace [23]. Their model is
able to generate videos with the same content but different
motion as well as videos with different content and same
motion. The work in this paper is closest to the approach
described in [24] where video frames are drawn from a prior

that is a function of the past few frames. In this paper, we
are also inspired by the work done in [25] where spherical
clusters in the manifold of the source and target domain are
matched for training.

In [26], the authors used unlabeled videos to generated
tiny videos from any static starting images. Such a model
has very high complexity due to the additional temporal
parameters. However, in this paper we want to generate videos
for a particular labeled action such as a smile or driving on
a specific road. We can use a smaller number of samples
along the high density manifold that is obtained by clustering
the data. Next, we consider a cascade of models along the
principal path connecting the clusters that is able to capture
the morphism and hence the temporal dynamics. For example,
the starting point is a neutral face and the end point will be
a smiling face. In [27], the authors leverage on the fact that
temporally adjacent samples also correspond to neighbors in
the latent space. They consider spatial pooling to model linear
transformations. Instead, we model the temporal dependence
between the source and target domain via a principal path in
the latent space. Due to regularization, this will ensure smooth
transformation without the need for spatial pooling [17]. We
can summarize the main contributions of the paper as follows:

• Previous authors clustered source and target manifold and
then matched them before training the GAN. However,
we consider the principal path through the manifold from
source to target domain that connects the centroids of
different clusters.

• To capture temporal dependence previous authors used
spatial pooling in three-dimensional convolutional net-
works. Instead, we consider an adaptive model where
each step in the path is analogous to a single time delay in
the video sequence. Hence, we can construct a cascade of
models for each subsequent time delay where one model
is used to initialize the next.
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Fig. 2. Video GAN where three consecutive input frames are combined to predict the next output frame. The Generator acts as an encoder and the Discriminator
acts as a decoder. Each convolutional layer has three dimensional features of the size {x, y, z}

• The principal path uses Bayesian model selection to
ensure smooth morphism from source to target domain.
This will eliminate the need for tuning the parameters
during gradient descent.

Facial expressions such as a smile have a large variation due
to age, gender, and personality. Existing methods are unable
to cope with the rapidly changing intensities of a smile in
a face video [28]. It is necessary to have a memory model
that can adapt to the increasing or decreasing intensities of a
smile. Here, we select two high intensity images from different
emotions such as ‘Neutral’ and ‘Smile’ as the start and end
points. Next, we cluster the data into Nc clusters such that the
principal connecting path between the two points is minimal.
When each centroid in k-means clustering is restricted to be
a real frame the resulting clustering is known as k-medoids
clustering [29]. Hence, each medoid or centroid is a frame
sample in the cluster whose average dissimilarity to all the
other frames in the cluster is minimal. Choosing optimal initial
medoids in clustering is a challenging problem. Here, we only
select two medoids at a time and then cluster the data such
that the principal connecting path between the two points is
minimal.

It is worth mentioning that the principal path through the
manifold is in fact a principal component during dimension-
ality reduction. The choice of regularization parameter using
Bayesian model selection ensures that the solution is consistent
on different runs. The extent to which the path passes through
the data in the manifold also depends on the regularization
parameter. Lastly, such a minimum energy path achieves
smooth morphism from one image to another by proposing
moves of closing and filling gaps along the transition path.

III. VIDEO ADVERSARIAL NETS

In the adversarial training framework, a generative model
is pitted against an adversary that is a discriminative model

that learns to determine whether a sample is from the model
distribution or the data distribution. In the context of image
data, the generative model can be thought of as analogous
to a team of counterfeiters, trying to produce fake currency
and use it without detection, while the discriminative model
is analogous to the police, trying to detect the counterfeit cur-
rency. Competition in this game drives both teams to improve
their methods until the counterfeits are indistinguishable from
the genuine articles. Using this framework, we can train both
models using only the highly successful backpropagation and
dropout algorithms and sample from the generative model
using only forward propagation. In this paper we employ a
video GAN model where the discriminative model D takes
a sequence of frames. Only the last frames are either real
or generated by the generator G, the rest of the sequence
is always from the dataset. This allows the discriminative
model to make use of temporal information, so that G learns
to produce sequences that are temporally coherent with the
input [30]. Figure 2 illustrates a video GAN where three
input frames are combined to predict single output frame.
Each convolutional layer has three dimensional features of
the size {x, y, z}. The generator is made up of an encoder
and a decoder. The discriminator architecture is identical to
the decoder component of the generator. Following previous
authors, we showed both in the same diagram. As shown in
Figure 1 there are two loss functions L1 (generator) and L2
(discriminator) that are used for training.

In addition, in order to conserve memory we divide each
input frame into patches. Then, the discriminator D tries to
estimate the probability that a patch comes from the dataset
instead of being produced by a generative model G. The two
models are simultaneously trained so that G learns to generate
patches that are hard to classify by D, while D learns to
discriminate patches generated by G.



The training of the pair (G,D) consists of two alternating
steps, described below :

A. Training D :

Let xi = (x1i , x
2
i , . . . , x

n
i ) be the ith sequence of input

frames and yi = (y1i , y
2
i , . . . , y

m
i ) be a sequence of output

frames. We train D to classify the input (xi, yi) into class
1 and the input (xi, G(xi)) into class 0. Hence, we perform
gradient descent on D while keeping G fixed. The binary cross
entropy loss function we use to train D is:

L1(xi, yi) = L(D(xi, yi), 1) + L(D(xi, G(xi)), 0) (1)

L(a, b) = −
∑
i

b log(a) + (1− b) log(1− a)

where a, b ∈ {0, 1}.

B. Training G:

Next, we take a different sample pair (xi, yi) from the above
update. While keeping the weights of D fixed, we can perform
one gradient descent update to minimize the adversarial loss :

L2(xi, yi) = L(D(xi, G(xi)), 1) (2)

where L is the binary cross-entropy loss defined previously.
Minimizing this loss means that the generative model G is
making the discriminative model D as ‘confused’ as possible,
in the sense that D will not discriminate the prediction
correctly. However, this can make the model unstable hence
in practice we minimize the combined loss L1+L2. Figure 1
shows that a GAN will compute two different loss functions
and try to minimize the total loss.

Fig. 3. The path predicted by Bayesian model selection (ev) is shown in red
and the path predicted by cross-validation (ks) is shown in green. The data
in light blue is far from the principal path and hence is discarded.

IV. CONSTRAINED ADAPTIVE ERROR LEARNING

In this section, we describe the Bayesian model selection
to determine the regularization parameters. Next, we introduce
the backstepping algorithm for different time delays using an
adaptive model. Lastly, we describe the complete framework
of the proposed CAMEL and the reduction in computational
cost.

A. Bayesian model selection for Principal-path
The image dataset was transformed to a low dimensional

space prior to clustering. The number of dimensions was
determined by Bayesian model selection. It will predict the
optimal values of the parameters so that the posterior proba-
bility of the principal path clustering is maximum. Details can
be found in [15]. The k-means clustering aims to partition N
observations into k = Nc clusters in which each observation
belongs to the cluster with the nearest mean. This results in a
partitioning of the data space. We can give the minimization
objective of k-means as follows:

minx̂,µ
γ

2

N∑
i=1

NC∑
j=1

||xi − x̂j ||2 (3)

where γ is a scaling factor, µi ∈ {1, 2, . . . , Nc} is the label
associated with image xi, the sample image at centroid of
cluster j is x̂j . Figure III-B illustrates the well-separated
clusters in a synthetic dataset manifold. The data in light blue
belongs to clusters far from the principal path and hence is
discarded. The images are also projected to a low dimensional
space during Bayesian model selection.

Next, we can consider a principal path that connects two
points in a manifold and passes through the center of mass
of the data. Such a path can be viewed as a non-linear
dimensionality reduction of the data. The extent to which one
can pass through the data is dependent on the regularization
parameter. We can use Bayesian model selection to determine
the regularization parameter.

The primal minimization problem in order to learn a smooth
transition path connecting a starting point w0 to an end point
wNC+1 is :

minx̂,µ
γ

2

N∑
i=1

NC∑
j=1

||xi − x̂j ||2 +
η

2

NC∑
j=0

||x̂j+1 − x̂j ||2 (4)

where η and γ regulate the trade-off between data-fitting and
smoothness of the inferred path and w0 and wNC+1 represents
the starting and ending points in the inferred path. Eq 4 is a
straightforward extension of k-means clustering where the first
and last clusters are kept fixed, the other clusters are evolved
and those are topologically connected via a series of springs
in sequence.

Here we assume a Gaussian prior during model selection
where the variance of each cluster j with center wj is γ and
the variance of the straight line connecting the start and end
points w0 and wNC+1 is η. We can select the optimal γ and
η using Bayesian model selection as follows:

x̂ = argmaxx̂p(x̂|x, γ, η) (5)
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Fig. 4. We show the centroids corresponding to different steps in the principal path through the manifold for a random start and end image for NEMO
dataset. Next, we show the centroids in the principal path through the manifold for a pair of start and end image in DAVE2.

where {x̂}Nc×d is a matrix of centroids. Figure III-B illus-
trates the principal paths through a manifold for two random
start and end points. The path predicted by Bayesian model
selection (ev) is shown in red and the path predicted by cross-
validation (ks) is shown in green. The ratio of s = η

γ is
significantly higher by Bayesian model selection resulting in
a smoother path. The desired path lies on a local manifold
that does not involve the whole data set. For centroids that
are not a part of this local manifold, we can filter out all the
associated data samples in that cluster. Such a path will be
consistent even when varying the number of clusters or steps
in the path.

B. Backstepping temporal images

In order to model temporal sequences of images in a video
we are motivated by the backstepping control design where a
virtual model is created for each time delay. Then, the adaptive
error of the combined model is the sum of errors of each virtual
model as follows:

e(t) = e(t) + λ1e(t− 1) + . . .+ λte(1) (6)

where λ1, λ2, . . . , λt are the constants and e(t) is the error
of the model at the tth time stamp. The constants allow us
to capture the temporal information in video data. Hence, the
error can adapt to new image samples in the video sequence
depending on the previous samples seen at the previous time
step.

In this paper, we consider the principal path through the
manifold for a pair of start and end images from the input
and the target domain to create virtual models for each time
stamp. In particular, each step in the principal path through the
manifold is used to construct the virtual model that captures
the morphism from t to t+1. In each step t of the algorithm,

gradient descent tries to minimize the error function Et :

Et =
1

2
e(t)2 , θt(n+ 1) = θt(n) + δθ(n) (7)

δθt(n) = γ̂
[∂Et(n)
∂θt(n)

]
where n is a single iteration in the training of the tth model, γ̂
is the learning rate. Since, the starting point is from the input
domain and the end point of the path is from the target domain.
Hence, the clustering will help gradient descent, as the distance
between two connecting centroids is minimal. Furthermore,
the regularization term will ensure smooth morphism from
input to target domain.

C. Principal-path GAN Framework

In this section, we detail the complete framework for
principal-path GAN model. The first stage is to extract a sub-
set of image sequences such that the distance from a centroid
image is below a threshold. Hence, we select a pair of images
from the two different domains as the starting and ending
points of the principal-path clustering. For example, we can
take a ‘neutral’ image as the starting point and a ‘smile’
image as the end point for ‘smile generation’ task. For the
autonomous driving task, we randomly select two different
road images. The clustering will result in a set of Nc centroids
including the pair of images.

In order to construct a GAN at each centroid on the principal
path, we extract the sub-set of training sequences that are
closest to two connecting centroids in the path namely t and
t+1 (See Figure 1). Once we train the GAN at the centroid t,
we can use it to initialize the weights of the GAN at centroid
t + 1 in the path until we reach the end point. To test a
new sample we can simply use the GAN at GNc

. Figure 4
illustrates the principal path morphism from between a pair
of random ‘Neutral’ and ‘Smiling’ faces. Each centroid in the
path corresponds to a single step. The first two images are
similar and the last two images are similar in each sequence.



Similarly, we can illustrate the morphism between different
road scenes. This process may be repeated resulting in several
principal paths in the manifold.

D. Computational Complexity

During k-means clustering we only need to compute the
distance between each image and the centroid hence the
complexity is Nc ×Np × T where T is number of iterations
for clustering. To train the CAMEL we only need the samples
close to centroids in the principal path. Let us assume that
the maximum number of centroids is Nc and we repeat the
training for Np pairs of images from source and target domain.
If the dataset has N video sequences with up-to T frames,
then after clustering and thresholding we only select N0.25

sequences with an average of T/2 frames. Hence, the training
complexity of each GAN is reduced to N0.25×T/2×Nc×Np.
This is exponentially smaller than the original complexity of
N × T for each iteration since Nc < Np <<<< N .

V. EXPERIMENTS

Validation of the proposed CAMEL (available on GitHub1)
is done on two real world dataset : (1) NEMO Smile Videos (2)
DAVE2 Driving Videos. Following previous authors, we use
the PSNR and SSIM index to compare the generated images
with the ground truth for test samples.

A. NEMO Smile Dataset

The model is trained on several videos of the individuals
where the expression gradually changes from neutral to smil-
ing face. For testing the model we only provide a neutral face
and the model is able to generate the video of the action.
Hence, the end frames will belong to a specific class and is
dependent on the starting frame. We would like to clarify that
generation of neutral expression from a smiling face would
require training a different model.

The UvA-NEMO dataset [31] contains 1240 videos, 643
corresponding to posed smiles and 597 to spontaneous ones.
The dataset comprises 400 subjects (215 male and 185 female)
with different ages ranging from 8 to 76 (50 subjects wear
glasses). The videos are sampled at 50 FPS and frames have
a resolution of 1920×1080 pixels, with an average duration of
3.9 s. The beginning and the end of each video corresponds
to a neutral expression. The intensity of a smile increases
slowly until it is maximum and then decreases back to 1.
Following previous authors, we consider 32 frames to capture
the complete transition from neutral to smile expression.

We trained the model on 800 video sequences and tested
on the remaining videos. The past six input frames were used
to predict the next frame for smile generation. The first two
rows in Figure 5 illustrate a sample test sequence generated by
the baseline GAN and by the proposed CAMEL for the same
number of training epochs. Here we trained the baseline GAN
for 1500 epochs and for each of the three steps in the principal
path we trained the CAMEL for 500 epochs. We repeat the
training for four different principal paths. The prediction with

1http://github.com/SenticNet/constrained-manifold-learning-for-videos

GAN is very blurry compared with CAMEL. For CAMEL
the intensity of smile increases with each time step for a male
and female sample. We also compared with another baseline
MOCOGAN described in [23]. The model is able to capture
the smile motion; however the faces are distorted even after
extensive training. Furthermore, the identity of the person
cannot be specified in this model.

B. DAVE2 Driving Dataset

We collected the majority of the road data in New Jersey,
including two-lane roads with and without lane markings,
residential streets with parked cars, tunnels and even unpaved
pathways [32]. More data was collected in clear, cloudy,
foggy, snowy and rainy weather, both day and night. The
model is trained with time-stamped video from a front-facing
camera in the car synced with the steering wheel angle applied
by the human driver. The vehicle drove along paved and
unpaved roads with and without lane markings and handled
a wide range of weather conditions. As more training data
was gathered, performance continually improve.

We consider 30000 video sequences of 50 frames each for
training and another 1000 video sequences for testing. The
past four input frames were used to predict the next frame for
smile generation. Figure 5 illustrate a sample test sequence
generated by the baseline GAN and by the proposed CAMEL
for the same number of training epochs. Here we trained the
baseline GAN for 15000 epochs and for each of the three steps
in the principal path we trained the CAMEL for 5000 epochs.
We repeat the training for four different principal paths. The
prediction with GAN is very blurry compared with CAMEL.
The second driving video sequence shows a car turning left
as the pillar on the left side becomes visible. The third video
is a car driving forward at night. The white boards on the
right side get closer with each frame. The quality of images
generated by MOCOGAN on driving dataset was very poor
hence we did not report them.

C. Parameter Settings

We consider an identical generator and discriminator net-
work with three convolutional up sampling and three convolu-
tional down sampling layers. The input images are reduced to
a dimension of 64×64 for the smile dataset and 320×180 for
the driving dataset. Each convolutional layer has 512 kernels
and each kernel is three dimensional 3× 3× 3. The principal
path algorithm was set to have a maximum of 10 clusters;
however the optimal number is determined by the model. The
regularization parameter s was determined by Bayesian model
selection as described in Section IV-A.

D. Evaluation Metrics

To evaluate the proposed model we consider the structural
similarity index (SSIM) and the peak signal to noise ratio
(PSNR). The SSIM measures the difference in the visible
structures in an image such as degradation due to noise, blur
or flare. Similarly, PSNR is the mean square error over all
the squared value differences divided by image size and by

http://github.com/SenticNet/constrained-manifold-learning-for-videos
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Fig. 5. We compare the video sequence generated with simple GAN, MOCOGAN and the proposed CAMEL. The prediction with GAN is very blurry
compared with CAMEL. The first frame is the input.

three. A higher PSNR or SSIM with the ground truth indicates
higher quality. In Figure 6 we also show the mean and standard
deviation of PSNR and SSIM [33] for both datasets. We can
see that the PSNR and SSIM will decrease with each generated
time frame. For NEMO dataset the proposed CAMEL has
significantly higher PSNR and SSIM compared to the simple
GAN model. For the case of DAVE2 driving dataset, the SSIM
is slightly higher than the baseline GAN model however the
PSNR is not significantly different. The standard deviations
of both models remain the same with number of time frames.
For NEMO data, the variance for SSIM increases significantly
when predicting 8 or more consecutive frames. Due to the
complexity of the image samples. It is difficult for the human
eye to visualize the motion in Figure 5. However, in Figure 6
we can see that the error with the original video is reducing
from t=2 to t=6.

VI. CONCLUSION

In this paper, we propose a novel approach to generate
videos from a static starting image. We conclude that by
considering samples close to a constrained path in the manifold
we can show smooth morphism of images during the video.
An adaptive error model where the error is accumulated over
time is found to be more suitable to rapidly changing scene
dynamics such as in driving. We are able to outperform the
baseline significantly in the quality of generated video on two
real world tasks. Lastly, the computational cost of the model is
exponentially smaller compared to traditional GAN learning.
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