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Abstract—Artificial neural networks in general and deep
learning networks in particular established themselves as popular
and powerful machine learning algorithms. While the often
tremendous sizes of these networks are beneficial when solving
complex tasks, the tremendous number of parameters also causes
such networks to be vulnerable to malicious behavior such
as adversarial perturbations. These perturbations can change
a model’s classification decision. Moreover, while single-step
adversaries can easily be transferred from network to network,
the transfer of more powerful multi-step adversaries has – usually
– been rather difficult.

In this work, we introduce a method for generating strong ad-
versaries that can easily (and frequently) be transferred between
different models. This method is then used to generate a large
set of adversaries, based on which the effects of selected defense
methods are experimentally assessed. At last, we introduce a
novel, simple, yet effective approach to enhance the resilience of
neural networks against adversaries and benchmark it against
established defense methods. In contrast to the already existing
methods, our proposed defense approach is much more efficient
as it only requires a single additional forward-pass to achieve
comparable performance results.

Index Terms—Deep Learning, Adversarial Training, Multi-step
Adversaries

I. INTRODUCTION

First notions of artificial neural networks (ANNs) – in
the context of supervised learning – date back to the early
1940s [1]. Although considerable research has been con-
ducted in the succeeding decades, people had to wait for
the emergence of powerful computers, and the accompanying
(significant) drop in costs for storing and processing data,
until ANNs turned into highly competitive machine learning
algorithms [2], [3]. Nowadays, ANNs represent the state of the
art in a variety of supervised learning tasks, such as image,
sound or object recognition [4]–[6].

However, while the strength of ANNs undoubtedly results
from their huge amount of parameters, their enormous com-
plexity also makes them rather incomprehensible. Although
numerous works have introduced methods for interpreting
the decisions made by ANNs [7]–[9], these methods lack
explanations for malicious and intentional behaviour against
ANNs.

One possibility for fooling ANNs is the addition of care-
fully crafted noise, so-called adversarial perturbations (cf.
Figure 1), to the model’s input [10]–[17]. It should be noted

+ ε · =

Fig. 1. Example for an adversary (from left to right): the original image
(classified as great panda with a confidence of 99.99%), adversarial noise
with ε = 3 and the resulting adversarial image (classified as saxophone with
a confidence of 83.8%).

that these perturbations do not need to be crafted individually
per network; instead, ANNs that are trained for a similar task
often can be fooled by the same adversaries [10], [11], [18].

While a plethora of works have shown the advantages of
(deep learning) neural networks, their black-box characteristic
makes them very vulnerable. Hence, in order to enable a more
frequent and, even more importantly, more secure integration
of neural networks in our daily lives, we need to ensure their
robustness against adversarial attacks.

The issue of a network’s vulnerability and how to defend
it against adversarial attacks will be investigated in this work.
As such, our contributions can be summarized as follows:

1) We present a novel method to craft transferable adver-
saries, which in turn helps to improve the understanding
of a network’s vulnerability against adversarial attacks.

2) We introduce a novel approach to regularize decision
boundaries and, thus, enhance the resilience of neural
networks against adversarial attacks. Compared to
previous attempts, our approach does not require ad-
ditional backward-passes, which can decrease training
speed significantly (cf. Table I).

The remainder of this manuscript is structured as follows.
In Section II we set our work into context. We then introduce
a method for crafting transferable adversaries in Section III,
and list possible defense strategies against adversarial attacks
in Section II-B. Thereafter, we provide our experimental setup
in Section V and discuss our findings in Section VI. At last,
Section VII concludes our work.

II. RELATED WORK

Several methods to craft adversarial examples have been
published in recent years [11], [16], [19], [20]. In principle,
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one can categorize these methods into single- and multi-step
attacks: the former only require a single gradient while the
latter calculate several gradients. Kurakin et al. [21] found in
their work that multi-step adversaries are less transferable than
single-step ones and they concluded that models are indirectly
robust against multi-step adversaries. Yet, in line with the
findings of [22], we observed that the transfer of adversaries
between models is rather easy when using a so-called ensemble
attack, i.e., a multi-step attack, which is executed on an
ensemble of models simultaneously [22].

As generating adversarial perturbations is rather simple, we
will at first address the characteristics of these perturbations
along with their accompanying risks of black-box attacks (see
Section II-A). Note that in contrast to white-box methods,
black-box approaches have no access to the model’s gradi-
ent. Thereafter, in Section II-B, we briefly outline selected
strategies to enhance resilience.

A. Characteristics of Adversaries

Szegedy et al. [10] crafted artificial noise, which causes
ANNs to misclassify images whose original versions they
classified correctly. As a result, it could be demonstrated that
already slight changes, which are hardly recognizable to the
human eye, are sufficient to fool the network. As further
demonstrated by [10], [11], and also in this work, adversarial
perturbations are not model-specific, but instead generalize
well over networks with different hyper-parameters. In addi-
tion, even networks trained on disjoint data sets, yet fulfilling
a similar classification task, are likely vulnerable to the same
adversarial image [11], [18]. Thus, two models with different
architectures, hyper-parameters, and trained on different data
sets, often misclassify the same images. This property can be
used to execute black-box attacks as demonstrated by [18].

Several works have been conducted to examine the effects
of adversaries. The neighborhoods of adversarial examples
and their original counterparts were investigated by [13]. The
authors found that while already small and random noise
applied to adversaries often caused it to be shifted back to their
original class, the classification of the original images did not
change (even when rather large random noise was applied).
Therefore, the authors concluded that adversarial examples
likely inhabit small sub-spaces within the decision space.

Next, [23] investigated these subspaces by measuring the
number of orthogonal attack directions and found that the
number of these directions is rather large. They concluded that
the more orthogonal attack directions exist at a given point,
the larger these adversarial subspaces are and the more likely
adversaries transfer between models (since larger subspaces
are more likely to intersect between different models). This
may be the explanation on why adversarial perturbations
are often universal across different model designs and often
universal across datasets.

B. Enhancing Resilience through Adversarial Training

Defense strategies against adversarial attacks can mainly
be distinguished into two categories: approaches that either

(1− α) · + α · =

Fig. 2. Idea of our proposed method: linear combination of the original image
(great panda) with a randomly selected image (saxophone) using weight α ∈
(0, 0.5) (here: α = 0.3). The resulting training image (right) inherits the
class of the original image. This allows us to generate, on the one hand, more
training examples and, on the other one, training examples which lie in close
proximity to the decision boundaries.

change (i) a model’s topology, or (ii) the way a model is
trained. Gu and Rigazio [12] stated that a model’s robust-
ness “is more related to intrinsic deficiencies in the training
procedure and objective function than to [its] topology”.

Under the concept of Adversarial Training, several works
have introduced regularizers which decrease a model’s vul-
nerability to adversarial perturbations. The first one was intro-
duced by Goodfellow et al. [11]. Here, the objective function
of the Fast Gradient Sign Method (FGSM) [11] is added to
the classification loss. For every training image, a single-step
adversary is calculated and the network’s sensitivity to this
adversary is minimized. Thus, Adversarial Training acts as a
regularizer to improve resilience [11], [21].

The training method of [11] only uses a single back-
propagation step to calculate adversarial perturbations. In con-
trast to the aforementioned approach, other works introduced
a min-max optimization method [24], [25]. It prepares the net-
work for the worst-case scenario under a limited perturbation
and minimizes its sensitivity to it. The algorithm works in
two steps. First, it maximizes the loss of the input image by
adding a small adversarial perturbation. However, the network
trained with a min-max regularizer performed worse on the
classification tasks [24] – even when trained with rather small
perturbations. Due to the additional maximization problem,
the algorithm is even more complex to execute, which further
increases training time.

Similar approaches were introduced by [20], [26]. The
approach of [26], denoted Virtual Adversarial Training (VAT),
works in a similar way as the min-max optimization, yet it
maximizes the Kullback-Leibler divergence [27] between the
probability vectors of the training image and an adversary. The
KL-divergence between the original and an adversary can be
interpreted as the local smoothness of the decision space. Thus,
the network not only learns to classify the training images
correctly, but also smoothens the decision boundaries around
each of the training points. Miyato et al. [26] used Projected
Gradient Descent (PGD) to solve the inner maximization prob-
lem. The authors could demonstrate a guaranteed robustness
even against multi-step adversaries under small l∞-norm –
with l∞ = max{|x − xadv|} – where x is the unchanged
input image while xadv is the image with additional adversarial
perturbation. Multi-step black- and white-box attacks have
been conducted under a l∞ ≤ 8-constraint. Even under
multi-step white-box attacks, the accuracy of their model is
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Fig. 3. Exemplary images from the modified Large Scale Visual Recognition
Challenge 2017 dataset: Seal, Bear, Dragonfly and Rabbit (left to right).

45%, whereas the accuracy of a non-robustified, and thus
defenseless, model would be close to zero. However, as there
are additional forward-backward passes required, training time
takes accordingly longer.

III. CRAFTING STRONG AND TRANSFERABLE
ADVERSARIES

Goodfellow et al. [11] introduced the Fast Gradient Sign
Method (FGSM):

xadv = x+ ε · sign (∇x L(Θ, x, y)) (1)

The loss function* L of the model Θ is differentiated with
respect to the input image x and its true class y. The sign of
the resulting gradient ∇x L is used to calculate adversarial
noise which, when applied to an image, increases the model’s
loss and, thereby, could shift its classification decision. The
parameter ε is used to control the amount of perturbations.
Note that a larger ε does not necessarily lead to a higher
chance of fooling a model as demonstrated by Figure 6.
Instead, tuning ε is highly important. The resulting adversary
is a single-step one.

One can execute the FGSM multiple times with a small ε-
value to converge towards the adversarial sub-space iteratively.
The resulting adversaries are then referred to as multi-step
ones. In order to find multi-step adversaries under limited
amount of perturbations and close to the original image,
several methods such as [16], [19]–[21] have been introduced.
When the perturbation exceeds a certain limit – usually the
l∞- or l2-norm of the adversarial perturbation is used – the
perturbation is projected back into the search space, e.g., by
using pixel-wise clipping.

As pointed out by [13], [23], adversaries lie in sub-spaces
which are in close proximity to true training examples and
which often intersect between models. One can argue that
when crafting adversaries with multi-step methods, these ad-
versaries often do not lie in intersecting sub-spaces because
the resulting adversary may be overfitted to the particular
model as its loss is maximized. To overcome this issue, [22]
introduced the (i) Momentum Iterative Gradient Based Method
(MI-FGSM) and (ii) the ensemble in logits. The former method
uses a momentum to overcome local maxima and the latter
one combined the logits of an ensemble of models to find
a common and intrinsic direction. Attacking an ensemble of
models increases the likelihood of transferable adversaries as
these adversaries are not optimized for a single model but for

*In this work, we refer to the cross-entropy as loss function. Yet, any other
function can most likely be used, too.

several models simultaneously. Hence, the adversaries lie more
likely in intersecting adversarial sub-spaces.

In contrast to [22], we used the combined gradient of
an ensemble of models to craft adversaries which lie in
intersecting sub-spaces. We call our method gradient ensemble
attack. We found that these adversaries are likely to transfer
between models of the same architecture – and frequently
transfer to other architectures as well (see Section VI). To
ensure that every model’s gradient has the same impact on the
resulting adversarial perturbation, we normalize each gradient
to length one:

∇̂x L(Θ, x, y) =
∇x L(Θ, x, y)

||∇x L(Θ, x, y)||2
. (2)

Afterwards, the different gradients are summed up to find
a common direction of intersecting adversarial sub-spaces.
Similar to [21], we approximated the true direction by using
the sign-method of the summed and normalized gradients to
the image in an iterative process:

xadvi = xi−1 + λ · sign

(
N∑
n=0

∇̂x L(Θn, xi−1, y)

)
(3)

s.t. ||xadvi − x||∞ ≤ ε and x0 = x.

To ensure that the magnitude of the perturbations stays within
a given limit, we used pixel-wise clipping. Further, we used a
learning rate of λ = 1 (to slowly convert towards the adversar-
ial spot) and set the number of steps to I = min(ε+4, 1.25·ε)
as proposed by [21] to craft adversarial images. In addition,
we chose ε ∈ {4, 8, 16} to limit the amount of perturbations in
order to test and compare different magnitudes of adversarial
perturbations.

IV. PROPOSED DEFENSE STRATEGIES

As demonstrated by [28] and [29], adversarial training may
lead to gradient masking. This term describes a phenomenon
in which the decision boundaries are roughly the same, yet the
corresponding gradient is damaged or obfuscated in a way that
white-box attacks fail. However, the model does not become
more resilient against adversarial examples in black-box attack
scenarios or against transferable adversaries as these attacks
are based on surrogate models.

In order to avoid the risk of gradient masking, we propose
a method that does not require gradient calculations and still
flattens the decision space. In addition, we avoid the expensive
optimization of an inner maximization problem as done in
VAT or PGD. We found that while random noise is mostly
ignored by the model, superimposing two pictures does distract
a model. Therefore, as illustrated in Figure 2, we designed
training images x̃i by placing a randomly selected image xr
on top of the original training image xi:

x̃i = (1− α) · xi + α · xr. (4)

The parameter α ∈ (0, 0.5) controls the impact of image xr on
the generated image x̃i. As the majority of the image originates
from the original image xi, the generated image x̃i will inherit

3



Fig. 4. Visualization of the validation accuracy during training. The Projected
Gradient Descent [20] substantially reduces the overall accuracy compared to
the Base Model, our proposed method, or the Virtual Adversarial Training
[26]. Furthermore, the model α ∼ B(2, 4), KLλ=10 achieves an accuracy
of more than 70% with fewer methods than the Base Model.

the class label yi of the original image. Our proposed approach
thus allows to (i) generate more training examples, and (ii)
create images that are closer to the decision boundaries of
at least two classes – and thus harder to distinguish – as x̃i
contains properties of two image classes. Thereby, the space
between the different classes is flattened and the boundaries
are regularized. Thereafter, the networks will be trained by
minimizing the loss L(Θ, x̃i, yi). As the results depend on the
choice of α, we considered three different approaches:

1) Using a fixed α-value.
2) Following the idea of [26], i.e., first predicting the classes

yi and ỹi based on xi and x̃i (and using a fixed α as in 1.),
and then minimizing the loss of the unmodified training
examples and the KL-Divergence between the predicted
classes of the unmodified and modified training examples:

minimize
Θ

L(Θ, xi, yi) + λ ·KL(ŷi || ỹi).

3) Similarly to 2., but this time drawing α from a beta-
distribution instead of a fixed α-value; α ∼ B(p, q) with
p = 2 and q ∈ {4, 6, 10}.

Note that while the first method does not require any additional
passes, the latter two methods require a second forward-pass
to calculate the KL-Divergence – but no additional backward-
pass. As stated by [26], the KL-divergence can be interpreted
as the local smoothness of the decision space. If the divergence
is high, the predictions of both input images are dissimilar,
implying that the decision space between the two activations
is not flattened. By minimizing the divergence, the models
learn to find similar activations for both images and, thereby,
flatten the decision space between the two activations.

As a side effect, our method allows to generate a multitude
of training images (using Equation (4)), which in turn allows
to train a larger area.

V. METHODOLOGY AND EXPERIMENTS

In the following, we briefly outline the models’ topologies
and used training data.

TABLE I
MEASURED TRAINING TIME FOR DIFFERENT MODELS (ALL MODELS

WERE TRAINED ON A SINGLE NVIDIA QUADRO RTX 6000). TRAINING A
SINGLE EPOCH WITH OUR PROPOSED METHOD TAKES ONLY SLIGHTLY

LONGER THAN THE Base Model WITHOUT ANY DEFENSE. IN ADDITION,
α ∼ B(2, 4), KLλ=10 REACHES 60% AND 70% VALIDATION ACCURACY

ABOUT 30 MINUTES EARLIER THAN THE Base Model AS IT CONVERGES
FASTER (CF. FIGURE 4). TRAINING MODELS USING THE Projected Gradient

Descent [20] OR Virtual Adversarial Training [26] TAKES NOTICEABLY
LONGER PER EPOCH, AND THEY TAKE EVEN LONGER TO CONVERGE.

Median Time Time until Time until Time until
Model p. Epoch 50% Acc. 60% Acc. 70% Acc.

Base 6:43m 00:59h 02:15h 03:17h
α = 0.4 6:55m 02:18h 03:14h -/-
α ∼ B(2, 4) 6:51m 01:01h 01:42h 02:44h
VAT (ε = 15) 14:45m 02:12h 03:55h 08:05h
PGD (I = 7) 22:40m 11:46h 15:56h -/-
PGD (I = 3) 11:37m 03:53h 07:45h -/-

A. Dataset

Within our experiments, we used the data from the second
challenge of the Large Scale Visual Recognition Challenge
2017† [30] for training and validating our models. Yet, as
down-scaling the whole images to the required size was not
reasonable, we first used bounding boxes to cut out the objects
within each of the images. Then, as the bounding boxes were
of different sizes, the cropped images were down-scaled to the
desired resolution of 128 × 128 pixels (cf. Figure 3).

As a result, our dataset contains roughly 400,000 images.
Unfortunately, the images are not uniformly distributed across
all 200 classes. As the mismatch between the classes is
too large to use oversampling, we selected 100 classes with
an identical number of images per class. For training and
validation purposes, we performed holdout with a 80-20-
split. Thereby, we created a dataset which is larger and has
a higher resolution than CIFAR10/100 [31] while (at the
same time) being significantly smaller and less complex than
ImageNet [30]. In addition, by using balanced classes, we
eliminate any side-effects which may occur from unbalanced
datasets and may influence our results.

B. Models

To investigate the effects of adversarial perturbations, we
trained multiple ANNs. First, an “unprotected” model – de-
noted base model in the following – is trained. For this pur-
pose, we took a VGGNet [5], as it provides a straightforward
and uncluttered design of convolutions, pooling and dense
layers. In addition, we modified the design by using a Global-
Average-Pooling layer [32] and extended each CNN layer with
a Batch Normalization layer [33]. Afterwards, we compared
our proposed methods to different ResNets [4] to verify our
findings.

In order to compare different methods to defend against
adversarial attacks, we trained several models with and without
different defense methods (see Section VI for more details).
All models were trained on a single Nvidia RTX 6000 or

†http://image-net.org/challenges/LSVRC/2017/
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a single Nvidia V100 GPU. We found, that by using VAT
[26] or PGD [20] the training speed is reduced, significantly.
Each training epoch not only takes longer, but the models also
converge more slowly towards the optimum. In contrast, our
proposed method is more time efficient as it only requires an
additional forward pass and it even converges faster (cf. Figure
4 and Table I).

C. Assessing a Network’s Resilience against Adversarial Per-
turbations

To assess the robustness of a network against adversaries,
we trained six models per considered network architecture.
We then used an ensemble of one, three or five of the
six ANNs‡ (see Section VI for details) to extract a set of
adversarial images using Equation (3). More precisely, an
image is considered being adversarial, if it is misclassified by
all of the ensemble’s networks – note that for simplicity the
networks do not have to agree on the same wrong class. The
set of the extracted adversarial images is then classified by the
sixth model and its accuracy is taken as quality indicator of
the respective network architecture.

VI. RESULTS AND DISCUSSION

At first, adversaries have been generated as described in
Section V-C. For the gradient alignment, we considered an
ensemble of one, three and five models, respectively. In a
first analysis, we investigated the impact of the perturbation
parameter for the values ε ∈ {4, 8, 16}. Interestingly, we
observed that the success rate for crafting adversaries is not
sensitive to the tested values for ε. Therefore, we are only
referring to the adversaries with ε = 16 as they are the most
powerful ones. If a single unprotected model – which is fully
identical to the Base Model in terms of topology and training
execution – is used to calculate multi-step adversaries, the
Base Model’s classification accuracy is still 23.8% as shown
in Table II. However, aligning the gradients of an ensemble
of three or five models, the Base Model’s accuracy on these
adversaries decreases to 4% and 0.9%, respectively.

Next, we trained multiple models with Virtual Adversarial
Training (VAT), Projected Gradient Descent Training (PGD)
and the three different defense methods proposed in this work
(see Section II-B). For VAT we used I = 3, λ = 1 and ε ∈
{5, 10, 15, 20, 25}. Miyato et al. [26] recommended using I =
1 and λ = 1 as they found it to be sufficient. We increased
the power of iterations to I = 3 to ensure a better conversion
(cf. Miyato et al. [26] for more details). As tuning ε is most
important, we tried several different values and compared them
to each other. Next, we adapted the default parameter for PGD
as proposed by [20]: ε = 8, λ = 2 and I ∈ {3, 7} as the
number of iterations. ε = 8, λ = 2 and I = {7} are the
default settings used for on CIFAR10 by [20]. In addition, we
used I = 3 to speed up training.

Table II shows the results of different methods based on
their accuracy on our crafted adversarial images. As indicated

‡Note that our method applied to an ensemble of one model is identical to
the i-FGSM.

by the base model’s accuracy values on the adversarial data,
the more models are used for our proposed gradient ensemble
attack, the higher is the success rate of transferring the adver-
saries to other models. This demonstrates that our adversaries,
crafted from an ensemble of models, are likely transferable to
other networks. Moreover, the VAT models seem to perform
best on adversarial images.

To test the generalizability of our approach, we additionally
assessed our adversaries on ResNet32 and ResNet50 [4].
As shown in Table III, when applying a gradient ensemble
attack on VGGNet13 and the ResNet models together, the
resulting adversaries likely transfer between both topologies.
The accuracy of unprotected (base) models on our combined
adversarial dataset is 0.01% for the VGGNet13 network and
about 26 to 27% for both ResNet models – although all three
models have an accuracy of over 90% on the original images.
Even adversaries that were originally crafted for a different
topology reduce a model’s accuracy noticeably.

We further tested our method on different ResNets. As
shown in the bottom half of Table III, we found that not
only the originally considered VGGNet13 models, but also
ResNet32 and ResNet50 became more resilient against the
transferable adversaries.

However, comparing the performance of adversarial defense
methods merely based on the model’s accuracy or on the suc-
cess rate for crafting adversaries is problematic. Adversarial
sub-spaces may occur a little aside of the original ones or
gradient masking could prevent gradient-based attack methods
from being successful. Therefore, we do not only refer to a
model’s accuracy on strong and transferable adversaries, but
also investigate the surrounding decision space, as well as its
gradient.

Figure 5 illustrates the loss of six different models based on
the decision space of a single input image in two adversarial
directions – one taken from an unprotected model and the
other one in direction of the related model. As depicted by
Figure 5 (a), i.e., the image of the Base Model, one can see
an adversarial sub-space in close proximity of the input image
as indicated by the high loss value (shown in red). Thus, it only
takes a small change in ε (ε = 6 is optimal in this particular
case) to push the input image X deep into this adversarial
sub-space. A similar adversarial sub-space occurs in case of
the VAT model as shown in Figure 5 (b). Here, the distance
is greater, but the sub-space still exists. So, it takes a larger ε
to fool the VAT model.

In case of our proposed methods, using a fixed α-value is
not sufficient either as the blind-spot still exists, as illustrated
in Figures 5 (d) and (e). Although our proposed methods
with a fixed α-value weaken the adversarial spot, they do not
eliminate it. Probably, the α-value is chosen too high in this
case as there is another adversarial spot behind the first one.
We found that sampling α ∼ B(p, q) is essential to flatten the
decision space. As demonstrated by Figure 5 (f) the decision
space of our method with varying α-values is significantly
more flat than all the others. In fact, it is even more flat than
the one of the PGD model – especially for large ε-values as
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(a) Base Model

X

ε1
ε2

(b) VAT (ε = 15) [26]

X

ε1
ε2

(c) PGD (I = 7) [20]

X

ε1
ε2

(d) α = 0.4

X

ε1
ε2

(e) α = 0.4, KLλ=10

X

ε1
ε2

(f) α ∼ B(2, 4), KLλ=10

Fig. 5. Visualization of the decision space of six different VGGNet13 models in two adversarial directions of the same input image X . The loss is plotted
using x∗ = x+ ε1 · sign (∇x L1)+ ε2 · sign (∇x L2) (cf. [28]). The red peak is an adversarial spot, which corresponds to a very high loss. The magnitude
of the related model’s gradients sign (∇x L2) is controlled by ε2 ∈ [−8, 32], whereas ε1 ∈ [−16, 16] controls the magnitude of an unprotected model’s
gradient sign (∇x L1). The six images visualize how the loss values change when the input x is moved in one of these two directions. The images in (d) to
(f) correspond to our proposed models.

X
ε

(a) Base Model
X

ε

(b) VAT (ε = 15) [26]
X

ε

(c) PGD (I = 7) [20]

X
ε

(d) VGGNet13 (Ours)
X

ε

(e) ResNet32 (Ours)
X

ε

(f) ResNet50 (Ours)

Fig. 6. Impact of different images X with additional perturbation on the loss value. The magnitude of the loss is controlled by varying ε. In comparison to
the models from the literature (top row), our approach flattens the decision space significantly as demonstrated by the low loss values – even for very large
values of ε. Note that our proposed models (bottom row) were trained using α ∼ B(2, 4) and KLλ=10.
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TABLE II
ACCURACY OF DIFFERENT NETWORKS ON THE SETS OF ORIGINAL AND ADVERSARIAL IMAGES. ALL ADVERSARIAL DATASETS ARE CRAFTED USING OUR
PROPOSED gradient ensemble attack APPROACH WITH ONE, THREE OR FIVE (VULNERABLE) VGGNET13 MODELS. OUR METHOD IS EQUIVALENT TO [20],

[21] IF ONLY ONE MODEL IS USED. THE SHOWN RESULTS ARE FOR ε = 16. WHEN TRAINING A MODEL WITH PGD, THE PERFORMANCE ON THE
ORIGINAL IMAGES IS SIGNIFICANTLY LOWER IN COMPARISON TO THE Base Model. IN CONTRAST, VAT AND OUR PROPOSED METHOD SLIGHTLY

INCREASE THE VALIDATION ACCURACY. ACROSS ALL ADVERSARIAL PERTURBATIONS, VAT MODELS ACHIEVED THE HIGHEST ACCURACY.
NOTEWORTHY VALUES ARE HIGHLIGHTED.

Accuracy on Accuracy on Adversarial Dataset based on
Original Data One Model Three Models Five Models

Parametrization Train Val. True Adv. True Adv. True Adv.

Base Model
91.2% 73.4% 89.9% 23.8% 95.3% 4.1% 96.7% 0.9%

Projected Gradient Descent (PGD) with ε = 8 and λ = 2
I = 3 86.7% 66.2% 79.6% 79.0% 84.6% 83.6% 86.6% 86.5%
I = 7 77.8% 62.4% 75.6% 75.1% 80.7% 80.0% 82.8% 81.8%

Virtual Adversarial Training (VAT) with I = 3 and λ = 1
ε = 5 97.7% 76.2% 90.6% 85.1% 95.2% 87.2% 96.6% 86.9%
ε = 15 99.0% 74.6% 88.5% 86.0% 93.0% 86.0% 94.5% 90.3%
ε = 25 96.9% 76.5% 91.1% 83.1% 95.5% 82.8% 96.8% 80.2%

Our Proposed Method with KLλ=10

α ∼ B(2, 4) 90.6% 74.3% 88.8% 71.9% 93.5% 62.1% 95.1% 53.7%
α ∼ B(2, 6) 84.7% 72.4% 87.1% 74.2% 91.8% 70.0% 93.7% 66.0%
α ∼ B(2, 10) 86.9% 71.4% 85.8% 76.9% 90.4% 75.0% 92.4% 72.4%

TABLE III
ACCURACY OF DIFFERENT NETWORKS ON THE SETS OF ORIGINAL AND ADVERSARIAL IMAGES. ALL ADVERSARIAL DATASETS ARE CRAFTED USING OUR

gradient ensemble attack APPROACH WITH FIVE UNPROTECTED VGGNET13, RESNET32 AND RESNET50 MODELS. FOR THE LAST DATASET (LAST
COLUMN), WE COMBINED THREE VGG13, RESNET32 AND RESNET50 MODELS. THE TABLE SHOWS THE ACCURACY OF THREE UNPROTECTED MODELS

ON DIFFERENT ADVERSARIAL DATASETS. AS ONE CAN SEE, MULTI-STEP ADVERSARIES DO TRANSFER BETWEEN TOPOLOGIES. FURTHER, OUR
PROPOSED METHOD PROVIDES RESILIENCE AGAINST THESE TRANSFERABLE ADVERSARIES.

Accuracy on Accuracy on Adversarial Dataset
Original Data VGGNet13 ResNet32 ResNet50 Combined

Train Val. True Adv. True Adv. True Adv. True Adv.

Base Models
VGG13 91.2% 73.4% 96.7% 0.9% 96.2% 28.3% 96.9% 50.2% 98.4% 0.01%

ResNet32 89.4% 66.7% 87.9% 67.6% 95.5% 16.0% 95.3% 44.0% 96.1% 26.1%
ResNet50 87.5% 62.8% 84.1% 64.9% 92.2% 24.6% 94.7% 30.9% 94.5% 26.7%

Our Proposed Method with α ∼ B(2, 4) and KLλ=10

VGG13 90.6% 74.3% 95.1% 53.7% 96.6% 69.6% 97.1% 81.5% 98.1% 32.4%
ResNet32 83.1% 59.8% 80.3% 67.8% 88.5% 38.5% 89.5% 56.9% 90.2% 45.1%
ResNet50 80.4% 62.4% 83.8% 70.3% 91.6% 44.1% 92.9% 56.4% 93.6% 46.9%

illustrated in Figures 5 (c) and (f), respectively.
To verify these findings, we generated 128 adversarial

images X (using the FGSM) for each defense method and
compared the loss values based on varying ε ∈ [0, 128] (c.f.
Figure 6). As for the VAT model, adversarial attacks can
be highly successful. In fact, ε = 26 provides the greatest
success-rate for single-step adversaries while for the Base
Model ε = 8 works best (see Figures 6 (a) and (b)). This
proves once again, that the adversarial spots are just a little
further away compared to the Base Model. This may be an
explanation, on why the VAT model performs rather good on
our generated adversaries. However, the VAT model is not
substantially more robust against adversarial attacks than the
unprotected base model – it only requires a larger ε to fool it.

In contrast, the PGD model and our proposed method
clearly flatten the decision space and thereby strongly reduce

the risk of adversarial spots (cf. Figure 6 (c) and (d)). As
one can see, adversarial examples occur in greater distance
compared to the Base Model and occur significantly less
frequent as the lower loss values demonstrate. However, there
are adversarial sub-spaces which cause a high distraction of
the PGD models. In contrast to the PGD model, our model
(Virtual Alpha with p = 2, q = 4 and λ = 10) provides a
significantly more flattened space, i.e., high loss values rarely
occur at all.

Noticeably, for ε < 16 the loss values of our model are
significantly higher than the ones of the PGD model. In
addition, loss values grow rapidly for small ε-values. The
high average loss values for small ε-values may explain why
our model has a lower accuracy on our generated adversarial
datasets than the PGD model as the loss values do not need
do be maximal in order to indicate misclassification.
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VII. CONCLUSION

This work investigates the effects of adversarial attacks on
deep learning networks. It analyzes different strategies for
increasing a model’s resilience and, thus, countervailing mali-
cious attacks. The performance of the different defense strate-
gies is compared across large sets of transferable, carefully
generated adversaries. Next, three new approaches to improve
resilience against such perturbations were first introduced and
then compared against the state-of-the-art techniques Virtual
Adversarial Training and Projected Gradient Descent. In
addition, a novel adversarial attack method called gradient
ensemble attack has been introduced. Further, this work has
demonstrated the transferability of adversaries, which have
been crafted using our proposed method.

Within our investigations we have observed that VAT does
not provide substantial resilience against adversarial pertur-
bations as the adversarial sub-spaces are just pushed a little
further away. However, the incidence of these spaces is similar
to an unprotected model. Further, PGD trained models reduce
the frequency of adversarial sub-spaces and strongly increase
the distance to them. Yet, these sub-spaces still occur. Our
proposed method, superimposing two images and minimizing
the KL-Divergence between the two activations, reduces the
risk of adversarial sub-spaces with high loss. In fact, our
results demonstrate that these spaces rarely occur. However,
the average loss value is significantly higher which explains
why our models performed worse on our adversarial test sets.
Nevertheless, our proposed method is very promising as it
(i) is easily executable (it only requires an additional forward
pass), and (ii) still provides a noticeable regularized decision
space.

Our ideas for future work are two-fold: (i) we will compare
additional methods to further decrease the overall loss of our
proposed method and thereby improve its performance on
adversaries; (ii) we will investigate the effects of our gradient
ensemble attack for crafting strong and transferable adversaries
in a wider context – especially applying it to different white-
and black-box attack scenarios.
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