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Abstract—The cosine-based softmax loss functions greatly
enhance intra-class compactness and perform well on the tasks of
face recognition and object classification. Outperformance, how-
ever, depends on the careful hyperparameter selection. Adaptively
Scaling Cosine Logits (AdaCos) tries to propose a parameter-free
version by leveraging an adaptive scaling parameter. Neverthe-
less, the application of AdaCos is limited in specific domains
because of improper approximation.

In this paper, to promote intra-class compactness and inter-
class separability, we propose an Angular Gradient Margin Loss
(ArcGrad) that generates a gradient margin by maximizing the
angular gradient. Our work suggests that the margin parameter
on cosine-based methods is not necessary, and the scaling pa-
rameter is inversely proportional to the margin. Furthermore, a
stable and large gradient promotes better feature representation.
In experiments, we test our method, as well as other methods
enhancing discriminative information, on CIFAR and 15 datasets
from UCI. Experimental results show ArcGrad -consistently
outperforms both on large and small scale problems and has the
superiority in discriminative information and time-consumption.

Index Terms—Iloss function, margin, angular, gradient, adacos,
softmax, ArcFace

I. INTRODUCTION

Neural networks have achieved incredible milestones on
classification tasks, including email spam filtering, document
categorization, speech recognition, image recognition, and
handwriting recognition [1], [2]. In supervised learning, back-
propagation (BP) [3] is the crucial algorithm to optimize the
neural networks. It is essential to design a proper loss function
for BP to learn a workable model. The most popular choice for
loss function on multi-class classification is the combination
of the softmax function and the cross-entropy loss. Recent
studies [4], [5], however, find this traditional method fails
to emphasize both intra-class compactness and inter-class
separability, and the features near the decision boundary are
more likely to be misclassified. Therefore, to be discriminative
features helps the ability of generalization on unseen samples.

Center loss [0] learns a center for each class, and penalizes
the distance between their corresponding class center and
the embedded features. Usually, Center loss evaluates com-
bining the softmax loss with a balance parameter. Research
[7] indicates center loss can slightly improve discriminative
information.

Another popular study line tries to enlarge the margin
between the embedded features belonging to different classes.
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Generally, a large margin indicates a confident classification
[8]. Soft-Margin Softmax (M-Softmax) [4] penalizes the pre-
dicted probabilities by an addictive margin. This work also
addresses the weakness of Softmax comes from the extracted
features that are not discriminative.

Cosine-based methods project the embedded features to
angular space; moreover, they incorporate a scaling parameter
and an adjustable hyperparameter that controls the margin.
Feature normalization [9], [10] and weight normalization [ 1]
are necessary for cosine-based methods. Therefore, they inherit
the advantages of accelerating training and good generalization
ability. As a result, L-Softmax [5], SphereFace [12], Cos-
Face [13], ArcFace [7] get state-of-the-art performance on
face recognition in succession. Though they have clear ge-
ometric interpretation and represent state-of-the-art methods,
the high performance depends on empirically tuning those
hyperparameters and some training tricks [14]. AdaCos [14]
is a parameter-free variant of cosine-based loss. It tries to
maximize the change rate of the classification probability
P; i, so that AdaCos leverages an adaptive scale parameter
automatically. However, the calculation of AdaCos is not
correct when the inter-class angles are not close to /2.

In this work, our intuition is to design a new kind of loss
function which has the advantages of the cosine-based method,
meanwhile getting rid of the fatiguing tuning procedure. It
is still challenging to get a parameter-free version for now
because the real situations are various, and we can hardly tell
how wide the margin is best for all problems. However, our
work reveals the relationship between the scaling parameter
and the margin, that is, only one hyperparameter is needed.
For comprehensive comparisons, we conduct our experiments
both on the large and small scale problems.

Our contributions in this work can be summarized as:

« We explain the relationship between the scaling parameter
and the margin, i.e., s and m are inversely proportional.
A smaller scaling parameter leads to tighter intra-class
compactness.

« Based on the analysis of s and m, angular gradient margin
loss (ArcGrad) is proposed to produce a soft margin
by maximizing gradient. Our method not only has a
simple form but also shows superiority in regularizability,
computational overhead, and performance.



The remainder of this paper is organized as following
structure. In Section II, we introduce the relevant symbols
and related works. In Section III, we interpret the relationship
between the scaling parameter and margin and propose a novel
loss function—angular gradient margin loss. In Section IV, we
conduct a comprehensive comparison with five methods from
many aspects. Finally, we conclude this paper in Section V
and discuss future work.

II. RELATED WORKS

That logistic regression can only produce a decimal between
0 and 1.0 limits the application on binary classification.
Softmax extends the ability of neural networks into multi-class
classification by assigning decimal probabilities to each class.
The softmax function calculates this probability:

e*v
C )
Zj:l e

where C' is the number of classes. And then the final score
will be:
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where y; is the ground truth label for the i-th sample x;, N
is the total number of training samples in one batch and f
denotes our model (CNN on image tasks, MLP on other tasks).

A. Softmax Loss

The softmax loss [5] obtains a fully connected layer, a
softmax function, and a cross-entropy loss function. The
weights of the last fully connected layer are considered the
centers of the corresponding class. The embedded features,
outputs of our model, are getting close to these centers while
training. The last fully-connected layer calculates the similarity
between the embedded feature ¢ and the center of class ¢ by
dot product, Z! = WZI t+b,., where W are the weight matrix
of the last layer; ¢ denotes the embedded features f(z). The
original softmax loss can be rewritten as:

Z log

where t; is the embedded feature of i-th sample, N is the
number of a mini-batch size and y; is the label of i-th sample.

SphereFace [12] studies the effects of bias b. They find that
omitting the bias does no harm to the performance but makes
it easy to analyze. So we follow this modification, and the
final version of our modified softmax loss is:
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where 0 is the angle between two vectors; ¢; denotes the angle
between this feature and the weight vector of class j or W;

— 0y, denotes the intra-class angle and 65, j # y; denotes the
inter-class angle. For convenience, we use the abbreviation
Soft for Softmax in the rest of our paper.

B. Center Loss

The intuition of center loss [6] is to minimize intra-class
variations. To achieve that, it decreases the euclidean distance
between the feature ¢; and the class center c,, directly, as
formulated :
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where c,, denotes the y;-th class center of the feature ¢;. c
will converge to the center of the features of every class as
the entire training set is taken into account. Besides, it needs
the softmax loss to keep different classes separated. The final
formulation is balanced the softmax loss (modified) and the

center loss by a scale parameter \:
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C. Cosine-based Methods

Weight normalization [11] can not only accelerate training
but also solve the imbalanced data problem by re-balancing
the weight of each class [15]. It applies L2-normalization to
reparameterize the weight vectors. L-Softmax [5] uses this
trick on its last layer and benefits from it. The other trick
cosine-based methods usually use is feature normalization [9],
[10], which normalizing the embedded features instead of the
input features to augment softmax. In this way, the features
have a smaller variance and become far more away from the
mismatched class than softmax.

SphereFace [12], CosFace [13], NormFace [16] and more,
use both weight and feature normalization. As a result, those
losses can optimize cosine similarity instead of inner-product.
First, they normalize the weight W = % and the embedded
feature ¢t = H:—H by [l normalization. Second, a scaling
hyperparameter s is multiplied to re-scale the value range,
so the formulation becomes
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Main difference between cosme-based methods is the way to
produce margin: SphereFace [12] produces multiplicative an-
gular margin; CosFace [13] produces additive cosine margin;
ArcFace [7] produces additive angular margin. A study [17]
compares the above methods, and the results show ArcFace
[7] emerges as the best performing loss function in terms of
accuracy, convergence rate as well as robustness.



ArcFace [7] defines an addictive angular margin parameter
m to enforce the intra-class angle smaller than the inter-class
angle significantly, 6,, < max(6;) —m. The formulation of
the ArcFace [7] can be written as:

N s-cos(fy, +m)
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The transformation, from Cartesian coordinate system to
polar coordinate system, brings a clear geography interpre-
tation [12], a smaller generalization error, and a lower time-
consumption [5]. Besides, the limited value range generates
a form of regularization'. However, these methods have to
tune hyperparameters to improve the results, which is usually
depending on empirical experiments.

AdaCos [14] studies the effects of both the two hyperpa-
rameters and proposes a suitable scale s which maximizes the

change rate of predicted probability P; ;. s is induced by
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where B; = chzl oty € cos(03)  And then, combining the

dynamical strategy, this formulation can be rewritten as:
V2 - log(C —1) =0

log B(‘%)
cos(min(%;(” ) ) ! 2 L

med

50 = (10)

where [ is the iteration number of training, 39 is the initial
scale and B{Y, = + >N > it 5! cos i

The main problem of AdaCos [14] is that this method de-
pends on the observation that the inter-class angles 6;(j # y;)
are around 7/2 during training. The error of this approxima-
tion increases when the dataset is small, or the variance of
0 is high. In fact, Bé(if,)g is related with s, therefore, it’s not
appropriate to seem this item as a constant.

III. METHODOLOGY

Enlightened by the cosine-based methods, the intra-class
angle has a strong indication for the classification result.
Our motivation is to enlarge the minimal gap by gradient.
Therefore, we design a new loss function that has only two
items: a scaling parameter and the corresponding angles.
Angular gradient margin loss (ArcGrad), our proposed method,
though, removing the margin parameter, is still capable of gen-
erating discriminative information by maximizing the angular
gradient.

ILater experiments in Section IV-C1 reveal cosine-based methods have a
stronger ability of regularization.

The preliminary knowledge is defined in Section II-A, and
we define ArcGrad:
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In this Section, we first deduce the condition of the maxi-
mum gradient and then apply it to generate margin.
A. Maximum Gradient

First, we can rewrite Eq. 12—dividing both the molecular
and denominator by e ¢

N
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We define the minimal gap between inter-class and intra-
class angles of i-th feature as:
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m; =min{f; —0,,} for j =1,...,C,j # v;. (13)

Combining Eq. 13 and Eq. 12, we get a larger approximation
of LArcGrad:
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We can get a large gap by optimizing LArcGrad’

Our objective is to enlarge the /minimal gap by maximiz-
ing the angular gradient M;% Unlike the hard margin
methods change the decision Boundary, our method makes
the embedded features in the specific region move faster by
maximizing their gradient; finally, there will be little or none

features in this region. Though Eq. 14 is simple, it is still

. . . ArcGrad’/ .
unlikely to solve the maximum point of aLa— directly.
Mg

Therefore, we use the average gap to respect all gaps,
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Now, we get an approximation of LArcGrad’,
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where C' is the number of classes. It is a function of 7 and s.
Since m can not be changed directly, the only thing we can do
is to select a suitable s to make this function reach maximum.
Mathematically, this function reaches its maximum when the
partial derivative is equal to O:
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Fig. 1. Gradient visualization. The points denote the distribution of ;¢4 (blue one) and 6;,te-(red one) and the arrows denote the angular gradient. We

randomly assign the radius of points from 1 to 3 for clear visualization.

By solving Eq. 18, the relationship between the scaling
parameter s and gap m is established:

_ ProductLog (&) +1

m
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where ProductLog is Lambert W function.

B. Gradient Margin

Though previous studies treat the scaling parameter and the
margin as isolate variables, Eq. 19 reveals they are inversely
proportion. This formula indicates a small s can generate a
large gap. To illustrate this phenomenon, we try two values
for the scaling parameter on Iris data set. We visualize the
distribution of angles and their gradient for three phases during
the training procedure, as shown in Figure 1. One can see that
the point within the theoretical gap has a large gradient. The
result fits the theoretical gap 84 deg for s = 1 and 2 deg for
s = 40 according to Eq. 19.

Finally, these features generate a clear margin on angular
space, and we call this margin “gradient margin”. Traditional
methods change the decision boundary to generate a hard mar-
gin between embedded features belonging to different classes.
In contrast, ArcGrad emphasizes the gradient of features,
remaining the decision boundary unchanged. We argue that the
margin parameter is not necessary on cosine-based methods,
and the scaling parameter is enough to generate discriminative
information. Though a small s leads to small intra-class angles,
it may cause unstable situations. There are some tricks to that
situation: adjustable s from an enormous value to a small one;
pre-trained parameters

IV. EXPERIMENTS

In this section, we conduct our experiments for two aspects:
the diversity of resolvable problems and the performance
improvement on specific problems. The UCI machine learning
repository [!8] contains various datasets from different do-
mains and is a common choice to test the proposed method.
For the datasets from UCI repository, we examine the ro-
bustness of our method. The CIFAR10/100 [19], containing
ten classes, are widely used for image classification tasks.
It is separated into a training set with 50000 samples and
a test set with 10000 samples. CIFAR10+/100+ denotes the
CIFAR10/100 with data augment. For the data augmentation,
we follow the transformations in [20]: a 32 x 32 random
cropping with 4-pixel padding on each side, a random flipping
with the probability of 0.5, and a z-score normalization. It is
proved the discriminative information helps the performance
on this task [4], [5]. Therefore, six methods are compared
for a comprehensive study on the discriminative information
and performance. They are the original softmax loss (Soft),
Center loss (Center) [6], soft-margin softmax (M-Soft) [4],
ArcFace [7], AdaCos [14], and the angular gradient margin
loss (ArcGrad).

A. Results on UCI Repository

We select 15 data sets from UCI, and the details on these
data sets are shown in Table II. On each data set, we perform
10 runs of 10-fold cross-validation with random partitions. A
3-layer feed-forward neural network with ReLU[21] activation
function is trained on the training set, and then the trained
model evaluates the accuracy on the test set.



TABLE I

AVERAGE ACCURACY, WINS FOR EACH METHOD AND DATA SET. ARCGRAD30 DENOTES ARCGRAD WITH s = 30, ARCGRADS DENOTES ARCGRAD

WITH s = 5.
Data Set Soft Center M-Soft ArcFace AdaCos [14] ArcGrad30 ArcGrad5
PimalndiansDiabetes 77.81 £ 5.60 77.78 £ 5.84 77.87 £5.77 | 74.64 £ 11.93 | 5042 £ 17.67 | 77.85 £ 6.19 78.42 + 6.08
Hayes-Roth 57.16 £ 1251 | 57.83 £ 13.68 | 59.11 £ 129 | 72.28 + 19.38 72.59 £ 13.8 792 £ 1298 | 79.32 + 12.34
UserKnowledgeModeling 94.57 £ 7.29 94.12 + 5.39 96.00 + 2.67 94.66 + 8.3 91.67 £5.22 95.81 £ 2.59 95.95 +£2.39
BreastCancerWisconsin 7322 + 17.23 | 73.15+£ 1743 | 73.05 £ 1834 | 70.11 £ 17.67 | 53.61 +24.22 714 £ 17.13 70.75 £ 17.05
WholesaleCustomers 86.64 + 7.35 87.91 + 6.87 87.96 + 6.68 80.77 £ 19.47 | 463 + 16.52 89.47 + 5.55 89.11 + 5.22
TeachingAssistantEvaluation | 53.40 + 14.26 | 52.44 + 13.63 | 54.06 + 14.98 | 38.40 + 10.89 | 55.62 + 14.47 | 53.19 + 14.24 | 53.81 + 12.28
Banknote Authentication 98.64 + 1.20 97.92 + 448 99.01 + 0.89 | 83.94 +25.19 50.85 + 8.6 99.50 £ 0.92 99.51 + 0.97
Congressional VotingRecords 92.78 + 6.97 93.75 £+ 6.17 92.62 + 6.92 92.18 + 6.97 49.95 +9.18 92.37 + 7.12 92.83 + 6.69
WebsitePhishing 83.05 + 1.87 83.06 + 1.77 83.47 £ 1.97 84.48 + 2.61 8372 £22 84.18 £ 2.59 84.18 £ 2.83
Haberman 71.84 + 1.09 7191 + 1.29 72.03 + 2.09 72.64 £3.79 | 49.44 + 21.46 72.97 + 4.18 73.19 + 3.48
Iris 96.80 + 6.76 96.75 + 5.62 97.53 + 4.78 97.53 + 4.28 95.73 £ 6.15 97.00 + 4.26 96.93 + 4.26
BreastTissue 62.86 + 10.76 | 59.44 +9.14 | 64.14 £ 11.16 | 65.71 +9.89 65.87 + 10.03 66.50 £9.73 | 66.71 + 10.21
VertebralColumn 72.62 +7.18 72.62 + 7.36 74.1 £7.52 76.99 + 12.41 7728 £9.76 | 78.45 + 10.36 | 78.81 + 10.81
ForestTypeMapping 82.33 + 7.99 82.69 + 8.18 83.61 + 6.94 | 82.83 £ 1694 | 87.24 + 5.54 86.81 + 6.26 85.67 + 8.55
BalanceScale 89.65 + 5.79 88.75 + 4.37 90.05 + 5.39 91.98 + 7.02 88.08 + 4.95 91.87 £ 5.97 92.35 + 6.05
Average 79.56 79.34 80.31 78.61 67.39 82.44 82.50
Wins 1 1 2 1 2 1 7
TABLE 11 TABLE IV
DATA SETS INFORMATION. CLASSIFICATION ACCURACY RATE (%) ON CIFAR10/10+. “Di1s”
DENOTES WHETHER THIS METHOD ENHANCES DISCRIMINATIVE
Data Set Classes | Feature | Instance INFORMATION. “MARGIN” DENOTES WHETHER THIS METHOD IS A
PimalndiansDiabetes 2 8 392 MARGIN-BASED METHOD.
Hayes-Roth 3 3 160
UserKnowledgeModeling 4 3 403 Dis Margin Method CIFAR10+ | CIFARI10
BreastCancerWisconsin 2 33 194 False | False Soft 93.50 86.2
‘WholesaleCustomers 2 7 440 True Center 93.54 86.43
TeachingAssistantEvaluation 3 5 151 True M-Soft 93.55 86.53
BanknoteAuthentication 2 4 1372 ArcFace 94.23 87.62
Congressional VotingRecords 2 16 232 AdaCos [14] 94.10 87.30
WebsitePhishing 3 9 1353 ArcGrad 94.36 87.83
Haberman 2 3 306
Iris ] 3 4 150 TABLE V
BreastTissue 6 9 106 THE TOP-1 AND TOP-5 CLASSIFICATION ACCURACY RATE (%) ON
VertebralColumn 3 6 310 CIFAR100+.
ForestTypeMapping 4 27 523
BalanceScale 3 4 625 Dis | Margin | Method | Top-1 | Top-5
False False Soft 72.55 89.56
True Center 7448 | 91.54
True M-Soft 73.02 | 90.63
TABLE III ArcFace | 74.55 | 89.73
THE TRAINING SETTINGS ON CIFAR10/100. “LR” DENOTES THE AdaCos | 7293 | 85.97
LEARNING RATE. IN ALL EXPERIMENTS, WEIGHT DECAY 1S 0.0005 AND ArcGrad | 75.12 | 90.98

THE OPTIMIZER IS ADAM [22].

Item CIFAR10/10+ | CIFAR100+
Architecture ResNet18 ResNet34
Epochs 120 160
Batch Size 256 128
LR 0.1 0.01

Table I shows the average accuracy for compared methods
and the number of times each method produced the highest
accuracy (wins). Though Soft only wins once for all 15 tasks,
it performs better than Center [6], ArcFace [7], and AdaCos
[14] on average. The discriminative information does not
help the performance of general tasks. However, our method
outperforms both on average and on specific tasks. Unlike
the other hard margin methods, our method generates a soft
margin by gradient, reducing the risk of over-fitting.

B. Results on Image Data

The architecture is not the main point of our work, there-
fore we choose the-state-of-the-art one for experiments. Deep
residual networks [23], widely used in image classification
tasks [24], significantly improves the performance of the deep
convolutional neural networks. We also use some modern
training techniques introduced by Leslie Smith [25]. It pro-
vides a principle to choose maximal learning rate, batch size,
and introduces one cycle policy to train model fast without
losing performance. We summarize our experimental settings
on Table III.

For the hyperparameter settings of the compared losses, the
scaling parameter s is set as 20 and the margin m is set as
0.1 for ArcFace [7]; A is set as 0.02 for Center loss [0]; s
is set as 10 for ArcGrad; m is set as 0.5 for M-Soft [4]. For
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Fig. 2. The sensitivity of the layers for different losses.

each method and data set, we get the average classification
accuracy of five experiments, as shown in Table IV and V.
Our method gets the best results of three of four benchmarks.

C. Model Analysis

1) Regularizability: Similar to other regularization tech-
niques, our method has a strong ability to regularize the
model. We increase the complexity of our model by adding
the number of layers. We compare the effects of the number
of layers on Iris data set. For each experiment, we take the
average curve of 10 runs of 10-fold cross-validation with
random partitions. As shown in Figure 2, our method has the
smallest accuracy decay comparing with the other methods
when the number of layers increases. Particularly, the accuracy
of Soft, ArcFace [7], and AdaCos [14] is around 33%, which
is the result of random choice when the model has 10 layers.
Our method reveals a strong tolerance against model changing.

Over-fitting usually means the selected model is too com-
plex, or the training set is insufficient [26]. To investigate the
performance under insufficient data, we cut out parts of the
original training samples on CIFAR10+. For each experiment,
we train our model 20 epochs, which are enough to produce
a significant difference. Figure 3 compares the performance
decay on cosine-based methods for the different remaining
percentage of training data. The advantage of our method
emerges when training data is cut back.

2) Intra-class Compactness and Inter-class Separability:
For better measuring both intra-class compactness and inter-

90 T T

Accuracy (%)
Accuracy (%)

Accuracy (%)
Accuracy (%)

Epochs Epochs

Fig. 3. Performance decay. p denotes the remaining percentage of training
samples. 0, 1, 2, 3 denote ArcGrad, ArcFace, Soft, and AdaCos [14].

class separability, we use the following three metrics [7]:
c

1
WC-Intra = rod ;(Centerj, W;), (20)
1 C C
W-Inter = 5 zzj > Wuwi), @

J=li=1i#j



TABLE VI
THE ANGLE STATISTICS (RAD) UNDER DIFFERENT LOSSES ON CIFAR10.

Metric | Soft | Center | M-Soft | ArcFace | AdaCos | ArcGrad
Winter | 1.37 1.63 1.34 1.55 1.42 1.68
Clnter | 1.52 1.63 1.67 1.68 1.55 1.66
Intra 0.80 0.42 0.69 0.39 0.41 0.24
TABLE VII
ACCURACY COMPARISON OVER DIFFERENT NUMBER OF EPOCHS.
Epochs Soft Center | M-Soft | ArcFace | AdaCos | ArcGrad
10 72.84 | 75.08 83.38 87.70 85.81 88.34
20 87.05 | 85.90 85.93 91.72 91.20 91.77
40 89.98 | 91.71 91.89 92.92 92.80 93.38
90 93.39 | 93.69 93.38 94.31 94.10 94.59
C C
C-Inter = C Z Z (Center;, W;),  (22)

J=1i=1,i#j

where C' is the number of class, Center; = Z is the mean
of the embedded features belonging to the same class j, and
{(a, b) denotes the angle between the vector a and b. “W-Inter”
refers to the mean of angles between different target vectors
WjT. “C-Inter” refers to the mean of angles between different
classes’ feature center. “WC-Intra” refers to the mean of the
angles between target vectors WjT and feature center of the
class j.

Table VI shows the final results of these angle statistics
under compared losses on CIFAR10. One can see that Softmax
fails to enhance intra-class compactness; Center [6] and M-
Soft [4] can slightly compress intra-class variations; AdaCos
[14] can decrease “WC-Intra” but also brings in smaller inter-
class angles; ArcFace [7] and ArcGrad greatly enhance both
inter-class separability and intra-class compactness.

We also give the angle histograms to capture the dynamic
change of the intra-class angles in Figure 4. Each slice in
the figure displays the intra-class angle histogram. The slices
depict the change of angle during the training process. In
comparison with the softmax method, our approach reduces
the intra-class angle faster and makes it be at a lower level.

3) Computational Efficiency: In deep learning, the model
and data set usually are huge. Therefore, time-consumption is
crucial to industry application. Our method can learn not only
well but also fast. For the training settings, we only change the
number of epochs to train our model while keeping the other
settings the same as in Table III. Results in Table VII reveal
our method consistently outperforms others within the same
training epochs. In particular, our method is 15.5% higher than
Soft when only training the model for 10 epochs. Our method
only includes an extra operation on the criterion function.
So there will be a constant additional calculation time. In
practice, the calculation cost of our method is 3.4% higher
than Softmax, and it will be lower as the network deeper.
Besides, this cost is negligible comparing to the reduction of
iteration numbers.
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Fig. 4. Visualization of the angle histogram in tensorboard [27]. The top
slice referring to the angle histogram at epoch 0 is darker and the lower
slices referring to higher epoch are lighter.

V. CONCLUSION

In this paper, we proposed an Angular Gradient Margin Loss
function (ArcGrad) for backpropagation neural networks. Ar-
cGrad generates the inter-class angular margin by maximizing
the angular gradients. We argue that the scaling parameter
is capable of producing a margin, and it is not necessary to
include an extra hyper-parameter. Our approach reduces the
complexity of cosine-based methods and avoids over-fitting in
a soft way, compared with the hard constraint.

In the future, the inner relationship between embedded
features requires further investigation for outlier detection, as
the experiments demonstrate that they are not independent with
each other.
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