
Deep Neural Networks for Malicious JavaScript
Detection Using Bytecode Sequences

Muhammad Fakhrur Rozi
Graduate School of Engineering

Kobe University
Kobe, Japan

rozi mahfud@stu.kobe-u.ac.jp

Sangwook Kim
Graduate School of Engineering

Kobe University
Kobe, Japan

kim@eedept.kobe-u.ac.jp

Seiichi Ozawa
Center for Mathematical and Data Sciences

Kobe University
Kobe, Japan

ozawasei@kobe-u.ac.jp

Abstract—JavaScript is a dynamic computer programming
language that has been used for various cyberattacks on client-
side web applications. Malicious behaviors in JavaScript are
injected on purpose as the outputs of web applications, such as
redirection and pop-up texts or images. It exploits vulnerabilities
by using a variety of methods such as drive-by download or
cross-site scripting. To protect users from such cyberattacks, we
propose a deep neural network for detecting malicious JavaScript
codes by examining their bytecode sequences. We use the V8
JavaScript compiler to generate a bytecode sequence, which
corresponds to an abstract form of machine codes. The benefit of
using bytecode representation is that we can easily break complex
obfuscation in JavaScript. To identify the attacker’s malicious
intention, We adopt a deep pyramid convolutional neural network
(DPCNN) combining with recurrent neural network models,
which can handle long-range associations in a bytecode sequence.
In our experiment, various recurrent networks are testified to
encode temporal features of code behaviors, and our results show
that the proposed approach provides high accuracy in detection
of malicious JavaScript.

Index Terms—Cybersecurity, Deep learning, Malicious
JavaScript detection

I. INTRODUCTION

JavaScript has become the most used client-side program-
ming language that gives many conveniences to develop a
web application [1]. It is prevalent because it is lightweight,
flexible, and powerful. However, some attacks use a JavaScript
code to exploit vulnerabilities in a server, plugin, and other
systems. For instance, cross-site scripting (XSS) [2], drive-by-
download [3], heap spraying attack [4], or any kind of attack
that exploits browser, cookies, and security permission to act.
XSS is one of the common ways to exploit the vulnerabilities
of web applications using JavaScript. It tries to inject scripting
code into the output of the applications that are then sent
to the user’s web browser [5]. The malicious-injected code
is executed and used to access sensitive data stored and
transfers it to a server under the attacker’s control. This code is
camouflaged in some parts of benign web page such as image,
text, pop-up, and button.

Benign JavaScript often utilizes obfuscation to protect code
privacy or intellectual property and compress the code to make
human unreadable code without downgrading the execution
performance [6]. On the other hand, malicious JavaScript
applies obfuscation to hide known exploits and to evade anti-

virus systems [7]. Some obfuscation techniques can be applied
to transform a JavaScript code to become unreadable. Those
techniques succeed in making malicious a JavaScript code
difficult to be recognized by the anti-virus system, yet mixed
and multi-level obfuscation are often used to make it more
complicated for the system to de-obfuscate the code.

Therefore, machine learning and deep learning exist to
address the obfuscation problem for detecting malicious a
JavaScript code. Many researchers have proposed using a
wide variety of machine learning classifiers such as logistic
regression [8], neural networks [9], and the others. Feature
extraction takes a significant role when using deep learning
model to detect maliciousness of a JavaScript code. According
to Ucci et al. [10], there are three kinds of feature extraction
approaches that are used in malware analysis, e.g., static analy-
sis, dynamic analysis, and hybrid analysis. Approaches based
on static analysis focuses on static features of a JavaScript
code such as string code or any content of samples without
requiring the execution. Meanwhile, dynamic analysis is the
contrary of static analysis, which uses the execution of code
to grab the features by using a virtual machine or Sandbox
to isolate malicious code in a safe environment. Other than
that, the hybrid analysis uses the combination of static and
dynamic analysis, which takes advantage of both of them.
Static analysis has faster performance than others due to no
execution is needed to extract the feature, while dynamic and
hybrid analysis need more time to execute the code first before
the data can be used to build a machine learning model.

For addressing obfuscation problem, dynamic analysis ap-
proach leverages more detailed information related to the
target as compared to static analysis even though it takes more
time in runtime execution. By executing the code in a safe and
reliable environment, output such as opcode, log activity, or
byte code will be produced, which represents the instruction
code of the program even though the code contains obfuscation
part. One of the features from the JavaScript engine that we
can use is bytecode. JavaScript uses an engine to compile
high-level programming language before it is executed in the
machine in order to make a JavaScript code run faster. Byte-
code is a sequence of abstract instruction codes that represent
the whole process of the program without any redundancy.
Compiling bytecode to machine codes will be easier because

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

the bytecode was designed with the same computational model
as the physical CPU.

In this work, we use the bytecode sequence as a feature of
JavaScript code to detect whether it is malicious or benign.
Since a bytecode sequence is obtained only through the
execution of JavaScript, we build a safe virtual environment
to extract bytecode from a JavaScript code. For this work, we
use V8 engine from Google to compile a high-level JavaScript
code into bytecode sequence which is similar to work by Fang
et al. [11] where jsdom package library of NodeJS is needed
to address some of DOM and BOM object in the browser
environment that cannot be identified. By using this feature,
we do not need the de-obfuscation process to reveal the real
source code of the program. We just focus on the analysis
of the sequence to capture the process of the program. The
bytecode sequence can be a very long and high-frequency
sequence that can consist of more than 200,000 codes for
one program. Due to this condition, we use Deep Pyramid
Convolutional Neural Networks (DPCNN) [12], which deals
with long sequence problems by reducing the length of feature
to become some of the feature maps. This approach provides
considerable performance for detecting malicious JavaScript
compared to other approaches. We use the recurrent network
at the end of DPCNN in order to get a long-range association
of the sequence. Some modifications are applied to DPCNN
to fit with the recurrent network.

The organization of this paper is as follows, we highlight the
related work in Section 2. After that, we explain our proposed
deep learning model in Section 3. We present our experiment
result through a comparison to some combination of deep
learning methods in Section 4 and Section 5. Lastly, we deliver
our conclusions in Section 6.

II. RELATED WORK

Cyberattacks with a malicious JavaScript code basis have
evolved over the last recent years. Many approaches have
been developed to encounter attacks such as signature-based
analysis, string pattern analysis [13], and machine learning or
deep learning. The approach may depend on the feature that
we want to analyze. Some kinds of features can be considered
for the analysis of a malware or malicious code based on how
the features can be extracted, e.g., static analysis, dynamic
analysis, and hybrid analysis.

The approach based on static analysis catches the feature
of samples by using the content without necessitating their
execution [10]. Many researchers use a static feature, which
is faster and easier for analysis. For example, Rafiqul Islam
et al. [14] used static features such as function length fre-
quency and printable string information to classify malware
data set. They made a vector representation of each feature
by counting the number of functions and strings in the file
program. Other researchers used plain JavaScript source code
and then transformed it into a hexadecimal byte sequence
for each character [15]. Furthermore, there is research that
used Abstract Syntax Tree (AST) representation for the static
features [16] that contains more information than lexical units,

and it was able to analyze samples whose behavior is time- or
environment-dependent.

Meanwhile, many researchers conducted a dynamic anal-
ysis for feature extraction rather than static analysis. These
approaches are commonly used due to eliminating obfusca-
tion of the source code by executing the code in a virtual
environment such as Sandbox and emulator. Anderson et al.
[17] used graphs which were constructed by dynamically
collected instruction traces of the target executable. They
combined graph kernels to make a similarity matrix between
the instructions trace graphs. Besides that, Kawaguchi et al.
[18] proposed a method to classify malware’s functions from
APIs observed by dynamic analysis on the host. They tried to
address a threat from malware proliferation, which subspecies
of existing malware that have been automatically generated
by illegal tools. Despite dynamic analysis, we can use hybrid
analysis, which is the combination of dynamic and static
analysis for feature extraction. The purpose of using both
techniques to avoid obfuscation and execution-stalling [19].

More recently, methods of applying deep learning to mal-
ware or malicious JavaScript detection have been proposed.
Fang et al. [11] proposed malicious JavaScript classification
by applying Long Short-Term Memory (LSTM) to a bytecode
sequence from the V8 JavaScript engine. It reported that it
showed higher accuracy than the previous methods that had
been proposed, i.e., random forest, support vector machine
(SVM), and Naı̈ve Bayes. Rhode et al. [20] had introduced
similar work that used a Recurrent Neural Network (RNN) as
a deep learning model with the feature was a short snapshot
of behavioral data. Moreover, Stokes et al. [15] proposed
the modification of LSTM by combining it with the Max
Pooling layer (LaMP). They also came up with the Convoluted
Partitioning of Long Sequences (CPoLS) to address the long
sequence problem from byte sequence representation. Differ-
ently, Yakura et al. [21] used the combination of Convolu-
tional Neural Network (CNN) and attention mechanism to the
imaged binary data. The attention mechanism improves the
performance of the CNN model by selecting the essential fea-
tures of the sample and gave significant performance compared
with conventional methods. Zhang et al. [9] used Residual
Network (ResNet), which is one of the deep learning models
that apply a deep convolutional network to overcome long
sequence problems in an opcode feature.

As bytecode or opcode sequence is frequently used as the
feature component of the samples, the deep learning model
with the capability of addressing a long sequence is needed.
To deal with the long-range problem in sequential data is
quite challenging. We need to accurately capture the depen-
dencies between symbols or codes that are far apart in the
sequence. Commonly, sequential inputs are processed using
RNNs. However, vanishing gradient problem is a big issue
when training RNNs. Therefore, the feed-forward convolution
network is highly useful to process sequential data. Some
researches combine convolution and recurrent approaches to
deal with the long-range problem in sequential data. Johnson et
al. [12] proposed DPCNN architecture for text categorization

Fig. 1. Overview of our proposed method.

that can efficiently represent long-range associations in text.
The critical feature of DPCNN is the downsampling layer
without increasing the number of feature maps, which make
this architecture shape like ’pyramid.’ These methods can be
applied in other data types that are similar to the characteristics
of text, such as sequences. Furthermore, Stokes et al. [15] used
CPoLS, which is a neural network architecture, to get informa-
tion hidden deep within a long sequence. They split the input
sequence into smaller parts of fixed-length, processed them
separately, and then combined them again for further learning.
These models can perform on extremely long sequences and
can learn a single vector representation of the input.

III. PROPOSED METHOD

Our full classification framework is illustrated in Fig. 1,
which consists of three main components. The first component
is a preprocessing step that we use a V8 engine to compile the
function of a program into the sequence of V8’s bytecodes.
From this bytecode sequence, we reduce the unimportant fea-
tures of the bytecode. After that, we implement unsupervised
learning for our code to get the vector representation of the
code using the word2vec method [22]. Finally, the vector
representation of each code can be used as the input for our
deep learning model.

A. V8’s Bytecode Generation

The V8 engine is an open-source program provided by
Google with a high-performance JavaScript and WebAssembly
engine [23]. This engine is used in Chrome and Node.js, which
can run standalone or be embedded in C++ applications. It
compiles a JavaScript source code into bytecodes through
the parse of Abstract Syntax Tree (AST), which is a tree
representation of the syntactic structure of JavaScript code.
JavaScript is internally compiled by V8 with just-in-time (JIT)
compilation to speed up the execution.

Fig. 2. V8 engine compiles a obfuscated JavaScript (left) into the correspond-
ing V8’s bytecode sequences (right).

V8 provides a runtime environment for JavaScript execu-
tion, and the browser provides the document object model
(DOM) and the other Web Platform APIs. Due to this
condition, for the simulation purpose of getting the V8’s
bytecode sequences, we have to make a browser environment
in JavaScript so that no error will appear when the code is
executed. The solution to this problem is to use the packaging
library jsdom of Node.js. Jsdom is the implementation of the
pure-JavaScript for many web standards. It uses WHATWG
DOM and HTML standards, which can make a simulation
of browser rendering engines to define documents into DOM
[11]. Besides that, there are some objects that we have to
define first before the execution, which is Windows scripting
(WScript) and Visual Basic scripting (VBScript). WScript
is one of the Microsoft scripting hosts that provides an
environment in which users can use it to execute any kind
of language that uses a variation of objects models to perform
tasks. Almost all JavaScript codes use this scripting to run the
string code that is already obfuscated.

Recently, there are two ways to generate bytecode sequences
using the V8 engine. The first way is to use a Node.js
environment by adding ”–print-bytecode” to the command line
parameters. The second one is to use a Chrome browser with
launching the program from the command line and use ”–js-
flags=’–print-bytecode’” to print. Figure 2 illustrates the output
of V8’s bytecode sequence generated using Node.Js.

B. Preprocessing

V8’s bytecodes can be seen as small building blocks that
construct any JavaScript functionality when composed to-
gether [24]. It has several hundreds of bytecode which means
that the occurrence of bytecode is very high for each sequence
with the length can be longer than 100,000 bytecodes.

However, the output of a raw bytecode sequence consists
of some elements, such as register number, properties, and
values, which are not essential to detect malicious contents.
We can ignore all of the unnecessary outputs and just focus on
the main body of bytecodes. Figure 3 presents the illustration
of preprocessing by taking actual bytecodes that we will use
for the learning process.

C. Word Embedding

Word2vec is an unsupervised learning algorithm to make
distributed representations of a word in a vector space to

Fig. 3. Preprocessing for elimination of redundant information from bytecode
sequence.

achieve better performance in natural language processing
tasks [22]. Mikolov et al. [25] proposed two types of archi-
tecture, Skip-gram, and Continuous Bag Of Word (CBOW)
models. The Skip-gram model uses each current word to
predict words within a certain range before and after the
current word. On the other hand, CBOW is the inverse of the
Skip-gram model, which predicts the center word given by
the context of the words in range before and after the center
words [26]. The CBOW is similar to the conventional bag-of-
words representation in which we discard order information,
and works by either summing or averaging the embedding
vectors of the corresponding features.

In the CBOW model, the following loss function L is
minimized so that the prediction probability of a center word
wt can be maximized for given context words c1, c2, ..., ck:

L =

T∑
t=1

log p(wt|ct−K ...ct+K) (1)

where T is the number of corpora and K is the window
length of surrounding words which regarded as the context.
The probability is defined by softmax function

p(wO|wI) =
exp (v′wO

>
vwI

)∑W
w=1 exp (v

′
w
>
vwI

)
(2)

where W is the number of words in vocabulary, and vw and
v′w are input and output vector representations of w, respec-
tively. The denominator can be approximated via hierarchical
softmax or negative sampling [22].

The hidden output of word2vec is a vector representation
for each word in the vocabulary and we use it to transform a
bytecode into a vector. After that, the vector representation is
used as the input in our model. The dimensionality of a vector
affects the accuracy of word representation, where a higher
dimension will make higher accuracy. Since the dimensionality
of vectors has a direct effect on memory requirements and
processing time, it is essential to choose a good trade-off
between size of model and task accuracy.

In this paper, word2vec is used to obtain vector representa-
tion of bytecodes; that is, a bytecode sequence is represented
as a sequence of corresponding word vectors. The reason why
we introduce word vector embedding into JavaScript code

Fig. 4. Pyramidal shape in DPCNN.

representation is because it can express the semantic meaning
of code as a continuous, dense vector. We train the word2vec
model to get an embedding matrix for words (bytecodes) and
the matrix is used for transforming a bytecode sequence into
a list of vectors.

D. Deep Pyramid Convolutional Neural Networks

DPCNN is a low-complexity word-level deep convolutional
neural network (CNN) architecture introduced by Johnson et
al. [12]. It can efficiently represent long-range associations
in text for text categorization. This model tries to build an
effective and efficient design of deep word-level CNNs, which
yields better accuracy yet low-complexity. It can be obtained
by increasing the depth but not the order of computation time.
As the computation time per layer decreases exponentially in
a ’pyramid,’ this model is called deep pyramid CNN, which
is illustrated in Fig. 4. Due to such a pyramidal shape, the
computation time is generally halved for each layer after every
pooling.

The architecture of DPCNN consists of the following three
components: text region embedding, shortcuts connection
with pre-activation and identity mapping, and downsampling
blocks. A text region embedding layer with the sequential
input is similar to the standard convolutional layer applied to
a sequence of vectors representing a sentence or a document.
Since the bytecode sequence has much repetitive code, in this
paper, we adopt a bigger kernel size (window) than that in
the original paper, where we set 100 instead of 3. To reduce
the computation time for this network, we set 30 as the stride
of the convolutional layer. It also can cover long association
among blocks of bytecode in a sequence. Besides that, we use
unsupervised embedding to enhance region embedding, which
is useful for classification.

Shortcut connection with pre-activation is applied in order
to enable training of deep networks which is written as z +
f (z) where f represents the skipped layers [27]. The definition

Fig. 5. Architecture of DPCNN with recurrent network for malicious JavaScript detection.

Fig. 6. Schematic structure of RNNs.

of skipped layers f (z) is two convolutional layers with pre-
activation. The activation function in the proposed model is
the rectified liner unit (ReLU) σ(·) = max (x , 0).

One of the characteristics in DPCNN is the downsampling
block, which makes this architecture looks like ’pyramid’.
Downsampling with stride two necessarily doubles the ade-
quate coverage of the convolution kernel. Thus, DPCNN is
computationally efficient for representing long-range associa-
tions for long sequence data. Figure 5 shows the architecture
of DPCNN used in this work.

E. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) is one of deep learning
models that deals with sequences and stacks such as sentences,
documents, and sequences. RNNs allow representing variable-
length sequential inputs in fixed-size vectors while paying
attention to the structured properties of the inputs [28]. Several
architectures such as Simple RNN [28], the Long Short-Term
Memory (LSTM) [29], and the Gated Recurrent Unit [30] are
proposed to implement RNNs in various perspectives. Fig. 6
describes a graphical representation of RNNs where hn, xn, yn
is the hidden state, input, output respectively. The architecture
of RNNs can be interpreted as a chained neural network,
which allows the previous output to be used as an input while
having hidden states. Since RNNs have this architecture, it
gives advantages of the model such as sharing of weights
across the time, consideration of historical information, and
the natural processing of variable-length inputs. However, it

TABLE I
THE WHOLE SET OF JAVASCRIPT CODE SAMPLES USED FOR THE

EXPERIMENT.

Data Set Total Files #Malicious #Benign

Training 22,010 12,729 9,281

Validation 2,446 1,407 1,039

Testing 6,115 3,521 2,594

Total 30,571 17,657 12,914

makes the computation of this model slower than other neural
network architectures like multi-layer perceptrons.

IV. EXPERIMENTS

In this section, a performance comparison is carried out
among the proposed malicious JavaScript detection system and
some alternatives.

A. Experimental Setup

We conducted experiments on large labeled JavaScript files
data set that is described in Table I. The malicious JavaScript
files data set consists of three different sources as follows,
1,783 files from anti-malware engineering workshop (MWS)
data set 2015 [31], 15,663 files from JavaScript malware col-
lections by Hynek Petrak [32], and 211 files from JavaScript
malicious data set in GeeksOnSecurity of GitHub [33]. More-
over, we used 12,914 JavaScript files by depth crawling from
Alexa top domain list as benign JavaScript data set. Initially,
we split data set into two data set with percentage 80% and
20%. We used the smaller data set for testing the model.
Meanwhile, we used 10% of the bigger data set for validation
and the rest is used to train the model. Most of the original data
set is obfuscated with many varieties of obfuscation styles. For
file which is not obfuscated, we applied obfuscation with some
techniques such as string and encoding obfuscation.

To compile a JavaScript code into a bytecode sequence,
the code should be executed a virtual environment. Jsdom
library in Node.js is used to provide DOM objects so that we
can execute and compile a code into bytecode sequence in a
terminal. WScript objects are also needed to comply with some

TABLE II
PERFORMANCE OF VARIOUS MODELS WHICH WERE EVALUATED FOR THIS WORK

Model Accuracy (%) Precision (%) Recall (%) F1-score AUC

LSTM (L=60K) 95.75(±0.1102) 95.90(±0.0986) 96.14(±0.0845) 0.9451(±0.0011) 0.9698(±0.0005)

DPCNN (L=200K) 97.33(±0.1379) 96.64(±0.0678) 97.10(±0.0940) 0.9684(±0.0008)a0.00001 0.9949(±0.0002)

DPCNN-RNN (L=200K) 97.15(±0.2525) 96.69(±0.3020) 97.03(±0.2649) 0.9684(±0.0029)a0.00117 0.9951(±0.0002)

DPCNN-LSTM (L=200K) 96.87(±0.1867) 96.37(±0.2917) 96.85(±0.2335) 0.9657(±0.0027)a0.00165 0.9937(±0.0005)

DPCNN-BiLSTM (L=200K) 97.36(±0.2046) 96.63(±0.2578) 97.11(±0.1702) 0.9683(±0.0023)a0.00051 0.9951(±0.0001)

a p value.

of JavaScript codes that use those scripting in the program.
Because the malicious codes have the potential to be active
and attack the system, we ran the codes in the virtual machine
so that it can be safe from any malicious behaviors.

We conducted tuning of various hyper-parameters for deep
learning models and the unsupervised learning model, and the
best setting is then set based on the validation error rate. For
the word2vec model, we adopt the following parameters: win-
dow size=3, embedding size=100, and vocabulary size=203.
We applied the embedding matrix as the first layer of our deep
learning model before feeding it to the next layer. Besides that,
we set stride 30 and kernel size 100 for the region embedding
layer, which is a convolutional layer for a region of sequence
covering one or more codes. We made different depth of model
for the DPCNN-RNNs because we need longer sequences for
the input of the recurrent layer. Consequently, DPCNN-RNNs
has deeper architecture than DPCNN that have 12 and 8 layers
for DPCNN and DPCNN-RNNs respectively. After that, we
defined the number of feature maps of the convolution layer in
DPCNN by 250 and the kernel size by 3 [12]. We carried out
experiments with a variety of recurrent layers such as RNN,
LSTM, and Bidirectional LSTM (BiLSTM) with the size of
the hidden layer 50, and zero value as the first hidden input.
Not only that, we also tuned the hyper-parameters for model
that only use recurrent network, which is the previous work’s
model, LSTM. The final setting of LSTM model that we set
for the experiment as follows, the number of layer is 2, the
hidden layer dimension is 200 and the drop-out is 0.2. The
stochastic gradient descent (SGD) optimizer was used to train
all models.

The DPCNN model is designed to address long-range
associations of a sequence. However, the maximum length of
sequence exhausts the memory capacity and the computation
time. The length of bytecode sequence can be longer than
400,000 codes, which is too long to handle on a computer
with a limited size of memory. Therefore, we set the length of
bytecode sequences to L = 200, 000 for all models that use
DPCNN and L = 60, 000 for LSTM in order to avoid out of
memory problem. Concurrently, we also use the zero-padding
technique for a sequence that has the length shorter than the
maximum length.

B. Performance Evaluation

In this section, we evaluate performances of our proposed
methods. Table II describes the performance metrics of all
models. We used common performance metrics such as the
accuracy, precision, recall, F1 score, and the area under the
receiver operating characteristics (ROC) curve (AUC).

The objective of this work is to find a suitable model that
can minimize the false negative (FN) cases. In other words, we
have to get a high recall, which indicates how many malicious
JavaScript codes labeled by the model are originally malicious
(misclassified malicious JavaScript). A low false negative rate
is crucial, which translates to a successful attack, that is, a
malicious code goes undetected.

Table II shows tour evaluation of four variants of DPCNN
with recurrent networks in detecting malicious JavaScript.
In addition, we used a previous work’s model, LSTM, for
comparison. Each model has a different architecture, especially
in the recurrent layer, where we try to know the performance
of the recurrent layer that fits in our model. Based on the
results, we find that the combination of DPCNN and recurrent
networks have superior results compared to the only recurrent
networks. The model that use DPCNN outperformed the model
that does not use DPCNN around 2%. Among all models,
DPCNN-BiLSTM has the best performance in accuracy, recall
and AUC score. However, DPCNN-RNN and DPCNN give
slightly better performance in precision and F1-score.

We evaluated the AUC score and plotted the ROC curve for
each model to show the diagnostic ability of binary classifiers.
ROC curve shows the trade off between sensitivity (true
positive rate) and specificity (true negative rate). Figure 7
shows us the ROC curve for each model in our experiment.
LSTM model gives the lowest curve of other models that use
DPCNN as the first architecture of our classifier. On the other
hand, all models with DPCNN gives better AUC score as well
as ROC curve. Therefore, we can conclude that the proposed
model has good property as a detector of malicious JavaScript
codes.

V. DISCUSSION

The experimental results in Section IV demonstrate that
the feature learning in DPCNN works well for extracting
representation of bytecode sequences. A pyramid shape could
reduce the computation time so that it can make the model

Fig. 7. ROC curves for different DPCNN models zoomed into a maximum
FPR = 0.5 and a minimum TPR = 0.9

detection of malicious bytecodes very quickly even for rep-
resenting long-range associations. Furthermore, the recurrent
layer sharpens the accuracy of the model by capturing the
dependencies of each feature in a sequence.

The performance results show that the use of DPCNN gives
better result than the LSTM model. This is because of the
ability of DPCNN to capture the long-range association in the
bytecode sequences and reduce the complexity of the network
so that it can process longer sequence than previous one.
The use of RNNs results in the performance improvement to
some extend, which helps to consider historical information
of the bytecode sequence. However, the addition of RNNs
after DPCNN occasionally makes the information is easily
corrupted due to being multiplied many times by small num-
bers, which causes a vanishing gradient problem. Due to this
problem, the DPCNN with RNNs often misclassifies the input
and makes the number of FN and FP is more significant
than other models that do not use RNNs. Furthermore, the
two-tailed paired t-test is conducted to check the difference
between the model which use DPCNN and LSTM that does
not use DPCNN. The result shows a significant difference in
performance where p-value is less than 0.05.

We consider several limitations of the proposed method to
detect malicious JavaScript. These include limitations due to
the virtual environment, length of a sequence, and adversarial-
learning-based attacks.

The first limitation is a virtual environment that is used
to compile the high-level JavaScript language into bytecode
sequence. We need to set all possibilities DOM object and
function, which is needed for execution and the security of the
environment. However, it is kind of difficult to provide all the
required objects. Malicious codes often use their functions and
objects that need connection with their server. Therefore, the
virtual environment cannot transform all obfuscated JavaScript
codes into bytecode sequences. Also, some malicious codes
can detect whether the environment is virtual or not. It makes
the malicious code will not show the real code of the malware

even though we have already run the program in a virtual
environment.

Another limitation is the maximum length of the sequence.
Our proposed model has a fixed maximum model as the
hyperparameter. For our experiment, we set the maximum
length is 200,000 codes for a sequence. The longer maximum
length that we set, the memory will increase too and lead to out
of memory exceptions. The bytecode sequence can be longer
than 200,000, which means that the information of sequence
that includes the maliciousness cannot be obtained due to the
maximum length of the input sequence. It may be possible
to process for an extremely long sequence by using advanced
computers that are released in the future, which contain more
capacity of memory.

Another thing that we have to concern is the adversarial
learning-based attack. The research about adversarial learning
inspires other research about new attack schemes for deep
learning models such as CNN and RNN. While it is not a
direct attack, Papernot et al. [34] have shown that standard
RNN cells are vulnerable from adversarial learning-based
attack. Therefore, it is essential to run the model in a secure
environment.

VI. CONCLUSION

As described herein, we propose a deep neural network,
which is the combination of DPCNN and recurrent network
for malicious JavaScript detection by analyzing the bytecode
sequence that is a good way to avoid obfuscation in ma-
licious code. The result of our experiment reveals that the
proposed method performed well to detect the maliciousness
of JavaScript code. We used the unsupervised learning al-
gorithm to create vector representation of sequences, which
then becomes the input for the model. Feature learning is
done by DPCNN to construct simpler features before going
through the classifier. It succeeds in representing the long-
range association in the bytecode sequences.

ACKNOWLEDGMENT

This research was achieved by the Ministry of Education,
Science, Sports, and Culture, Grant-in-Aid for Scientific Re-
search (B) 16H02874 and the Commissioned Research of
National Institute of Information and Communications Tech-
nology (NICT), JAPAN.

REFERENCES

[1] C. Zapponi, “Githut: a small place to discover languages
in github,” https://githut.info/, accessed: 2020-05-10.

[2] S. Abaimov and G. Bianchi, “Coddle: Code-injection
detection with deep learning,” IEEE Access, vol. 7, pp.
128 617–128 627, 2019.

[3] A. K. Sood and S. Zeadally, “Drive-by download attacks:
A comparative study,” IT Professional, vol. 18, no. 5, pp.
18–25, 2016.

[4] V. L. Le, I. Welch, X. Gao, and P. Komisarczuk, “De-
tecting heap-spray attacks in drive-by downloads: Giving

attackers a hand,” in 38th Annual IEEE Conference on
Local Computer Networks, 2013, pp. 300–303.

[5] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel,
and G. Vigna, “Cross site scripting prevention with
dynamic data tainting and static analysis,” in NDSS,
2007.

[6] W. Xu, F. Zhang, and S. Zhu, “Jstill: mostly static
detection of obfuscated malicious javascript code,” in
CODASPY 2013 - Proceedings of the 3rd ACM Con-
ference on Data and Application Security and Privacy,
Feb. 2013, pp. 117–128.

[7] P. Likarish, E. Jung, and I. Jo, “Obfuscated malicious
javascript detection using classification techniques,” in
2009 4th International Conference on Malicious and
Unwanted Software (MALWARE), 2009, pp. 47–54.

[8] S. Palahan, D. Babić, S. Chaudhuri, and D. Kifer, “Ex-
traction of statistically significant malware behaviors,”
in Proceedings of the 29th Annual Computer Security
Applications Conference, 2013, p. 69–78.

[9] X. Zhang, M. Sun, J. Wang, and J. Wang, “Malware
detection based on opcode sequence and resnet,” in Se-
curity with Intelligent Computing and Big-data Services,
C.-N. Yang, S.-L. Peng, and L. C. Jain, Eds., 2020, pp.
489–502.

[10] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine
learning techniques for malware analysis,” Computers &
Security, vol. 81, pp. 123 – 147, 2019.

[11] Y. Fang, C. Huang, L. Liu, and M. Xue, “Research on
malicious javascript detection technology based on lstm,”
IEEE Access, vol. 6, pp. 59 118–59 125, 2018.

[12] R. Johnson and T. Zhang, “Deep pyramid convolutional
neural networks for text categorization,” in Proceedings
of the 55th Annual Meeting of the Association for Com-
putational Linguistics, vol. 1, Jul. 2017, pp. 562–570.

[13] Y. Choi, T. Kim, S. Choi, and C. Lee, “Automatic
detection for javascript obfuscation attacks in web pages
through string pattern analysis,” in Future Generation
Information Technology, Y.-h. Lee, T.-h. Kim, W.-c.
Fang, and D. Ślezak, Eds., 2009, pp. 160–172.

[14] R. Islam, R. Tian, L. M. Batten, and S. Versteeg,
“Classification of malware based on integrated static and
dynamic features,” Journal of Network and Computer
Applications, vol. 36, no. 2, pp. 646 – 656, 2013.

[15] J. W. Stokes, R. Agrawal, G. McDonald, and
M. Hausknecht, “Scriptnet: Neural static analysis for
malicious javascript detection,” in IEEE Military Com-
munications Conference (MILCOM), 2019, pp. 1–8.

[16] A. Fass, R. P. Krawczyk, M. Backes, and B. Stock,
“Jast: Fully syntactic detection of malicious (obfuscated)
javascript,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, C. Giuffrida, S. Bardin, and
G. Blanc, Eds., 2018.

[17] J. N. C. S. B. Anderson, D. Quist and T. Lane, “Graph-
based malware detection using dynamic analysis,” Com-
puter Virology, vol. 7, pp. 247–258, 2011.

[18] N. Kawaguchi and K. Omote, “Malware function classi-

fication using apis in initial behavior,” in 10th Asia Joint
Conference on Information Security, 2015, pp. 138–144.

[19] B. Anderson, C. Storlie, and T. Lane, “Improving mal-
ware classification: Bridging the static/dynamic gap,”
in AISec’12 - Proceedings of the ACM Workshop on
Security and Artificial Intelligence, Nov. 2012, pp. 3–14.

[20] M. Rhode, P. Burnap, and K. Jones, “Early-stage mal-
ware prediction using recurrent neural networks,” Com-
puters & Security, vol. 77, pp. 578 – 594, 2018.

[21] H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and
J. Sakuma, “Neural malware analysis with attention
mechanism,” Computers & Security, vol. 87, p. 101592,
2019.

[22] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean, “Distributed representations of words and
phrases and their compositionality,” in Proceedings of
the 26th International Conference on Neural Information
Processing Systems, vol. 2, 2013, p. 3111–3119.

[23] V8. [Online]. Available: https://v8.dev/
[24] F. Hinkelmann, “Understanding v8’s bytecode,”

https://medium.com/dailyjs/understanding-v8s-bytecode-
317d46c94775, Aug. 2017, accessed: 2020-05-10.

[25] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean,
“Efficient estimation of word representations in vector
space,” CoRR, 2013.

[26] E. Nalisnick and S. Ravi, “Learning the dimensionality
of word embeddings,” 2015.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 770–778.

[28] J. L. Elman, “Finding structure in time,” Cognitive Sci-
ence, vol. 14, no. 2, pp. 179 – 211, 1990.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Comput., vol. 9, no. 8, p. 1735–1780,
Nov. 1997.

[30] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Em-
pirical evaluation of gated recurrent neural networks on
sequence modeling,” CoRR, 2014.

[31] M. Hatada, M. Akiyama, T. Matsuki, and T. Kasama,
“Empowering anti-malware research in japan by sharing
the mws datasets,” Journal of Information Processing,
vol. 23, no. 5, pp. 579–588, 2015.

[32] H. Petrak. Javascript-malware-collection. [Online].
Available: https://github.com/HynekPetrak/javascript-
malware-collection

[33] Geeksonsecurity. js-malicios-dataset. [Online]. Available:
https://github.com/geeksonsecurity

[34] N. Papernot, P. McDaniel, A. Swami, and R. Harang,
“Crafting adversarial input sequences for recurrent neural
networks,” in IEEE Military Communications Conference
(MILCOM), Dec. 2016, pp. 49–54.

