
TransKP: Transformer based Key-Phrase Extraction
Mukund Rungta*, Rishabh Kumar*, Mehak Preet Dhaliwal*, Hemant Tiwari , Vanraj Vala

Samsung R&D Institute Bangalore, Karnataka, India 560037
Email: {mukund.r, rish.kumar, m.dhaliwal, h.tiwari, vanraj.vala}@samsung.com

Abstract—Increased connectivity has led to a sharp rise in
the creation and availability of structured and unstructured text
content, with millions of new documents being generated every
minute. Key-phrase extraction is the process of finding the most
important words and phrases which best capture the overall
meaning and topics of a text document. Common techniques
follow supervised or unsupervised methods for extractive or
abstractive key-phrase extraction, but struggle to perform well
and generalize to different datasets. In this paper, we follow
a supervised, extractive approach and model the key-phrase
extraction problem as a sequence labeling task. We utilize the
power of transformers on sequential tasks and explore the effect
of initializing the embedding layer of the model with pre-trained
weights. We test our model on different standard key-phrase
extraction datasets and our results significantly outperform all
baselines as well as state-of-the-art scores on all the datasets.

Index Terms—keyphrase extraction, transformer, seq2seq

I. INTRODUCTION

An explosive growth in the generation and consumption
of textual data has rendered the issue of analysing, com-
prehending and processing text documents inevitable. With
over millions of emails, social media posts, blogs, articles,
messages etc. being shared every day, extracting the most
important information which best captures the meaning of the
text is important for both the humans reading that document,
as well as for downstream text processing tasks. Key-phrase
extraction refers to the process of finding the most important
words and phrases that accurately provide an overview of the
document. Automated key phrase extraction becomes critical
at the current document creation rate, enabling document
tagging, summarization, topic analysis, document clustering
and classification, as well as various information retrieval
tasks such as document indexing and improving search engine
results. All this makes the process of key-phrase extraction
from text a crucial task in the field of Natural Language
Processing (NLP).

A popular survey on key-phrase extraction [1] shows that
there are two main approaches for the task. The first approach
involves candidate key-phrase generation from the document,
followed by their pruning and ranking. Extraction of the
candidates employs different heuristics such as named entity
extraction, position of the phrases and their frequency of
occurrence in the document. This method suffers from the
limitation of not being able to generalize to different document
types due to the application of domain specific heuristics.
Also, the candidate generation method does not consider
the dependency between different key-phrases. In order to

* These authors contributed equally to the paper

overcome the above limitations, [2] modelled the problem as
a sequence labeling task where each token in the document is
assigned a tag, indicating whether it is a part of key-phrase or
not. This method captures the long term dependencies in the
document to detect its important key-phrases.

The learning method for key-phrase extraction can be su-
pervised or unsupervised. Unsupervised approaches do not
require a labeled dataset with already tagged key-phrases, but
instead exploit the underlying structure of the text documents,
typically using statistical [3] or graph based techniques [4],
[5]. Supervised approaches generally employ NLP machine
learning or deep learning techniques on the labeled dataset
[6]. Depending on the kind of key-phrases extracted, the
different methodologies can also be categorised as extractive
or abstractive, where extractive approaches [4], [7] select
the most important words and phrases from the document,
whereas abstractive approaches [8] can additionally generate
key-phrases which were not part of the original document.

While the task of key-phrase extraction has been explored,
results on standard evaluation metrics have not been very
promising. Some of the key issues identified in [1] relate to
the kind of text corpora available, with complexity increasing
with the length of the documents, structural inconsistencies
between different kinds of documents, changes in topics
within a document and possibly uncorrelated different topics
present in the same document. We, therefore, propose an
extractive, supervised approach to extract the key-phrases of
a document by modelling it as a sequence labeling task. In
this model, we leverage the power of the transformer [9],
which has previously showcased its ability to capture long
term dependencies and relations between different components
of the document using positional encoding and multi-head
self-attention. We name our transformer based key-phrase ex-
traction model ‘TransKP’. Additionally, we explore the effect
of initialization of the embedding layer of the transformer
and empirically prove that this significantly improves results
on our task. To our knowledge, we are the first to employ
transformers to achieve the objective of key-phrase extraction
as well as studying the effect of initializing transformer layers
on the task. Our results on all the datasets prove the learning
capability as well as generalisation power of our network.

We have evaluated our model against various baselines as
well as state-of-the-art models on the key-phrase extraction
task and show significantly improved results on the evalua-
tion metrics on multiple standard datasets, thus proving the
effectiveness of our experiments and model. The key-phrases
extracted by our model along with the gold standard labels on

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 1. Key-phrases (In bold) detected by TransKP on two sample documents

two sample documents from our testing set can be visualised
in Fig. 1. Summarizing our contributions:

• We explore the transformer based model for the task of
key-phrase extraction by formulating it as a sequence
labeling problem.

• We compared the results of our model- TransKP against
the standard baselines and state-of-the-art model on mul-
tiple standard datasets and report significant improvement
over them.

• We investigate the effect of initializing the model with
pre-trained embedding weights (Trans-KP Glove) against
random initialization (Trans-KP). The results indicate
superior performance, both in terms of F1-score and
convergence time, of Trans-KP Glove with respect to
Trans-KP.

II. RELATED WORK

Most key-phrase extraction techniques follow a two-step
approach, with the first step being identification of candidate
key-phrases followed by a final predication of each candidate
as a key-phrase (KP) or non-key-phrase (non-KP). The second
phase can follow a supervised or unsupervised approach.

Unsupervised approaches typically follow graph-based ex-
traction techniques. These methods involve transformation of
the input document to a graph structure with each candidate
phrase represented as a node and edges between the nodes
indicating some kind of syntactic or semantic similarity. A
final score is calculated for each node following a graph-based
ranking method which determines the corresponding candi-
date’s relevance as a key-phrase for the document. Several
methods utilise variants of the popular PageRank algorithm
[10] which is used to rank web-pages based on their incoming

and outgoing links. One of the most popular key-phrase extrac-
tion algorithms which follows this approach is the TextRank
algorithm [4]. An extension of this method is the SingleRank
algorithm [5] which exploits word co-occurrence information
to determine edge-weights. Other approaches such as Posi-
tionRank [11] and TopicalPageRank [12], additionally utilise
features such as word position and topical information with
the traditional TextRank algorithm. Some recent approaches
[13], [14] have also incorporated word embeddings in unsuper-
vised key-phrase extraction. Various other approaches such as
TopicRank [15], KeyCluster [16] and CommunityCluster [17]
perform topic based clustering to ensure sufficient relevance
and coverage of the extracted key-phrases with respect to the
topics of the document [1].

Supervised approaches for key-phrase extraction typically
model the problem as binary classification of the tokens
present in the document into KP or non-KP. Different learning
algorithms like naı̈ve Bayes [18] decision tree [19], SVM
[20], boosting [21], bagging [22] have been used to train
classifiers. Several classifiers are also trained on features based
on document properties like statistical properties [18] [23] ,
location based selection [24] and syntactic properties [25].
A few works have also focused on extracting information
from external resources such as [26] have used Wikipedia
information and [27] have used citation resources to enhance
key-phrase extraction from documents.

With new advancements in the field of deep learning, several
neural models have been proposed to extract key-phrases from
documents. Authors of [28] have proposed the method of
using joint layer Recurrent Neural Network (RNN) to capture
semantic dependencies in the input sequence for extracting

key-phrases from short documents like Twitter posts. However,
this model suffers from the limitation of low performance
on larger documents. The authors of [8] formulated the
problem as key-phrase generation rather than extraction. They
propose an Encoder-Decoder model with copying mechanism
to generate key-phrases from the input document. Since we
have formulated our problem as sequence labeling task, we
focus on extracting key-phrases present in the document unlike
[8], which follows an abstractive approach. Recently, [2]
have formulated key-phrase extraction as sequence labeling
task by training a Conditional Random Field (CRF) using
linguistic, surfaceform, and document-structure information
for predicting the label for each token in the document as KP
or non-KP. Authors of [7] have incorporated Bi-LSTM with
Conditional Random Field for capturing the hidden semantics
in the text through long distance dependencies. Since, this
model has claimed to outperform the existing baselines and
previous approached we have used it as one of our baseline
for comparison.

Our approach follows the aforementioned works in formu-
lating the task as a sequence labeling problem while extending
the labeling scheme to incorporate inter-word dependencies
between phrases. In our knowledge, we are the first to utilise
the power of the transformer to capture long-term dependen-
cies between tokens in a document to extract relevant key-
phrases.

III. METHODOLOGY

In this section, we formally describe our formulation of the
key-phrase extraction task as a sequence labeling problem. We
also explain our encoder-decoder architecture which is based
on [9]. We further analyse the need of using pre-trained word
embedding for initializing the encoder weights over random
values.

A. Problem Formulation

Given a document D, represented as a sequence of words
D = [W1,W2, . . .Wn] where Wi represents the ith word in
the document, our task is to assign each word a label:

• B if it is the beginning of a key-phrase
• I if it is a subsequent part of the key-phrase
• O if it is not a part of any key-phrase
This labeling scheme follows the work of [29]. Modelling

key-phrase extraction as a sequence to sequence task enables
us to exploit the relationships between different words and
their combined role in representing the document. An alterna-
tive labeling scheme is to assign a binary label to words in
the document representing whether it is part of a key-phrase or
not [7]. However, this approach fails to capture the inter-word
relationships within a phrase.

B. Encoder - Decoder

The Encoder-Decoder architecture has proven its usefulness
in a multitude of sequence to sequence tasks [30]–[32]. It
involves using one part of the network to encode the inputs
to vectors in a latent space and using the other part to decode

these vectors in the output space. It enables us to train a single
model, end to end, directly on source-target pairs while also
handling variable sized inputs.

The transformer model, first introduced in [9] captures the
sequential nature of data with the help of multi-head attention
units. It consists of 6 stacked layers of encoder and decoder
modules. Each encoder module consists of a multi-headed
self-attention unit followed by a feed forward network. The
decoder modules follow the architecture of the encoder but
additionally incorporate a multi-headed attention unit over the
outputs of the encoder stack. The complete architecture of the
transformer can be visualised in Fig. 2.

C. Positional Encoding

An important part of any sequence to sequence architecture
is the knowledge of the position of each word in the input
and target sequence. This information is encoded by creating
position specific values as mentioned in the equation below

PE(pos,2i) = sin(
pos

100002i/dmodel
)

PE(pos,2i+1) = cos(
pos

100002i/dmodel
)

(1)

where ‘pos’ refers to the order of the word in the document,
‘i’ refers to its position in the embedding vector and ‘dmodel’ is
the dimension of the embedding layer. These equations gener-
ate a constant 2D matrix which is added to the embeddings of
the words, thus incorporating positional information in them.
However, to ensure that original information in embedding
vectors is not lost, we make positional encodings relatively
smaller than the embedding vector’s values.

D. Multiheaded Self Attention

The attention mechanism, first introduced in [33] is a
method of capturing the importance of words in a sequence
with respect to other words. When attention values are calcu-
lated among words within the same sequence, we refer to it
as self-attention.

To obtain these values, each input embedding token, po-
sition encoded and masked, is projected into three vectors
called the ‘Key’, ‘Query’ and ‘Value’ vectors through trainable
weight matrices. To get the attention score of a word with
respect to the other words in the sequence, we take the dot
product of its ‘Query’ vector with the ‘Key’ vector of all the
other words and update its ‘Value’ vector with respect to each
word. In matrix form, the equation can be seen in the equation
below.

Attention(Q,K, V) = softmax(
QKT

√
dk

).V (2)

A high softmax score indicates that the two words are relevant
to each other and thus the corresponding ‘Value’ vector is high.
For multi-headed attention, the ‘Key’, ‘Query’ and ‘Value’
vectors are split into ‘n’ heads with each head learning from a
different context at the same time. Thus, we get multiple sets
of these ‘Values’ for each word from the different contexts

Fig. 2. The Transformer Model Architecture

which are then concatenated and multiplied with a final learned
matrix to reduce the multiple embedding sets to a single
embedding. Hence, the attention layer converts position aware
naive form of embeddings to a more context aware embedding.
In the decoding stack this multi headed attention is calculated
first with the outputs predicted till that time step and, after
normalization, with all the encoded words from the input
sequence. This establishes the relevance of current output with
both the outputs predicted till now as well as neighbouring
words in the input.

E. Normalization and Feed Forward Neural Network

Layer normalization [34] is performed after each unit to
ensure that the range of values doesn’t change too much and
the model converges faster. It normalizes the input across the
features unlike batch normalization, which normalizes each
feature across the batch. This has experimentally been seen to
perform better. This normalization also adds the inputs from
the previous layers as residual connections, thus allowing the
model to retain previous information.

Each block further contains a feed forward neural network,
consisting of two linear layers with ‘ReLU’ activation. The
input to this network is the normalized embedding with
attention, which is mapped to a new embedding in a latent
space common to the whole language.

As this unit of the network does not have any interdepen-
dencies between different parts of the input, it enables parallel
computation thus reducing the training time and resources
required.

F. Weighted Cross Entropy Loss

For key phrase extraction task, the ‘BIO’ labels will be
highly unbalanced since key phrases constitute a very small
portion of input text. To give a higher weightage for correct
prediction of ‘B’ and ‘I’ labels, we calculate the weights of
each label according to their relative occurrence in training
data for calculating the cross entropy loss. This results in label
‘I’ getting the highest weight and the label ‘O’ the least.

G. Initialization of Embedding Layer

The transformer starts with random initialization for em-
bedding weights and gradually trains them to be more context
aware. However, initializing the embedding layer with pre
trained weights like Glove [35] which already has some
contextual information gives two fold advantages:

• It allows the model to use external knowledge and then
fine tune it according to inter word relationships

• It results in faster convergence, thus, reducing the training
time.

This initialization helped us to achieve much better results
more quickly as explained in Section IV.

IV. EXPERIMENTS

In this section we describe the details of the datasets
used for training and evaluation of the proposed model. In
addition to this, we discuss the implementation details of the
proposed model, hyper parameters, baselines and metrics used
for comparison.

A. Dataset

We used three publicly available datasets for evaluation
of the model. For the purpose of training, we have used
the dataset provided by [8] which consists of high-quality
scientific metadata in the computer science domain from on-
line digital libraries like ACM Digital Library, ScienceDirect,
Wiley and Web of Science. This dataset contains 567,830
papers with pre-defined training, validation and testing split
provided by the authors as follows: 527,830 for training
(kp527k), 20,000 for validation (kp20k-v) and the remaining
20,000 for testing (kp20k). Evaluation of the proposed model
is also performed on publicly available KDD and WWW
datasets [2].

• KDD– This dataset is provided by [2]. It contains ab-
stracts and author annotated key-phrases for 755 research
papers published in ACM Conference on Knowledge
Discovery and Data mining (KDD). The entire dataset is
used for testing the performance of the proposed model.

• WWW– This dataset is also provided by [2] and contains
abstracts and author annotated key-phrases for 1330 re-
search papers published in World Wide Web Conference
(WWW). This entire dataset is used for testing the
performance of the proposed model as well.

All the mentioned datasets contain the title, abstract and
author-labeled key phrases. The title and abstract of each
paper are combined together to extract key-phrases and author-
labeled key-phrases are used as gold standards for evaluation.
We have trained the model using the kp527k dataset and
validated on the kp20k-v dataset. This trained model is used
for evaluation of the performance on all the three testing
datasets kp20k, KDD and WWW. Statistics of the training
and testing dataset are mentioned in the Table I.

B. Implementation Details

As mentioned in the previous section, we have formulated
the key-phrase extraction problem as a sequence labeling task
where each token of title and abstract is mapped to one of
{B, I,O}, with ‘B’ indicating the start of key-phrase, ‘I’
indicating presence inside a key-phrase and ‘O’ indicating that
it is not a part of any key-phrase. Following an analysis of the
training data, we have only considered the documents having
a maximum length of 200 words for training purpose.

Since the labeled data is imbalanced towards the ‘O’ cate-
gory as compared to ‘B’ and ‘I’, we give a higher weightage
to the latter by normalizing their frequency of occurrence
in the training data. These values serve as the weights for
the Categorical Cross Entropy for loss calculation, the weight
being 0.78 for ‘B’, 1.0 for ‘I’ and 0.13 for ‘O’.

As mentioned in the previous section, the embedding layer
of the encoder is initialized in two different manners, one
being random initialization (TransKP) and other being 300
dimension Glove pre-trained embedding vectors (TransKP-
Glove). The dimension of the hidden layer is set to 300 in
both the cases.

TABLE I
DETAILS OF DATASETS

Type Dataset Number of docs Avg Key-Phrases
per doc

Training kp527k 527,830 5.3

Validation kp20k-v 20,000 5.3

kp20k 20,000 5.3
Testing KDD 755 4.1

WWW 1,330 4.8

C. Baselines and Metrics

Comparison of the proposed method is performed against
several state-of-the-art models and baselines – Bi-LSTM-CRF
[7], copy-RNN [8], KEA [18], Tf-Idf, TextRank [4] and
SingleRank [5]. We used the data for baseline results from
[7]. The evaluation procedure followed is consistent with pre-
vious works and baseline measures, in which model predicted
keyphrases are evaluated against gold-standard keyphrases
and the Precision, Recall and F1-score are calculated. The
comparison is focused on the F1-score which is the harmonic
mean of the Precision and Recall.

V. RESULTS

This section shows the evaluation of the proposed model for
the key-phrase extraction problem and its comparison against
the baselines mentioned in the previous section.

A. Performance of TransKP

Evaluation of proposed TransKP model is performed on
kp20k, WWW and KDD datasets. For any document, output
of the TransKP model is a sequence of labels corresponding to
the words in the document, indicating whether they are part of
a key-phrase or not. The candidate key-phrases are constructed
based on these labels and are further used for calculating the
performance of the model.

From Table II, we notice that for the kp20k dataset F1-score
is 44.12% using the TransKP-Glove model and 36.71% for
the randomly initialized TransKP model. The TransKP-Glove
model also shows an increase in both the precision and recall
values. These results indicate that the Glove initialized model
captures an efficient representation of the document which is
used for predicting the key-phrases. A similar trend is seen
for WWW and KDD dataset as well. The F1-score for the
TransKP-Glove model on WWW dataset is 48.22% and for
the randomly initialized TransKP it is 41.34%. On the KDD
dataset, F1-score for TransKP-Glove is 41.56% whereas it is
39.77% for randomly initialized TransKP.

Fig. 1 shows examples of key-phrase extraction on the
abstract of two scientific papers from KDD dataset. Key-
phrases marked bold are the predictions from the proposed
TransKP-Glove model and the gold standard author annotated
key-phrases are mentioned below the abstract. From the figure
it can be inferred that our model is successful in predicting
the important key-phrases. It is able to predict multi-word

TABLE II
COMPARISON OF TRANSKP WITH BASELINES ON KP20K, WWW AND KDD DATASETS

Method kp20k WWW KDD
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

TransKP-Glove 40.48 48.49 44.12 40.46 59.67 48.22 32.62 57.27 41.56
TransKP 33.55 40.51 36.70 35.73 50.31 41.78 33.32 49.32 39.77

Bi-LSTM-CRF 64.19 24.66 35.63 64.33 28.43 39.43 57.83 31.85 41.08
copyRNN @5 27.71 41.79 33.29 11.47 14.72 12.89 8.59 11.80 9.94

Tf-Idf @5 8.97 13.49 10.77 8.90 10.00 9.40 8.30 10.20 9.20
TextRank @5 15.29 23.01 18.37 5.80 7.10 6.20 5.10 6.50 5.60

SingleRank @5 8.42 12.70 10.14 8.80 10.90 9.50 7.70 10.30 8.60

KEA 15.14 22.78 18.19 13.57 15.25 13.83 11.39 14.50 12.42

key-phrases like “unsupervised transfer classification” and
“stable feature selection”. It can also predict derivatives of
gold standard key-phrases. For example, the gold standard has
two key-phrases “stability” and “feature selection”, however,
our model predicted “stable feature selection” as a key-phrase
which conveys a better meaning than the original two words.
Although, this improves the real world performance, it has an
adverse effect on our F1-score.

We have also compared the training loss for the TransKP-
Glove model against TransKP. Fig. 3 shows the loss incurred
during training of both the models. From the plot it is evident
that the loss values for the model initialized with Glove
embedding reduced faster than random initialization. This
result is consistent with the literature [36], where it is stated
that training a model with rich linguistic pretrained embedding
converges quickly in comparison to a model with randomly
initialized embedding layer.

B. Comparison with Baselines

We compare our TransKP model with several strong base-
lines and existing state of the art models on the mentioned
datasets. The baselines includes a combination of supervised
and unsupervised models. The unsupervised baselines are Tf-
Idf, TextRank and SingleRank whereas the supervised models
are Bi-LSTM-CRF, copyRNN and KEA. The Bi-LSTM-CRF
model is the best performing model out of all the baselines.

Fig. 3. Training loss curves of TransKP-Glove and TransKP

All the supervised models have been trained on the kp527k
dataset.

Table II shows the result of this comparison. Both our
transformer based models outperform all the baselines in terms
of F1 score on kp20k and WWW dataset. The TransKP-Glove
model outperforms all baselines on all three datasets. The F1
scores for kp20k, WWW and KDD datasets show a significant
improvement of 8.49%, 8.79% and 0.49% respectively. We
also outperformed all other unsupervised learning and deep
learning based models including sequence to sequence model,
copyRNN, with a significant improvement in precision, recall
and F1 scores. Notably, our model shows a huge improvement
in recall scores compared to the previous best models. For
kp20k the recall is improved from 24.66% to 48.49%, for
WWW it shows an increase of 31.24% whereas the increase
for KDD is 25.42%. The Bi-LSTM-CRF model has a signif-
icantly higher precision value than the recall which, although
improves F1 score but can fail to cover all the concepts in
the given text. In contrast, our model maintains a balance
between precision and recall, without getting biased towards
any one parameter, therefore resulting in a better real-world
performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a transformer based neural model
for the task of key-phrase extraction from text documents.
We propose an extractive, supervised approach by modelling
the task as a sequence to sequence labeling problem and
leveraging the power of transformers on sequential tasks. We
also explore the effect of initializing the embedding layer of
the transformer with pre-trained embedding and empirically
prove that such an initialization results in a significant boost
of performance. In our knowledge, we are the first to utilize
transformers as well as experiment with transformer layer
initializations for the task of key-phrase extraction. Our results
evaluated on standard datasets and metrics beat the score of all
baselines and state-of-the-art models. Significantly improved
performance on different datasets proves our model’s learning
as well as generalization capability.

Future scope includes learning how to rank the different
extracted key phrases in terms of their importance in captur-

ing the article’s main topics as well as ensuring maximum
coverage across all topics. In addition to this, the trained key-
phrase architecture can be utilized for the downstream task of
text summarization via transfer learning.

REFERENCES

[1] K. S. Hasan and V. Ng, “Automatic keyphrase extraction: A survey
of the state of the art,” in Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2014, pp. 1262–1273.

[2] S. D. Gollapalli and C. Caragea, “Extracting keyphrases from research
papers using citation networks,” in Twenty-Eighth AAAI Conference on
Artificial Intelligence, 2014.

[3] M.-S. Paukkeri and T. Honkela, “Likey: Unsupervised language-
independent keyphrase extraction,” in Proceedings of the 5th Interna-
tional Workshop on Semantic Evaluation, ser. SemEval ’10. USA:
Association for Computational Linguistics, 2010, p. 162–165.

[4] R. Mihalcea and P. Tarau, “Textrank: Bringing order into text,” in
Proceedings of the 2004 conference on empirical methods in natural
language processing, 2004, pp. 404–411.

[5] X. Wan and J. Xiao, “Single document keyphrase extraction using
neighborhood knowledge.” in AAAI, vol. 8, 2008, pp. 855–860.

[6] F. Bulgarov and C. Caragea, “A comparison of supervised keyphrase
extraction models,” in Proceedings of the 24th International Conference
on World Wide Web - WWW '15 Companion. ACM Press, 2015.
[Online]. Available: https://doi.org/10.1145/2740908.2742776

[7] R. Alzaidy, C. Caragea, and C. L. Giles, “Bi-lstm-crf sequence labeling
for keyphrase extraction from scholarly documents,” in The world wide
web conference, 2019, pp. 2551–2557.

[8] R. Meng, S. Zhao, S. Han, D. He, P. Brusilovsky, and Y. Chi, “Deep
keyphrase generation,” arXiv preprint arXiv:1704.06879, 2017.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[10] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[11] C. Florescu and C. Caragea, “Positionrank: An unsupervised approach to
keyphrase extraction from scholarly documents,” in Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2017, pp. 1105–1115.

[12] Z. Liu, W. Huang, Y. Zheng, and M. Sun, “Automatic keyphrase
extraction via topic decomposition,” in Proceedings of the
2010 Conference on Empirical Methods in Natural Language
Processing. Cambridge, MA: Association for Computational
Linguistics, Oct. 2010, pp. 366–376. [Online]. Available:
https://www.aclweb.org/anthology/D10-1036

[13] D. Mahata, J. Kuriakose, R. Shah, and R. Zimmermann, “Key2vec:
Automatic ranked keyphrase extraction from scientific articles using
phrase embeddings,” in Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), 2018, pp.
634–639.

[14] R. Wang, W. Liu, and C. McDonald, “Using word embeddings to
enhance keyword identification for scientific publications,” in Databases
Theory and Applications, M. A. Sharaf, M. A. Cheema, and J. Qi, Eds.
Cham: Springer International Publishing, 2015, pp. 257–268.

[15] A. Bougouin, F. Boudin, and B. Daille, “Topicrank: Graph-based topic
ranking for keyphrase extraction,” 2013.

[16] Z. Liu, P. Li, Y. Zheng, and M. Sun, “Clustering to find exemplar
terms for keyphrase extraction,” in Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing. Singapore:
Association for Computational Linguistics, Aug. 2009, pp. 257–266.
[Online]. Available: https://www.aclweb.org/anthology/D09-1027

[17] M. Grineva, M. Grinev, and D. Lizorkin, “Extracting key terms
from noisy and multitheme documents,” in Proceedings of the 18th
International Conference on World Wide Web, ser. WWW ’09. New
York, NY, USA: Association for Computing Machinery, 2009, p.
661–670. [Online]. Available: https://doi.org/10.1145/1526709.1526798

[18] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin, and C. G. Nevill-
Manning, “Kea: Practical automated keyphrase extraction,” in Design
and Usability of Digital Libraries: Case Studies in the Asia Pacific.
IGI global, 2005, pp. 129–152.

[19] P. D. Turney, “Learning algorithms for keyphrase extraction,” Informa-
tion retrieval, vol. 2, no. 4, pp. 303–336, 2000.

[20] W. X. Zhao, J. Jiang, J. He, Y. Song, P. Achananuparp, E.-P. Lim, and
X. Li, “Topical keyphrase extraction from twitter,” in Proceedings of the
49th annual meeting of the association for computational linguistics:
Human language technologies-volume 1. Association for Computa-
tional Linguistics, 2011, pp. 379–388.

[21] A. Hulth, J. Karlgren, A. Jonsson, H. Boström, and L. Asker, “Automatic
keyword extraction using domain knowledge,” in International Con-
ference on Intelligent Text Processing and Computational Linguistics.
Springer, 2001, pp. 472–482.

[22] A. Hulth, “Improved automatic keyword extraction given more linguistic
knowledge,” in Proceedings of the 2003 conference on Empirical meth-
ods in natural language processing. Association for Computational
Linguistics, 2003, pp. 216–223.

[23] E. Frank, G. W. Paynter, I. H. Witten, C. Gutwin, and C. G. Nevill-
Manning, “Domain-specific keyphrase extraction.”

[24] S. N. Kim and M.-Y. Kan, “Re-examining automatic keyphrase extrac-
tion approaches in scientific articles,” in Proceedings of the workshop
on multiword expressions: Identification, interpretation, disambiguation
and applications. Association for Computational Linguistics, 2009, pp.
9–16.

[25] T. D. Nguyen and M.-Y. Kan, “Keyphrase extraction in scientific
publications,” in International conference on Asian digital libraries.
Springer, 2007, pp. 317–326.

[26] O. Medelyan, E. Frank, and I. H. Witten, “Human-competitive tagging
using automatic keyphrase extraction,” in Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing:
Volume 3-Volume 3. Association for Computational Linguistics, 2009,
pp. 1318–1327.

[27] C. Caragea, F. A. Bulgarov, A. Godea, and S. D. Gollapalli, “Citation-
enhanced keyphrase extraction from research papers: A supervised
approach,” 2014.

[28] Q. Zhang, Y. Wang, Y. Gong, and X.-J. Huang, “Keyphrase extraction
using deep recurrent neural networks on twitter,” in Proceedings of the
2016 conference on empirical methods in natural language processing,
2016, pp. 836–845.

[29] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” arXiv preprint
arXiv:1603.01360, 2016.

[30] H. Sak, M. Shannon, K. Rao, and F. Beaufays, “Recurrent neural
aligner: An encoder-decoder neural network model for sequence to
sequence mapping,” in Interspeech 2017. ISCA, Aug. 2017. [Online].
Available: https://doi.org/10.21437/interspeech.2017-1705

[31] R. Nallapati, B. Xiang, and B. Zhou, “Sequence-to-sequence rnns
for text summarization,” CoRR, vol. abs/1602.06023, 2016. [Online].
Available: http://arxiv.org/abs/1602.06023

[32] M.-T. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and L. Kaiser, “Multi-
task sequence to sequence learning,” 2015.

[33] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014.

[34] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016.
[35] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors

for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[36] Y. Goldberg, “Neural network methods for natural language processing,”
Synthesis Lectures on Human Language Technologies, vol. 10, no. 1, pp.
1–309, 2017.

