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Abstract—In this paper, a soybean flower/seedpod detection
system is built for collecting growing state information by
introducing convolutional neural networks, aiming that observed
plant states (e.g., #flowers and #seedpods) are used to predict
the crop yields of soybeans by combining the environment
information in future. To predict the crop yields (i.e., quantity
of seedpods) precisely, it is considered important to know how
the number of flowers are translated over time and how such
flower transients can affect the final yields of soybeans. However,
there has not existed a way to measure the number of flowers
in real environments. For this purpose, We propose a deep
learning approach to automatically detect flower and seedpod
regions from images which are taken in real soybean fields
without environmental control. Various object detection methods
are compared, including RetinaNet, Faster R-CNN, and Cascade
R-CNN. Ablation studies are provided to analyze how these
methods perform on both flower and seedpod across different
parameters. In our experimental results, Cascade R-CNN gives
the best average precision (AP) of 89.6, while RetinaNet and
Faster R-CNN give AP of 83.3 and 88.7, respectively. Cascade R-
CNN also attains the highest accuracy in detecting small objects,
which are not easily detected by other models. With accurate
detection, the system is expected to contribute to constructing
high-performance measurement for soybean flowers and seed-
pods, which ultimately leads to better pipeline in evaluating plant
status.

Index Terms—precision agriculture, object detection, deep
learning, crop monitoring

I. INTRODUCTION

The ever-growing global demand for soybean is not fol-
lowed by the increase of the annual growth rate of soybean
crops as the population of skilled farmers keeps decreasing.
To address this issue, precision agriculture and automation in
the farming process began to be adopted with the ultimate
goal of increasing the production of this highly demanded food
resource. We start this effort by collecting various information
from sensors, including cameras, to gather information about
crop growth in understanding which kind of environment
contributes to higher productivity.

Fig. 1: Dense space between soybean plants make data col-
lection and crop monitoring become non-trivial effort.

One main factor that we observe is the number of growing
flowers and seedpods on the plant over its growth period. Since
manual measurement would be costly, we aim to automate this
process using an object detection model based on computer
vision techniques. Data collection is conducted on actual
soybean fields without any environmental control, so getting an
accurate quantification would not be an easy feat as it comes
with multiple obstacles. The detection model needs to take
into account the illumination variance and object occlusion
that occurs frequently. In addition, physical limitations such
as dense placement of plants as illustrated in Figure 1 makes
taking the full image of each plant in one take infeasible. To
address the issues, we took video of each plant and cut them
into several frames. However, as a drawback, this results in
unintended aftereffects such as motion blur and overlapping
scene between one frame and another.

We adopted deep-learning-based object detection models in
this work for their well-known higher performance compared
to traditional computer vision techniques. Two-stage object
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Fig. 2: Data distribution of bounding box area in the whole
dataset, represented in pixel.

detection models such as Faster R-CNN [9] and Cascade R-
CNN [15] especially have high detection accuracy on difficult
datasets like MS COCO [16]. We created our own dataset
based on the images we have collected on the field. The dataset
contains two class labels, flower and seedpod. The dataset
functions as a means of benchmarking in considering which
detection model suits our case.

The size distribution of bounding boxes is presented in
Figure 2. Large objects are relatively rare in flower class,
and smaller objects occurred more frequently. In complement
with this, seedpod class lacks smaller object, and larger object
occurs more instead. We can see the comparison example
between the two in Figure 3. Thus, we would like to confirm
if deep learning-based detection models can perform well on
such distributions as well. To make the comparison more
general, we include not only two-stage object detection models
such as Faster R-CNN and Cascade R-CNN, but also one-stage
detection models like RetinaNet in our study to figure out how
much the result may differ.

II. RELATED WORK

The pursuit of agricultural productivity, especially on soy-
bean plant, has been featured on prior works, though with
different objectives and methods from us. Simple Linear It-
erative Clustering (SLIC) superpixels segmentation were used
by [1] in complement with CNN classifier to detect weeds that
possibly hinder the growth of soybean crops. [2] also used the
method to identify soybean leaf diseases. While object detector
based on SLIC has its own advantage of being fast, it often has
inferior accuracy compared to detectors derived from R-CNN
model [3].

Deep-learning-based object detectors have been widely used
on other crops. [4] adopted Faster R-CNN model to detect
fruits in the orchard field. We will show the performance of
Faster R-CNN on our dataset as well as the base comparison.
[5] compared the performance of R-CNN, Fast R-CNN, and
Faster R-CNN models in detecting strawberry flowers in the

(a) Flower sample (b) Seedpod sample

Fig. 3: Sample data of both flower and seedpod. Flower
object has smaller bounding boxes in average, compared to
the seedpod.

outdoor field. The challenges in detecting objects outdoor such
as illumination variance are similar to our case, though the data
gathering process in our case may relatively more complex
due to the dense planting of soybeans. [6] applied a modified
YOLOv3 model for apple detection in orchards. It is one of
very few works that utilized one-stage detection in such case.
Recent progress of one-stage detection is even claimed to be
able to par with two-stage object detection models in accuracy
while having faster inference speed.

The rapid development of deep-learning-based object de-
tection models arguably has its root from the appearance of
Region-based Convolutional Neural Network (R-CNN) [7]. R-
CNN appends a region proposal stage to the CNN object
recognition pipeline as an object localization mechanism. It
proposes a specific location of objects in an image, which
later classified by the object recognition stage. Such kind of
model is known as the two-stage model, as it consists of region
proposal stage and recognition stage.

Numerous improvements to the R-CNN detector have been
proposed, resulting in better-performed models such as Fast
R-CNN [8] and Faster R-CNN [9]. State-of-the-art model
such as Cascade R-CNN [15] even includes multiple region
proposal stages in its pipeline to further boost the detection
performance. The needs of a more efficient object detection
pipeline also give birth in the one-stage model, beginning from
YOLO [10] [11] [12], Single Shot Detector (SSD) [13], until
the appearance of RetinaNet with its competitive accuracy
compared to the two-stage detector while maintaining low
latency on MS COCO dataset [14].

III. METHODS

A. Data Collection

We collected the soybean plant image data from soybean
plantation fields across several regions in Japan, using a GoPro
Hero 7 camera in natural daylight. Soybeans are often planted



Fig. 4: Illustration of data collection process by capturing
video of each soybean plant in particular distance.

with a dense space between plants, so there are limitations in
the distance we can take between the camera and the plant.
Thus, it is challenging to make the camera capture the whole
picture of a soybean plant in one take. Taking aerial picture
like [1] [2] is also not an optimal solution in our case, since
it would be harder to capture the whole image of flowers and
seedpods we want to detect.

As an alternative, we took video of each plant by sliding
the camera from bottom to top of the plant in an acceptable
distance [21]. This process is illustrated in Figure 4. We
conducted this process once every few days, starting from
when the soybean starts to grow flower until the full seed
period. This way, we can quantify the change of number in
flower and seedpod within each growth period.

Images were generated from the videos by cutting them
into several frames. Resulting images were hand-annotated
using labelImg annotation software [20]. We annotated every
flower and seedpod visible in the image regardless of which
plant these objects belong to. While our primary purpose
is calculating the number of flowers and seedpods within
each plant, there is a difficulty in differentiating which object
belongs to which plant because of the limited distance between
each plant.

B. Object Detection

Faster R-CNN is one of the state-of-the-art object detection
methods that has undergone several modifications. It was
originally introduced as an improvement to R-CNN model by
adding the Region Proposal Network (RPN) as a mechanism
to reduce the number of region proposals while increasing
the proposal quality. Later on, Feature Pyramid Network
(FPN) [18] was introduced as a solution in detecting object
across different sizes by utilizing multiple feature scales. FPN
is also adopted in RetinaNet in spite of the difference in

(a) Faster R-CNN (b) Cascade R-CNN

Fig. 5: Architecture difference between Faster R-CNN and
Cascade R-CNN, as explained in [15]. ”I” represents input
image, ”conv” is backbone convolution, ”pool” is region-wise
feature extraction, ”H” is network head, ”B” is bounding box,
and ”C” is classification.

approach, in which RetinaNet directly applies detection to the
image without region proposal stage. In addition with focal
loss proposed by the original paper, its detection accuracy
can compete with Faster R-CNN with less overhead in the
architecture.

Object detection model such as Faster R-CNN usually
choose exactly one IoU threshold and stick with it in the
whole pipeline. This may result in a model that only good
on particular IoU. As an example, detectors trained on lower
IoU may results in diversified bounding boxes, but noisy
detection would appear often. In opposite, detectors trained
on higher IoU, while only output few detections because of
its strict threshold, mostly left true positive bounding boxes.
Cascade R-CNN addresses this issue by appending additional
region proposal stages. Moreover, it utilizes different IoU
thresholds on each stage with an increasing value (e.g. 0.5; 0.6;
0.7), which acts as a resampling mechanism. The architecture
difference between Faster R-CNN and Cascade R-CNN is
illustrated in Figure 5. Cascade R-CNN has multiple ”network
heads” that function as an additional region-of-interest detector
with a particular IoU threshold being set.

The actual process can be seen in Figure 6. Lower stage
with a lower IoU threshold can detect many ‘rough’ bounding
boxes. There are two possibilities on how the proposed bound-
ing boxes is handled within particular stage. Bounding boxes
that pass the IoU threshold on the current stage will be passed
to the next stage to be refined further. On the other hand, false
positive bounding box that does not pass the threshold will be
ignored. The repeating process results in a better quality of
bounding boxes on each stage iteration.

C. Object Counting Mechanism

Object counts across frames are aggregated to get the final
quantity of objects in each video. As a note, this should be
done in a way such that the overlapping scenes will not be
counted twice. Though this process is not the focus of our
current work, the mentioned condition can be fulfilled by
adopting object tracking techniques, which can be done in
several approaches, such as correlation filter-based methods
[17].



(a) 1st stage with IoU=0.5 (b) 2nd stage with IoU=0.6 (c) 3rd stage with IoU=0.7

Fig. 6: Illustration of cascading process in bounding box regression. Bounding boxes are either be ignored or passed to the
next stage, depends on whether they can pass the IoU threshold in the current stage. The blue box represents the ground truth,
while the green box represents the detection given by the model.

TABLE I: Dataset configuration in training process.

Train Set Test Set
Flower Seedpod Flower Seedpod
30,729 40,898 1,711 3,186

IV. EXPERIMENT

A. Experiment Setup

We split each video into seven frames on average. Our
consideration is fewer frame results in the loss of scenes,
which possibly contains any objects that would be precious
for training – more frame results in the higher appearance
rate of scenes that highly overlap with another image. Though
the influence is not yet confirmed, we tried to avoid this as
there is a possibility that the model would overfit particular
scenes.

We have collected 3,082 videos in total, resulting in about
39,583 frames. Several frames do not contain any object, so we
omit them from the dataset. As a result, only 12,659 images
remain that contain either flower or seedpod. After splitting
the data into the train set and test set, the number of flower
and seedpod bounding boxes are presented in Table I.

Since we especially want to observe the performance of
these models on particular sizes, we also grouped the objects’
bounding boxes in the test set based on their area. Previously,
MS COCO dataset did this by grouping the bounding boxes
into three groups: small, medium, and large. It was done by
these rules:

• AP small : area < 322

• APmedium : 32 < area < 962

• AP large : area > 962

In addition, the longer axis of each image in MS COCO
dataset does not exceed 640 pixels. It means that an object
is grouped as small if it has a 1:20 length ratio from the

TABLE II: Number of bounding boxes grouped by area.

Area Flower Seedpod
Small 1,513 157

Medium 176 1,134
Large 22 1,895

maximum axis length. For the large group, the length ratio
would be 1:6.67 by the same calculation. In our case, we
decided to resize the images in our dataset such that the longest
axis does not exceed 1333 pixels. By following similar ratio
to that of MS COCO as a guideline, we group an object as
small if the area is less than 672, and an object is grouped
as large if the area exceeds 2002. The number of objects on
each group are summarized in Table II. The smaller objects
are dominated by the flower class, while medium and larger
objects are dominated by seedpod class.

B. Result

In this section, we provide an ablation study regarding the
result of RetinaNet, Faster R-CNN, and Cascade R-CNN. We
also did a specific analysis in evaluating the performance of
models according to the bounding box area in the ground truth,
as we need to confirm the models’ performance in detecting
small objects especially.

We trained each model with two different backbone, the
ResNet50 and ResNet101. Training was done using SGD with
momentum of 0.9. Detectors are set to handle three classes:
flower, seedpod, and background. Images were resized into
1333 x 800 pixels in the preprocessing step. We believe
smaller resolution will impact the performance of models
in detecting smaller objects, especially in the case when
convolution network with deep enough layer are used. It will
make smaller bounding box area in the ground truth lost its



TABLE III: Model performance over whole test data.

Model AP 50 AP 75

RetinaNet50 81.6 50.2
RetinaNet101 83.3 51.6

Faster R-CNN w/ ResNet50 87.1 53.7
Faster R-CNN w/ ResNet101 88.7 57.1
Cascade R-CNN w/ ResNet50 87.6 60.0

Cascade R-CNN w/ ResNet101 89.6 62.6

fine details, and lead into less chance for the detector to find
meaningful features [19].

Detection performance is evaluated by the average precision
(AP), which is the average score of the area below precision-
recall curve in each class (except the background). Table III
summarizes the comparison between RetinaNet and Cascade
R-CNN on IoU = 0.5 (AP 50) and IoU = 0.75 (AP 75).

Cascade R-CNN with ResNet101 backbone tops other mod-
els in both metrics. In fact, even with the ResNet50 backbone,
Cascade R-CNN exceeds the performance of Faster R-CNN
model with ResNet101 backbone on AP 75 score. We could
say that the strong point of the cascading stage architecture
is that its performance degrades less on the stricter IoU,
compared to other models.

In opposite, RetinaNet model seems to struggle in our
dataset compared to the two-stage detectors. The performance
even gets worse on AP 75 score, where higher IoU threshold is
used. It is often said that the performance of one-stage detec-
tors often be inferior as it needs to take the whole background
image into consideration by its pipeline, which results in
imbalance between background class and other classes in the
training phase. The case would be different from the two-stage
detectors, as they only consider regions proposed by the region
proposal layer for the classification. Even with class imbalance
countermeasures such as focal loss as proposed in RetinaNet
architecture, it still could not perform well compared to Faster
R-CNN, at least in our dataset. In contrast with RetinaNet,
Cascade R-CNN exceeds Faster R-CNN performance with its
region proposal resampling mechanism.

The performance difference of each model can also be
estimated from their precision-recall curve, as shown in Figure
7. Larger area under curve means better performance the
model gives. While the performance gain of Cascade R-CNN
does not look significant in AP 50, the model shines on AP 75

as we can see larger difference of area under curve. This
means that the resulting bounding boxes of Cascade R-CNN
resembles more to the ground truth compared to other models.

Performance measurement of the models on each object is
summarized in Table IV. It reflects the previous result, where
Cascade R-CNN with ResNet101 backbone gets the highest
score on both flower and seedpod detection.

The overall accuracy in flower detection is comparatively
lower than the seedpod detection, with the highest AP in
seedpod detection is 92.5 while the highest AP in flower
detection only reaches 86.6. Flower class dominated by small-
sized objects may be the main factor in why it is harder to get

TABLE IV: Model performance on specific objects, repre-
sented in AP 50.

Model Flower Seedpod
RetinaNet50 78.5 84.7

RetinaNet101 81.2 85.5
Faster R-CNN w/ ResNet50 84.0 90.1

Faster R-CNN w/ ResNet101 85.8 91.7
Cascade R-CNN w/ ResNet50 83.6 91.7

Cascade R-CNN w/ ResNet101 86.6 92.5

TABLE V: Model performance on each bounding box size,
represented in AP 50.

Model Small Medium Large
RetinaNet50 41.3 73.7 79.0

RetinaNet101 44.9 78.2 86.7
Faster R-CNN w/ ResNet50 49.8 80.4 81.0

Faster R-CNN w/ ResNet101 51.9 83.0 77.2
Cascade R-CNN w/ ResNet50 49.2 81.9 81.5
Cascade R-CNN w/ ResNet101 53.2 86.1 85.8

high performance in flower detection. To see how the object-
specific performance and object size correlates, we provide
the performance of models in a particular size, represented in
Table V.

While each model performs relatively fine on detecting
objects with medium and large sizes, we can see a significant
performance drop in each model when detecting small objects.
Particularly in flower detection, several fail cases should be put
into consideration to create a more robust model.

Detection would especially get tricky when the flowers
make a cluster, as illustrated in Figure 8. It is a common
problem in object detection, as overlapping bounding boxes
often be filtered in the process.

The flowers in our dataset also has two variants of petals
colors, the purple one and the white one. Flower with purple
petals dominates in the dataset. Flowers with white petal, as
a minority in the dataset, is more challenging to be detected,
especially in images with high exposure in the surrounding
illumination. Data imbalance in the petal color may also be
one of the factors in why it is harder to detect in our dataset.
Figure 9 is one example of undetected flower in accordance
with the aforementioned problem.

C. Parameter Tuning

Default configuration of Cascade R-CNN architecture was
set with three stages, with the corresponding IoU threshold in
each stage is {0.5, 0.6, 0.7}. Table VI shows how the stage
configuration affects the model performance.

Setting the first stage with a lower IoU gives a slight
accuracy increase on AP 50. Nevertheless, it could not handle
the higher the IoU that well, as we can see the decrease
of the result in AP 75 compared to the default setting. The
performance reduction only gets worse as more stage were
added, which means that more stage does not make better
model in this scenario.



(a) AP 50 (b) AP 75

Fig. 7: Precision-recall curve for both AP 50 and AP 75 evaluation metrics.

Fig. 8: Accurate detection is hard to obtain on cluster of
flowers

Fig. 9: High exposure on the background influences the
detection performance, especially on flower with white petals.

TABLE VI: Performance of Cascade R-CNN with ResNet50
over several stage configurations.

IoU Configuration AP 50 AP 75

{0.5, 0.6, 0.7} (default) 87.6 60.0
{0.4, 0.5, 0.6} 87.7 57.7
{0.6, 0.7, 0.8} 86.2 56.3

{0.4, 0.5, 0.6, 0.7} 87.2 57.2

V. CONCLUSION

We presented the end-to-end process of flower and seed-
pod detection of soybean plants in an actual soybean field
environment. Data were collected by capturing video of each
plant and cutting it into several frames. The annotated frames
were then used for training the object detection model. We
also studied the performance comparison of the state-of-the-art
object detection model in our case, including RetinaNet, Faster
R-CNN, and Cascade R-CNN. The evaluation shows that
Cascade R-CNN gives the highest performance on both AP 50

(89.6) and AP 75 (62.6). Ablation studies were conducted on
the performance of object detectors in particular object sizes.
The result indicates that flower detection is comparatively
harder as smaller objects occurs more frequently in our dataset.
Edge cases such as flower clusters and overexposure in flower
with white petals were also discussed to make a more robust
detector in the future works.
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