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Abstract—Artificial intelligence has once again become the
focus of attention in all fields, of which deep learning has
brought a series of changes in the field of computer vision.
In this paper, we propose the MUNet model, which is a more
general convolutional neural network framework for medical
image segmentation. The framework proposed in this paper is
essentially a fully convolutional encoder-decoder network based
on feature pyramids, in which the encoder and decoder are
connected by skip connections. Not only is it suitable for image
segmentation, but it can also identify categories of regions of
interest. The full convolutional neural network architecture
can implement multi-scale image input and prediction. We
compared the MUNet and UNet models in cervical lymph node
localization and benign and malignant diagnosis in ultrasound
images. Experiments show that on our dataset, MUNet with
multi-scale segmentation has achieved a Dice score improve-
ment of 4.1% and an AUC score improvement of 8.1% compared
to U-Net.

Index Terms—Artificial intelligence, Fully convolutional
neural networks, Multi-scale, Cervical lymph nodes

I. Introduction

Convolutional neural networks (CNNs) have superior
performance for high-level vision tasks, for example, object
detection [1]–[4], and semantic segmentation [5]–[7]. CNNs
have been widely used in the medical image diagnosis sys-
tem. And performs well in segmentation and classification.
The classical models for image segmentation are variants
of the encoder-decoder architecture like U-Net [8] and
fully convolutional network (FCN) [5]. They all have the
same architectures: skip connections, which combine deep,
semantic, coarse-grained feature maps from the decoder
sub-network with shallow, low-level, fine-grained feature
maps from the encoder sub-network. In FCN, upsampled
feature maps are summed with feature maps skipped from
the encoder, while U-Net concatenates them and add
convolutions and non-linearities between each upsampling
step. It can be said that image segmentation in natural
images has reached a satisfactory level. However, the
segmentation of lesions or abnormalities in medical images
requires higher accuracy than in natural images. The
marginal details and small objects in the medical image
need to be segmented more accurately than in natural
images.

The feature pyramid is the basic component of multi-
scale object discovery systems, which is used to find
marginal details and small objects. A top-down architec-
ture with horizontal connections is proposed for construct-
ing high-level semantic feature maps of various scales. This
architecture is called feature pyramid networks (FPN) [9].
It can be trained end-to-end with arbitrary sizes and is
used consistently at inference time. We present MUNet, a
new framework for medical image segmentation based on
the feature pyramid to address the need for more accurate
segmentation in medical images. The hidden hypothesis
behind our framework is that the model can more ef-
fectively capture (1) large object when the encoder sub-
network layer deepens and receptive field increases and (2)
fine-grained details and small objects when high-resolution
feature maps from the encoder sub-network are gradually
enriched before fusion with the corresponding semantically
rich feature maps from the decoder sub-network. Our
experiments demonstrate that the architecture is effective.
Our main contributions lies in:

• We utilize a fully convolutional network framework
that accepts inputs of arbitrary size and produces
outputs of the corresponding size through effective
learning and inference.

• The backbone of the framework can be replaced
arbitrarily to meet the needs of different scenarios.
For example, high efficiency, high accuracy or small
network size.

• It can be applied to segment objects of different scales.
The architecture can more effectively capture large
objects, small objects and fine-grained details.

The rest of this paper is organized as follows. We first
review the related work on deep classification networks
and the latest methods for semantic segmentation using
convolutional networks. The next section will explain the
design of MUNet and introduce the architecture of clas-
sification subnets and multi-scale segmentation subnets.
Experimental settings and results will be given, and the
architecture is proven to be effective. At the same time,
we have listed some useful techniques for classification
and segmentation. Finally, we summarize this paper and
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suggest possible future improvements.

II. Related Work
In recent years, deep neural convolutional networks

have outperformed the state of the art in many visual
recognition tasks such as image classification, seman-
tic segmentation, object detection, posture recognition,
inpainting, style transfer, and even image compression.
Public datasets such as ImageNet, COCO, Pascal VOC
made great contributions to the development of computer
vision.

Image classification is a core problem in computer
vision. LeNet [10] is the first successful application of
CNN that used to read zip codes, digits, etc. The first
work that popularized CNN in computer vision is AlexNet
[11], which is the winner of ImageNet ILSVRC 2012.
AlexNet is based on the LeNet, but AlexNet is deeper,
larger scale, and convolution layers stacked on top of
each other. The winners of ImageNet ILSVRC 2013 and
ImageNet ILSVRC 2014 are ZF-Net [12], GoogLeNet
[13], respectively. The former is a modified version on
AlexNet by adjusting the hyperparameters, especially
by extending the size of the convolution layers in the
middle and the latter introduced an Inception Module
that dramatically reduced the number of parameters in the
network. After that the followup versions of GoogLeNet
have been proposed, Inception-V2 [14], Inception-V3 [15],
Inception-V4 [16] and InceptionResNet-V2 [16]. In the
same challenge, the runner-up is the VGGNet [17]. It
is found that blindly adding layers after the depth of
the CNN networks reached a certain depth could not
bring further improvement of classification performance
but would lead to slower network convergence and worse
classification accuracy of the test dataset. ResNet [18]
designed by Kaiming He et al. solved the degradation
problem and avoided the gradient explosion. Different
from the characteristic of the InceptionNet family that
extends the width of the network, and different from
the ResNet family that increases the depth, DenseNet
[19] emphasized the features. The special convolution
block that called dense block is designed. It enhanced
the transference of features and alleviated the vanishing-
gradient.

Semantic segmentation is understanding an image at
the pixel level, that is, we want to assign each pixel in the
image an object category. Before deep learning took over
computer vision, TextonForest [20] and Random Forest
classifiers [21] for semantic segmentation are popular.
A kind of initial deep learning approaches for semantic
segmentation is patch classification [22], which predicts
its classes separately through a patch of the image of
each pixel. In 2014, the popularized CNN architecture for
dense predictions without any fully connected layers that
called Fully Convolutional Networks(FCN) [5] is proposed
by Long et al. This allows segmentation maps to be
generated for an image of any size and is also much

faster compared to the patch classification approach. In
addition to fully connected layers, the pooling layer is one
of the main problems of using CNN for segmentation.
Pooling layers can extract context information while
partial location information is lost. There two kinds of
architectures are proposed to discard the information. One
is encoder-decoder architecture, the encoder reduces the
spatial dimension and extracts features by pooling layers,
the decoder gradually recovers the spatial dimension and
object details. U-Net [8] is the most popular frame of
this way. The second architecture is applying dilated
convolutions or atrous convolutions instead of pooling
layers. FCN [5] is the end-to-end convolutional network
for semantic segmentation, upsamples feature maps with
deconvolutional layers, and introduces skip connections to
improve over the coarseness of upsampling. SegNet [6] does
not copy encoder features like FCN, while the indices from
max-pooling are copied, it makes more memory efficient
and segmentation resolution better than FCN. Dilated
Convolutions were used in the paper [23], and achieved the
multi-scale aggregation. DeepLab-v1 [24] and DeepLab-v2
[25] applied atrous convolutions or dilated convolutions,
proposed atrous spatial pyramid pooling (ASPP), and
finally through fully connected CRF to predict structures.
The improved version is DeepLab-v3, which improves
the atrous spatial pyramid pooling and employs atrous
convolutions in cascade. RefineNet [26] was constructed
by an encoder and decoder, and both components were
designed based on the resnet blocks.

The state-of-the-art models for image segmentation
are variants of the encoder-decoder architecture like U-
Net and fully convolutional networks. They all have the
same architectures: skip connections, which combine deep,
semantic, coarse-grained feature maps from the decoder
sub-network with shallow, low-level, fine-grained feature
maps from the encoder sub-network. Objects with multi-
scale are segmented by the same decoder sub-network. The
order of feature extraction in different depth of encoder
sub-network is different. Shallow network layer tends to
focus on lower-level features, which means small objects
can be more effectively captured. The deep network layer
more focuses on higher-level features, and large objects
can be easier to be captured correspondingly. Therefore,
it is inappropriate for a decoder layer to segment all sizes
of objects. We propose a new framework MUNet, which
predicts multi-scale objects through different network
layers.

III. Proposed Architectures
Fig. 1 shows an overview of the suggested architecture.

We input an image of arbitrary size. Next, the input
image features are extracted by the backbone, which is
the encoder sub-network. The Backbone consists of 5
convolution blocks (L1−5), the output feature maps are
defined as (C1−5). We assumed that the size of input image
is 256× 256× 3, so the size of C1 is 128× 128× 64, C2 is



Stem
Conv 

Block2
Conv 

Block3
Conv 

Block4
Conv 

Block5

C1 C2 C3 C4 C5

DBL
DBL

CBL

Conv×3

SigmoidCBL Conv

CBL Conv BN
Leaky
ReLu

Conv2d_BN_ReLu

CBL
Upsamp

ling concate
nate

SigmoidCBL ConvDBL
DBL

CBL

Conv×3

Classification

CBL
Upsamp

ling concate
nate

SigmoidCBL ConvDBL
DBL

CBL

Conv×3

CBL
Upsamp

ling concate
nate

SigmoidCBL ConvDBL
DBL

CBL

Conv×3

CBL
Upsamp

ling concate
nate

SigmoidCBL ConvDBL
DBL

CBL

Conv×3

256×256

16×16

32×32

64×64

128×128

Benign Malignant

Backbone

B1

B2

B3

B4

B5

Fig. 1. MUNet for image segmentation. At first, We input an image
of arbitrary size. Next, the input image features are extracted by
the classification network as the backbone, which is the encoder sub-
network. The Backbone consists of 5 convolution blocks (L1−5), the
output feature maps are defined as (C1−5). Finally, a network branch
is absorbed in predicting the categories of an input image, and four
network branches are applied to generate segmentation masks with
different sizes. Segmentation mask branches consist of feature maps,
which are upsampled (C1−5), and then concatenated with (L1−5).
For example, the input image size is 256× 256.

64× 64× 128, C3 is 32× 32× 256, C4 is 16× 16× 512 and
C5 is 8× 8× 1024. We replaced the max-pooling layer by
the special convolution layer. These special convolution
layers with settings that the size of the kernel is 3 × 3,
padding is 1 and stride is 2, which makes sure that the
width and height of feature maps halved and the number
of channels doubled as the number of convolution blocks
increasing. C5 is entered into one network branch which
is applied to predict the categories of the input image
and enter into another network branch for generating
segmentation masks. Every step in the decoder sub-
network consists of an upsampling of the feature map,
followed by a concatenation with the correspondingly C∗
from the encoder sub-network, 3 DBL(a convolution layer,
followed by a batch normalization layer and a leaky relu)
blocks that halves the number of feature channels. For
each upsampling stage, we add 1 × 1 convolution layer
before sigmoid function, which is used to cross channel
information, reduce dimension, introduce nonlinearity and
accelerate the computation. At the last of each upsampling
stage, we output the masks with different sizes to achieve
the multi-scale segmentation.

A. Generation of The Best Mask
Since multiple masks are generated, we need to decide

which mask should be retained as the optimal one. One
way to do that is to compare the metrics with ground
truth for each mask and select the mask with the highest
metric. However, this goes against our original intention,
multi-branch can not generate multi-scale segmentation
masks. We used a weighted voting method to determine
the best mask.

We assumed that the masks generated from B2−5 are
two-dimensional matrix M2−5 with a different number
of the number of rows and columns. Then we resized

these matrices to the same size with input image through
bilinear interpolation, which are defined as M

′

2−5. The
areas of M

′

2−5 are A2−5, correspondingly. W and H are
the width and height of the input image. The best mask
is defined as:

M =

5∑
k=2

αkM
′

k

M
′

kij ∈ [0, 1], 1 ≤ i ≤ W, 1 ≤ j ≤ H

(1)

The αk, k = 2, 3, 4, 5 is the weighting coefficient, which
is defined as:

αk = 1− Ak

WH
(2)

That means we pay more attention to small parts and
details.

B. Loss Function
Each training input image is labeled with a ground truth

class u and a ground truth segmentation mask target v.
We use a multi-task loss of L on each input image to
jointly train for classification and mask segmentation.

L = Lcls + λLmas (3)

in which Lcls = −α(1 − pu)
γ log pu is focal loss [27] for

true class u. λ is the coefficient of balance.
The second task loss, Lmas is defined over the output

of the four segmentation mask branches. We usually
use the Dice coefficient to measure the quality of image
segmentation, which is a similarity measure related to the
Jaccard index. For segmentation output v

′ and target v,
the coefficient is defined as:

D(v
′
, v) =

2|v ∩ v
′ |

|v|+ |v′ |
(4)

, and the Dice coefficient loss is 1−D. Therefore Lmas is

Lmas =

5∑
k=2

1−D(vk, v) (5)

, in which vk is the resized segmentation mask of the
branch Bk.

IV. Experiments

A. Datasets
We evaluated MUNet in ultrasound images of cervical

lymph nodes, which come from 3000 patients approxi-
mately. The dataset concludes about 4000 benign images
and 1000 malignant images with the original size are
700 × 800. Data augmentation has been carried out to
balance the categories of the data. The number of images
is about 10 thousand after data augmentation. We split
the data into the train set, verification set and test set
according to 8 : 1 : 1.



B. Data Augmentation
Data augmentation technology is used to increase the

number of data and balance the categories. The ultrasound
images of the cervical lymph node are usually class
imbalance and expensive, this paper uses cost-sensitive
learning and data augmentation to prevent it as far
as possible. Several data augmentation techniques are
applied to the original ultrasound image and ground truth
correspondingly, for example, rotating an image by an
arbitrary amount, fliping the image along its vertical axis
or horizontal axis, performing a random elastic gaussian
distortion on an image, zooming into an image at a random
location within the image, cropping a random area of an
image based on the percentage area, skewing an image by
tilting by a random amount and shearing the image by a
specified number of degrees.

C. Experimental Setup
All training and testing processes were performed on

NVIDIA GeForce GTX 1080Ti 11G GPUs. We developed
our models in the deep learning framework Keras. On
the Ubuntu Linux system equipped with NVIDIA GPUs,
training a single model took 4–6 hours depending on the
architecture of the networks.

D. Implementation Details
We augment the set of training images by flipping,

rotating each with ±5◦, adding Gaussian white noises with
variances of 0.001 and 0.01 and some others. The size of
the images is about 700×800, in the preprocess of training
we will resize them to different size. The optional W,H
are selected from {256, 384, 512, 640}, which are integer
multiples of 32. So we have multi-scale image with size
{256×256, 256×384, 256×512, 256×640, 384×384, 384×
512, ...}.

We monitored the Dice coefficient and AUC and applied
an early-stop mechanism on the validation set. We then
train our networks for 100 epochs with the following
parameters: Adam optimizer with a learning rate of 1e−3
and weight decay 0.01, batch size 64. We set focal loss for
the classification branch. The total loss function is the
weighted sum of the Dice coefficient loss and the focal
loss. And the balanced coefficient λ is 0.25.

E. Results and Analysis
According to Table I, that compared the various metrics

of MUNet with different backbones and the baseline U-
Net on the test datasets. U-Net is the simplest model
that we have slightly modified to classification and seg-
mentation at the same time. MUNet-ResNet50 has not
only a high Dice coefficient but also a high score of
accuracy and AUC, which indicates it can not only
extract features from the ultrasound images but also
recognize the structure of the ultrasound image efficiently.
Obviously, the depth of MUNet-ResNet50 is deeper than
U-Net, and MUNet-ResNet50 can joint more resnet blocks

TABLE I
The Various Metrics of MUNet with Different Backbones on The

Test Datasets

Models Dice Sen. Spec. Acc. AUC
U-Net 0.877 0.910 0.746 0.863 0.860

MUNet-ResNet50 0.914 0.891 0.943 0.923 0.924
MUNet-ResNet152 0.916 0.918 0.942 0.941 0.941
MUNet-Inceptionv3 0.924 0.911 0.944 0.932 0.932
MUNet-Inceptionv4 0.878 0.824 0.897 0.861 0.863

MUNet-InceptionResNetv2 0.910 0.890 0.948 0.914 0.916
MUNet-DenseNet 0.906 0.858 0.905 0.927 0.913

aDice is the Dice coefficient, Sen. is the sensivity, Spec. is the
specificity, Acc. is the accuracy and AUC is the area under curve.
bBoldface represents the model that achieved the highest score for
the indices we focused on in the experiments.

(a) original malig-
nant image

(b) predicted ma-
sk of the original
malignant image

(c) masked malig-
nant image

(d) original benign
image

(e) predicted ma-
sk of the original
benign image

(f) masked benign
image

Fig. 2. Predictions of MUNet-Inceptionv3 have been shown in the
above figures.

such as MUNet-ResNet152 to improve the ability of ex-
tracting features from images. MUNet-DenseNet, MUNet-
InceptionResNetv2 and MUNet-Inceptionv4 are average in
performance. But dense blocks can be used to extend the
depth of the network. And MUNet-InceptionResNetv2 has
a better performance than that two models because of the
effect of inception-resnet-blocks. MUNet-Inceptionv3 has
the best Dice coefficient in these models, the wide Incep-
tion Module contributes to extracting location information
from images. Different size convolution kernel means the
different sizes of the receptive field, and finally splicing
means the fusion of different scale location features. The
feature map output of each Inception Block indicates
that MUNet-Inceptionv3 is more advanced than others
in extracting location information.

The backbone network structure is complex and diverse
and how to select them in the application. Different
application requirements need to select different backbone
structures. ResNet is more suitable for applications where
there is a strong need for accuracy. The ResNet with fewer
layers extracts lower-level features that lead to a loss of
precision, but the speed of calculation is faster. On the



contrary, the ResNet with more layers extracts higher-
level features so that is easier to determine the lesion
area is benign or malignant, but more calculated time
and space resources are usually required. Inceptionv3 is
more suitable for application where there is a strong need
for locating lesion areas, but it is often accompanied by a
loss of accuracy. If we want both high accuracy and high
location ability, the network that ResNet and Inception
can be combined and the features extracted by them, but
it will be an extremely complex network structure.

F. Some Tricks That Lead to Increase of Dice Coefficient
As shown in Table II, we used some tricks to improve

the Dice coefficient based on the MUNet-ResNet152.

TABLE II
Tricks That Lead to Increase of Dice Coefficient in MUNet

Tricks
BN and 1× 1 conv? ✓ ✓ ✓ ✓

Hard example mining? ✓ ✓ ✓
Ensamble methods? ✓ ✓

Multi-scale? ✓
Dice coefficient 0.914 0.924 0.929 0.938

Multi-scale training and inference: They are the com-
mon methods to improve model performance. We first
load the network parameters that have been pre-trained
in ImageNet. And then we fined tune the network with
the different input images size {256×256, 256×384, 256×
512, 256 × 640, 384 × 384, 384 × 512, ...}. When in the
inference stage, we resized the test images to a different
size, predicted the categories and masks.

Batch normalization and 1 × 1 convolution layer: Batch
normalization is designed to solve the problem that called
internal covariate shift [14] and accelerate deep Network
training. During training time, a batch normalization layer
does the following:

µB =
1

m

m∑
i=1

xi

σ2
B =

1

m

m∑
i=1

(xi − µB)
2

x̄i =
xi − µB√
σ2
B + ϵ

yi = γx̄i + β

(6)

µB is the mean of the mini-batch data and σ2
B is the

variance. The third formula is used to normalize values.
And the two variables γ, β are introduced, one for learning
the mean and other for variance. During inference time,
the mean and the variance are fixed. They are estimated
using the previously calculated means and variances of
each training batch. 1 × 1 convolution layer is used to
cross channel information, reduce dimension, introduce
nonlinearity and accelerate the computation.

Hard example mining: We labeled train samples as
difficult or easy using prediction confidence. And then
difficult samples can have more post or pre-process. Focal
loss has been used to balance the difficult and easy
examples.

Ensemble methods: We have trained multiple stronger
models, but how to integrate the results of these models
to increase metrics? We assumed that we have trained k
different models, which is defined as (pui, vi) = Fi(x), 1 ≤
i ≤ k, x is the input image, and pui is probability value
that x belongs to the categories u of model i, vi is the best
mask that model i predicted. We use the linear summation
method to combine the results.

F (x) =

k∑
i=1

λiFi(x)

pu =

k∑
i=1

λipui

v =

k∑
i=1

λivi

λi ∈ (0, 1), 1 ≤ i ≤ k

(7)

In order to simplify the process, we did not use ensamble
methods that like stacking or blending for classification
prediction.

V. Conclusion

In this paper, we proposed a framework called MUNet
for medical image segmentation. MUNet is essentially
a fully convolutional encoder-decoder network based on
the feature pyramids where the encoder and decoder
are connected through skip-connection. It is not merely
suitable for image segmentation, but also to identify the
categories of the region of interest. To address the need for
more accurate medical image segmentation, we designed
a multiple-branching architecture for segmenting objects
with different sizes. MUNet with multi-scale segmentation
masks achieves a 4.1% Dice score improvements, and
an 8.1% AUC score improvements compared with U-Net
in our datasets. The Dice coefficient can be improved
1.4% when we bring in ensemble methods and multi-scale
training and inference in our datasets. The backbone of
the framework can be replaced arbitrarily to meet the
needs of different scenarios. We are sure that the MUNet
architecture can be applied easily to many more tasks.
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